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Part I

Introduction to Signals and Systems



1

Introduction

The goal of this course is to give students a general understanding of the fundamental principles of signals
and systems. To start out, let’s define what we mean by signals and systems.

A signal is. . .
• a detectable physical quantity, such as voltage or current, by which information may be transmitted
• a set of information or data

A system is. . .
• any interacting or interdependent group of items forming a unified whole
• any collection of objects for which some set of cause-and-effect relations exists
• an entity that processes a set of signals (inputs, excitations) to yield another set of signals (outputs,

response)

1.1 Examples

We now provide some examples of signals and systems.

• Weather. The weather is a complex system that relates signals such as temperature, pressure, density,
and air velocity (wind) at each point in time. Meteorologists use models to predict weather based on
current and past conditions, such as tracking the location of a hurricane. These models may be based
on physics or constructed from historical data.
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• Human body. The human body is a complex system that relates signals such as height, weight, temper-
ature, blood flow, and electrical signals between neurons. Doctors use medications to influence (control)
these signals in order to improve bodily function, such as fighting off a disease.

• Chemical process. The transformation of interacting chemicals forms a system, where the signals are
the quantities and concentrations of the chemicals. For example, plants use photosynthesis to convert
sunlight, carbon dioxide, and water into sugars for food while releasing oxygen as a byproduct.
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• Internet. The internet is a complex interconnection of routers, modems, servers, and computers that
enables signals to be transmitted between devices, either electrically through wires or wirelessly via
electromagnetic waves. This can be viewed as a single (very large!) system, or as the connection of
many small subsystems.

• Audio system. An audio system may be used to produce sound waves from a musical instrument or
microphone. In an electric guitar, for example, the sound is created by the musician plucking a string
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to make it vibrate, which is then converted to an electric signal by the pickup, which is then amplified
and converted to a sound wave by the speaker.

• Robot. A robot is an electromechanical system, meaning that it is composed of both electrical and
mechanical components. Signals include the force, position, and velocity of each mechanical component,
as well as voltages and currents in the circuits. The robot below is used in the course ECE 317: Industrial
Robotics at Miami University.

This is a very incomplete list of some signals and systems; the main point is that signals and systems are
everywhere! As you go about your day, take a moment to observe some of the signals and systems that you
interact with.
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1.2 Modeling

Now that we have seen some examples of signals and systems, let’s discuss how we can describe them. We
will start from the most natural and realistic description, and then abstract parts of the system to move
towards a mathematical model that can be used to analyze the system.

• Physical. The most natural and realistic description of a system is its physical description. A description
of the Mars rover, for instance, would include its dimensions, materials, and components.

• Diagrams. Another way to describe a system is by schematic diagrams. Continuing with our example,
we can describe the mechanical components of the Mars rover using a mechanical diagram:

m

k

b

f

y

Here, m is the mass of the robot, k is its spring constant, b is its damping coefficient, y is its position,
and f is the force applied to it, such as through an electric motor. Note that the mass, spring constant,
and damping coefficient are parameters that typically do not change with time, while force and position
are signals that do depend on time.
Likewise, the electrical components of the system can be described using a circuit diagram:

+
−vs(t)

t = 0

R

+ −
vr(t)

C

+

−
vc(t)i(t)

Here, vs is the source voltage applied to the circuit, R is the resistance, C is the capacitance, i is the
current, vr is the voltage across the resistor, and vc is the voltage across the capacitor. In this case, the
resistance and capacitance are parameters of the circuit, while the voltages and current are signals.
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• Equations. From the schematic diagrams, we can write down differential equations that describe the
relationship between the signals as a function of time. For instance, Newton’s laws (force equals mass
times acceleration) say that the force f(t) and position x(t) of the mass in our mechanical diagram are
related by the second-order differential equation

mÿ(t) + c ẏ(t) + k y(t) = f(t)

Similarly, Kirchhoff’s laws allow us to relate the source voltage vs(t) and the capacitor voltage vc(t) in
the circuit diagram by the first-order differential equation

RC v̇c(t) + vc(t) = vs(t)

The dot notation means a derivative with respect to time, such as

ẋ(t) = d
dtx(t) and ẍ(t) = d2

dt2x(t)

The derivation of such equations that describe a system is called modeling and requires knowledge of
the particular application domain.

1.3 Overview

As we have seen in each of the examples, a system describes the relationship between the various signals in a
system. We typically think of the signals that we have control over as inputs and those that we can measure
as outputs. The general depiction is as follows:

system
inputs outputs

In this class, we. . .

• abstract signals and systems to study their fundamental properties

• focus on systems that are well-defined mathematically

In other words, we assume that a mathematical model of the system has already been constructed, and we
study this model of the system. Keep in mind, however, that models do not always describe the system
perfectly, and there is a trade-off between the complexity of the model and the difficulty in analyzing it!

For a given system, there are several types of problems that we may want solve:

• Analysis. The analysis problem is to quantify how the system reponds to various inputs. We may want
to characterize qualitative properties of the system (such as whether or not it is stable) or quantitative
properties (such as how much the system amplifies a sinusoidal input at a certain frequency).

• Design. The design problem is to construct a system with some desired behavior. In robotics, for
instance, engineers may design the electrical and mechanical components so that the robot is able to
walk or run (as in a humanoid robot).

• Control. In some cases, we do not have the ability to design the system (such as the weather or human
body examples). Such systems can still be manipulated by choosing the inputs so that the system has
some desired behavior. The main approach in control is to choose the input signals as a function of the
outputs, which is called feedback.
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• Identification. For some systems, such as the weather example, it is too complicated to write down gov-
erning equations from first principles. In such cases, an alternative approach is to collect input/output
data and use that to construct a mathematical model that approximately describes the behavior of the
system. This is called system identification.

In this class, you will learn how to
• classify signals and systems based on their properties

• convert between various representations of signals and systems

• compute and interpret the response of linear time-invariant systems

• interpret signals and systems in the frequency domain

• model a linear time-invariant system from input/output data

Discussion: What are some other examples of systems?
• What are the input signals?

• What are the output signals?

• Why do you want to understand the behavior of the system?

1.4 Fundamental concepts

There are several fundamental concepts in signals and systems that we will be studying throughout the
course.

Signals can be viewed as functions of time or frequency

While we typically think of signals as functions of time (such as the voltage in a circuit), it is often useful to
interpret signals in terms of their frequencies.

As an illustrative example, consider a musical signal such as an audio clip of a song. The signal consists
of sound waves that apply pressure to your eardrums at each point in time. A tone is an audio signal that
consists of a single frequency. For instance, the tone A4 is a single sinusoidal signal at a frequency of 440 Hz
(the tone often used to calibrate instruments). Songs consist of multiple tones happening at once to create
music.

Consider a C major chord, which consists of the frequencies: 261.63 Hz (C4), 329.23 (E4), and 392.00 (G4).
As a function of time, this signal looks as follows:

From this time-domain representation of the signal, it is difficult to see that the signal is actually just three
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tones. If we instead represent this signal as a function of its frequencies (its frequency-domain representation),
we get three “spikes” at the individual tones. There are small amounts of the other frequencies due to noise
in the signal, but the amount of noise is small compared to the size of the signal.

Throughout the course, we will learn to interpret both signals and systems in the time and frequency domains.
Some reasons for this are the following:
• We may want to know what frequencies are in a signal. For instance, we are only able to hear frequencies

between 20 Hz to 20,000 Hz, so any frequency content outside of this range is inperceptible (so we may
want to remove it to save space when storing the signal on a computer).

• Many systems are much easier to understand in the frequency domain. In particular, systems that
are linear and time invariant will play a large role in this course, and we will see that they are best
understood in the frequency domain.

Applications often involve continuous- and discrete-time signals and systems

Continuous-time signals are defined at all points in time (like the voltage in a circuit or the force on an
object), while discrete-time signals are defined only at discrete points in time. Many applications involve
both continuous and discrete time due to the fact that signals are often continuous (voltage, force, sound,
image), while computers process and store discrete information.

As an example, consider an audio signal that is processed (or stored) by a computer and then played back
through speakers. The audio signal begins as a continuous-time signal of sound waves. A microphone
converts the pressure waves to an electric signal (still in continuous time). The computer then uses an
analog-to-digital converter to convert the electric signal to a series of bits that it can process and store. To
play the signal back, those bits are passed through a digital-to-analog converter to produce an electric signal
that is then put through the speaker which converts it to an audio signal.

audio → microphone → computer → speaker → sound

This basic idea of converting a continuous-time signal to discrete time, processing it using a computer,
and then converting back to continuous time occurs in numerous applications. For instance, robots in-
volve continuous-time signals such as forces, positions, velocities, voltages, and currents, while they are
programmed using microcontrollers that operate on discrete-time signals.

We will only scratch the surface of the relationship between continuous and discrete time in this course. For
those interested in learning more, this is one of the main topics in digital signal processing (DSP).
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1.5 Example: RC circuit

To illustrate several more concepts that we will see throughout the course, consider a simple RC circuit.

+
−vs(t)

t = 0

R

+ −
vr(t)

C

+

−
vc(t)i(t)

• the input signal vs(t) is the supplied voltage

• the output signal vc(t) is the capacitor voltage

• the initial condition vc(0) = a is the capacitor voltage at time t = 0

• the time constant is RC

A circuit is a system that relates voltages and currents. The following table summarizes the relationship
between voltage and current across a resistor, capacitor, and inductor.

component voltage-current impedence

capacitor
v(t) = 1

C

∫ t

−∞
i(τ) dτ 1

Cs

resistor
v(t) = R i(t) R

inductor v(t) = L
di(t)

dt Ls

We can analyze the circuit using these relationships along with Kirchhoff’s voltage and current laws.

• Kirchhoff’s voltage law (KVL): the sum of voltages around any closed loop is zero

• Kirchhoff’s current law (KCL): the sum of currents entering and exiting a node must be equal

From KVL, the supplied voltage is equal to the sum of the voltage across the resistor and capacitor:

vs(t) = vR(t) + vc(t)

From KCL, the same current flows through the resistor and capacitor. Using the relationship between the
voltage and current across each component, we can write this in terms of voltages as

i(t) = 1
R
vR(t) = C v̇c(t)

Combining these equations, we find that the system is described by the differential equation

vc(t) +RC v̇c(t) = vs(t)

14
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This is a differential equation because it involves both signals (such as vs(t) and vc(t)) and their derivatives
(v̇c(t)). Given the source signal vs(t), the solution of the differential equation is the entire signal vc(t) as a
function of time t.

From this representation, we can make several observations:

• Continuous-time systems can be modeled using differential equations. Discrete-time systems have a
similar representation as difference equations. This is only one way to represent systems, and we will
see multiple other ways of describing a system.

• Dynamical systems have memory. The solution depends on the initial condition vc(0), which is the
capacitor voltage before the source voltage is applied. The response (or output) of a system depends on
both the input to the system and what state it was in before the input was applied.

• Consider what happens to the circuit if the source voltage is zero. If the capacitor has an initial charge,
then the charge will dissipate through the resistor when the circuit is connected until it has no charge
left. This is called the zero-input response of the system.
Now consider what happens if the capacitor has no initial charge but we apply a constant source voltage.
This constant voltage will charge the capacitor until it is fully charged. This is called the zero-state
response of the system because the system was initially “at rest”.
When there is both an initial state (the charge on the capacitor) and an input signal (the source voltage),
the system response is the superposition of the zero-input and zero-state responses.

vc(0)

zero-input response

t

1

zero-state response

t

output

t

+ =

1.6 Course mechanics

• pre-requisites

- circuits

• co-requisites

- differential equations

• post-requisites

- signal processing
- communication systems
- robotics
- control
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2

Signals

A signal is a function of time. Some examples of signals are the force on a mass, the voltage in a circuit,
and the acoustic pressure at a point in space.

Notation. We use lowercase letters such as u, x, and y to denote signals. The symbol u refers to the entire
signal, while u(t) refers to the value of the signal at time t.

While it may not seem obvious at first, a signal is actually a vector. We typically think of a vector as a finite
set of numbers, such as

v =

1
2
3


while a signal is a function of time, such as

u(t) = cos(t)

But everything we can do with vectors, we can also do with signals. For instance, we will see how to scale
a signal by a scalar, add two signals, take the inner product between two signals, determine whether or not
two signals are orthogonal, and compute the size (or length) of a signal. While linear algebra is the study of
finite-dimensional vectors, signals have infinite dimensions.

2.1 Properties

We will first study how to categorize signals based on their properties.

Domain

The domain of a signal is the set of times for which it is defined. There are two common domains.
• Continuous-time signals are defined on an entire interval of time, such as the set of all real numbers,

the set of nonnegative real numbers, or the interval [a, b]. For continuous-time signals, we often use the
symbols t or τ for time to indicate that it is a real number.

• Discrete-time signals are only defined on a discrete set of times, such as the set of integers, the set of
nonnegative integers, or the finite set {0, 1, 2, . . . , n}. For discrete-time signals, we often use the symbols
k or m for time to indicate that it is an integer.
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Notation. We often denote continuous-time variables by t or τ , while we use k or n to denote discrete-time
variables to emphasize that time is an integer. For instance, a discrete-time signal may be denoted by x(k),
x[k], or xk, while a continuous-time signal is typically denoted by x(t).

Example. Since time itself is continuous, all physical signals are in continuous time. Some examples
of continuous-time signals are voltages and currents in a circuit, forces and positions in a mechanical
system, and radio transmissions. Discrete-time signals, however, are often used to represent quantities
at a discrete set of times, such as the monthly balance of a bank account, the iterates of a numerical
algorithm, a sampled continuous-time signal, or a sequence of numbers stored on a computer (such as
an image or audio signal).

The values of a discrete-time signal are often evenly spaced in time. We can think of a discrete-time signal as
a sampled version of a continuous-time signal, where the relationship between continuous time t and discrete
time k is

t = kT

where T is the sampling period. We often write x(k) instead of x(kT ), where the sampling period T is
implicitly assumed.

Codomain

The codomain of a signal u is the set of values that it can have at any given time.
• Scalar signal: u(t) is a scalar (number)

• Vector signal: u(t) is a vector

• Binary signal: u(t) is either 0 or 1

Example. The continuous-time vector signal

v(t) =

v1(t)
v2(t)
v3(t)


might give the voltage at three places on an antenna.

Example. The discrete-time binary signal u(k) = {1, 1, 0, 0, 1, 0, 1, . . .} may give the value (high or low)
of a transistor in a circuit at each clock cycle.
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The values of a signal often have units associated with them, such as volts, amps, meters, etc. A signal may
also be unitless, or the units may be unspecified.

Size

The size of a signal is a single number that describes how “big” the signal is. Size is a quantitative property
of the signal. If we think of a signal as a vector, then the size of a signal is the same thing as the length of
the vector (in general, this is called a norm).

There are many ways to measure the size of a signal. For example, consider a continuous-time scalar signal
u with domain t ≥ 0.
• The energy of the signal is the integral of its amplitude squared,∫ ∞

0
u(t)2 dt

An energy signal is a signal with finite energy. For the integral to converge to a finite number, the values
of the signal u(t) must converge to zero as t→∞.

• The power of the signal is the time average of the amplitude squared,

lim
T→∞

1
T

∫ T

0
u(t)2 dt

A power signal is a signal with finite power. The root-mean-square (RMS) value is the square root of
the power.

• The peak of the signal is its maximum absolute value,

max
t≥0

|u(t)|

18
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Example. To illustrate the various ways of measuring the size of a signal, consider the following two
continuous-time scalar signals defined on the time interval [0,∞).

1 2 3 4

1

e−t

t

u1(t)

2 4

−1

1

t

u2(t)

• Energy. The energy of the signal u1(t) is

energy(u1) =
∫ ∞

0

(
e−t)2 dt =

∫ ∞

0
e−2t dt = −1

2e
−2t
∣∣∣∣∞
t=0

= −1
2(0− 1) = 1

2

Since the energy is finite, this is an energy signal. The signal u2(t) does not converge to zero, so it
has infinite energy,

energy(u2) =
∫ ∞

0
u2(t)2 =∞

• Power. Since the signal u1 converges to zero, its power is zero,

power(u1) = 0

Since the signal u2(t) repeats, we can calculate the power by integrating over a single period as

power(u2) = lim
T→∞

1
T

∫ T

0
u2(t)2 dt = 1

T

∫
T

u2(t)2 dt = 1
2

∫ 1

−1
t2 dt = 1

6 t
3
∣∣∣∣1
t=−1

= 1
6(1− (−1)) = 1

3

The power is finite, so this is a power signal.

• Peak. The peak of both signals is one.

peak(u1) = 1 = peak(u2)

The energy, pwer, and peak are various ways of measuring the size of a signal. For these two examples,
the signals have the same peak values while u1 has finite energy and u2 has finite power. These measures
are all quite different!

We can also use the size of a signal to measure how similar two signals are to each other. Given two signals
u1 and u2, we can measure their similarity by taking the size of their difference. For example, some measures
of similarity are energy(u1 − u2), power(u1 − u2), and peak(u1 − u2).

Remark. The terms energy and power do not indicate these quantities in the conventional sense, but instead
refer to a generalization to arbitrary signals. For a voltage v across a 1-ohm resistor, the above integral is
equal to the physical energy dissipated in the resistor.

Qualitative properties

There are many qualitative properties that a signal may or may not have.
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• u converges if u(t) converges to a constant as t→∞

• u decays if u(t) converges to zero as t→∞

• u is bounded if its peak is finite, meaning that there exists some M > 0 such that |u(t)| < M for all t

• u blows up if its magnitude diverges to infinity as t→∞

• u is periodic if there exists T > 0 such that u(t + T ) = u(t) for all t, and the smallest such T is the
period

2.2 Transformations

Given a signal, we can perform various transformations to obtain other related signals. We now describe
the basic transformations of shifting and scaling of both the magnitude of the signal and its time axis.
When plotting a signal, time is plotted on the horizontal axis while the magnitude of the signal is plotted
on the vertical axis. Therefore, transforming the magnitude shifts and stretches the signal vertically, while
transforming the time variable shifts and stretches it horizontally.

The following figure illustrates these transformations. The original signal (blue) is both shifted and stretched
in time, and the magnitude of the signal is both scaled and shifted to produce the transformed signal (orange).

t

u(t)

Shifting and scaling the magnitude

Scaling the magnitude of a signal stretches or compresses the graph vertically, while shifting the magnitude
shifts the graph of the signal up or down. These transformations are illustrated in the following figure.

Original signal

t

u(t)

Shifted magnitude

t

u(t) + a

Scaled magnitude

t

a u(t)

Scaling the magnitude. Scaling the magnitude of a signal u(t) by an amount a produces the signal a u(t).
If a is larger than one, then this stretches the graph of the signal vertically, while it compresses the graph if
0 < a < 1. When a is negative, this also flips the graph vertically about the horizontal axis.
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0 < a < 1

t

a u(t)

a > 1

t

a u(t)

a = −1

t

a u(t)

Shifting the magnitude. Shifting the magnitude of a signal u(t) by an amount a produces the signal
u(t) + a. This shifts the graph of the signal up if a is positive and down if a is negative.

a > 0

t

u(t) + a

a < 0

t

u(t) + a

Shifting and scaling time

Scaling the independent time variable of a signal stretches or compresses the graph horizontally, while shifting
time moves the graph of the signal left or right. These transformations are illustrated in the following figure.

Original signal

t

u(t)

Shifted time

t

u(t− a)

Scaled time

t

u(at)

Scaling time. Scaling the time of a signal u(t) by an amount a produces the signal u(at). If a is larger
than one, then this stretches the graph of the signal horizontally, while it compresses the graph if 0 < a < 1.
When a is negative, this also flips the graph horizontally about the vertical axis.

0 < a < 1 (expand time)

t

u(at)

a > 1 (compress time)

t

u(at)

a = −1 (reverse time)

t

u(at)
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Shifting time. Shifting the time of a signal u(t) by an amount a produces the signal u(t+ a). This shifts
the graph of the signal left if a is positive (a time delay) and right if a is negative (a time advance).

a < 0 (delay time)

t

u(t+ a)

a > 0 (advance time)

t

u(t+ a)

Remark. Time shifting and scaling may be the opposite of what you intuitively think. Subtracting from
time shifts to the right, while adding to time shifts to the left. Scaling time by a number larger than one
compresses time, while scaling by a number smaller than one expands time. If you ever forget or get confused,
just substitute in a couple values for t to figure out the correct direction to shift and scale.

Example (Time shifting and scaling). Consider the continuous-time signal u(t) = 1− t for 0 ≤ t ≤ 1 and
zero otherwise. Then u(t − 1) is the signal shifted to the right by one. While the signal u(t) starts at
time t = 0, the delayed signal u(t − 1) starts at time t = 1. Similarly, u(t + 1) is the signal shifted to
the left by one, which advances the signal to start at time t = −1. These signals are illustrated below.

−1 1 2

1

t

u(t)

−1 1 2

1

t

u(t− 1)

−1 1 2

1

t

u(t+ 1)

Also, u(0.5t) is the signal expanded by a factor of two, u(3t) is the signal compressed by a factor of
three, and u(−t) is the signal flipped about the vertical axis. These signals are illustrated below.

−1 1 2

1

t

u(0.5t)

−1 1 2

1

1
3

t

u(3t)

−1 1 2

1

t

u(−t)

Combined shifting and scaling

When we both shift and scale a signal (in either time or magnitude), we must be careful about the order in
which the transformations are applied, since the order affects the resulting signal. There are two cases.
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• Shift then scale. Shifting the signal u(t) in time by b produces the signal u(t + b), and then scaling
time by a produces u(at+ b).

• Scale then shift. Scaling the signal u(t) in time by a produces the signal u(at), and then shifting time
by b produces u(a(t+ b)).

Remark. Shifting and then scaling is not the same as scaling and then shifting (by the same amounts). The
order of shifting and scaling matters!

Example. Consider the continuous-time signal u(t) = 1 − t for 0 ≤ t ≤ 1 and zero otherwise. We will
form the shifted and scaled signal u(2t− 1) using both methods.
• Using the first method, we need to shift the signal to the right by one and then scale by a half.

−1 1 2

1

t

u(t)

−1 1 2

1

t

u(t− 1)

−1 1 2

1

t

u(2t− 1)

• Alternatively, we can find the same signal using the second method by writing it as u(2(t− 0.5)).
To form this signal, we need to first scale by a half and then shift to the right by a half.

−1 1 2

1

t

u(t)

−1 1 2

1

t

u(2t)

−1 1 2

1

t

u(2(t− 0.5))

Both methods produce the same signal, though we had to shift by the appropriate amount in each case.

2.3 Common signals

We now introduce some common signals in both continuous and discrete time. These signals can be used as
building blocks to construct more complex signals.

Unit step signal

A unit step signal is a signal that is zero for negative time and “steps” to a value of one at time zero. We
denote the step signal in continuous time by us(t) and in discrete time by us(k), where the subscript s stands
for “step”. This is also sometimes called the Heaviside step function.
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Continuous time Discrete time

us(t) =
{

1 if t ≥ 0
0 if t < 0

us(k) =
{

1 if k ≥ 0
0 if k < 0

1

0

us(t)

t

1

0

us(k)

k

Unit impulse signal

A unit impulse signal is a signal that represents an impulse at time zero and a value of zero at all other
times. We denote the impulse signal in continuous time by δ(t) and in discrete time by δ(k).

Remark (continuous-time impulse). While the discrete-time impulse signal is rather simple, the continuous-
time impulse signal is actually quite complicated. In fact, it is not even a function! There is no explicit
expression for δ(t). Instead, the continuous-time impulse signal is defined by how it acts under integration.
You can think of a continuous-time impulse as a signal that is zero everywhere, but is infinite right at time
zero in such a way that its integral is one. For this reason, we draw an impulse as an arrow with a height of
one at time zero.

Continuous time Discrete time

δ(t) has no explicit formula δ(k) =
{

1 if k = 0
0 if k ̸= 0

1

0

δ(t)

t

1

0

δ(k)

k

Sinusoidal signal

A continuous-time sinusoid is a scalar signal of the following form.

24



ECE 306: Signals and Systems 2 - Signals

a cos(ϕ)

|a|
T = 2π

ω

t

a cos(ωt+ ϕ)

A sinusoid is parameterized by the following three numbers:
• a is the magnitude
• ω is the angular frequency (rad/s)
• ϕ is the phase (rad)

The magnitude a scales the height of the sinusoid, the angular frequency ω scales the sinusoid in time, and
the phase ϕ shifts the sinusoid in time.

There are three related quantities that describe how quickly a sinusoid oscillates. The period T has units
of seconds and is the period of the signal, which is the amount of time before the signal repeats itself. The
frequency f has units of Hertz (or inverse seconds) and describes how quickly the signal oscillates, and the
angular frequency ω has units of radians per second which also describes the rate of oscillation. These three
quantities are related by

T = 1
f

= 2π
ω

The frequencies f and ω are proportional to each other and inversely proportional to the period T , so higher
frequencies correspond to smaller periods and vice-versa.

Discrete-time sinusoids are obtained by sampling a continuous-time sinusoid. Let Ts denote the sampling
period. Then the continuous time t is related to the discrete time k by t = kTs. Substituting this into the
formula for a continuous-time sinusoid, we obtain the discrete-time sinusoid a cos(ωkTs + ϕ). To simplify
the expression, define the angle θ = ωTs which has units of radians. A discrete-time sinusoid then has the
following form.

|a|

k

a cos(kθ + ϕ)

One cycle of the discrete-time sinusoid is completed when kθ = 2π, so we can find the number of samples
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per cycle by solving for k to obtain

number of samples per cycle = 2π
θ

Exponential signal

An exponential signal is a signal in which time is in the exponent of a constant. A continuous-time exponential
signal has the form eat and a discrete-time exponential signal has the form rk where r is a constant parameter.

Continuous time Discrete time

1
a = 0

a < 0

a > 0

t

eat

1
r = 1

0 < r < 1

r > 1

k

rk

Complex exponential signal

Complex exponential signals generalize all of the signals that we have seen so far (step, impulse, sinusoidal,
and exponential). These signals will be important when we study systems.

A continuous-time complex exponential signal has the form est where s is a complex number. The shape of
the signal depends on the value of the complex number s. To understand the shape of the signal, write the
complex number in rectangular form as s = a+ jb. Then the complex signal is

est = e(a+jb)t = eatejbt = eat
(
cos(bt) + j sin(bt)

)
where we used properties of the exponential and Euler’s formula for complex numbers. This reveals that
a complex number is the product of a (real) exponential signal with the summation of real and imaginary
sinusoidal signals.

est = eat︸︷︷︸
exponential

(
cos(bt) + j sin(bt)

)
︸ ︷︷ ︸

sinusoid

The parameter a is the real part of the complex number s, which determines whether the exponential is
growing, decaying, or constant. The parameter b is the imaginary part of the complex number s, which
determines how fast the real and imaginary parts of the signal are oscillating.

A discrete-time complex exponential signal has the form zj where z is a complex number. The shape of
the signal depends on the value of the complex number z. To understand the shape of the signal, write the
complex number in polar form as z = r ejθ. Then the complex signal is

zk =
(
r ejθ

)k = rk ejkθ = rk
(
cos(kθ) + j sin(kθ)

)
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where we used properties of the exponential and Euler’s formula for complex numbers. This reveals that
a complex number is the product of a (real) exponential signal with the summation of real and imaginary
sinusoidal signals.

zk = rk︸︷︷︸
exponential

(
cos(kθ) + j sin(kθ)

)
︸ ︷︷ ︸

sinusoid

The parameter r is the magnitude of the complex number z, which determines whether the exponential is
growing, decaying, or constant. The parameter θ is the angle of the complex number z, which determines
how fast the real and imaginary parts of the signal are oscillating.

We now visualize each of the various types of discrete-time complex exponential signals along with the cor-
responding location of the complex number z in the complex plane. First, notice that a complex exponential
reduces to a real exponential signal if z is a real number. In this case, the real part of z determines whether
the signal grows, decays, or stays constant.

1
×

1
×

1
×

We recover a discrete-time impulse signal when z = 0 since 00 = 1 and zero raised to any other power is
zero.

1
×

When the magnitude of z is one (so z is on the unit circle in the complex plane), then the real exponential
is constant, so the complex exponential signal oscillates without growing or decaying. Since the angle of the
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complex number determines the frequency of oscillation, moving z inside the unit circle at the same angle
results in decaying oscillations, while moving it outside the unit circle at the same angle results in growing
oscillations.

1

×

×

1

×

×

1

×

×

For real negative values of z, the complex exponential is a real signal that oscillates between positive and
negative numbers. Once again, if the real part of z is inside the unit circle then the oscillations decay over
time, and if the real part of z is outside of the unit circle then they grow over time.

1
×

1
×
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1
×

And finally, let’s observe how the frequency of oscillation depends on the angle of the complex number z.
As z moves around the unit circle, its angle gets larger so the signal oscillates faster.

1
××

1

×

×

1

×

×

1

×

×

1

×

×
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1

×

×

1

×

×

1

×

×

The fastest discrete-time frequency is θ = π. After this frequency, faster sinusoids look like lower-frequency
sinusoids, which is known as aliasing.

1
××

1×

×

1

×

×
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1

×

×

1

×

×

1

×

×

1

×

×

1×

×

1
××
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2.4 Converting between continuous and discrete time

Many applications involve both continuous-time and discrete-time signals and systems. The main reason for
this is due to the fact that
• physical signals are continuous (voltage, force, sound, position), while

• computers process and store discrete information.
Below are a couple prominent examples that involve both continuous-time and discrete-time signals and
systems. There are entire courses dedicated to each of these problems.

Example (digital signal processing). Digital signal processing (DSP) studies the use of computers to
process signals. Since computers inherently process and store discrete information, DSP focuses on
discrete-time systems. An example application is processing a noisy audio signal to produce a better
(less noisy) signal. The high-level procedure is shown below, were the continuous-time audio signal is
sampled to produce a discrete-time signal, which is then processed on a computer by a digital algorithm,
and a continuous-time signal is reconstructed from the processed signal.

sampler
digital

algorithm
reconstruction

device

noisy
audio
signal

better
audio
signal

Example (digital control). The field of control studies how to choose the inputs to a system to make it
behave in a desired manner. Control is often applied to physical systems, such as a mobile robot. In
this case, the inputs to the system are continuous-time signals such as voltages applied to motors, while
the outputs are continuous-time signals such as the position and velocity of the robot. Robots are often
controlled using computers, so these continuous-time signals must first be converted to discrete-time
signals to be processed, and then converted back to be applied to the system.

CT system

digital
algorithm

samplerhold

yc(t)

yd(k)xd(k)

xc(t)

In the remainder of this section, we will look at how to convert signals between continuous and discrete time.
Notation. In this section, we will use parentheses to denote continuous-time signals (such as x(t)) and square
brackets to denote discrete-time signals (such as x[k]). This is just to help the reader distinguish between
the two types of signals.

Continuous to discrete

The process of converting a continuous-time signal to a discrete-time signal is called sampling. In the most
basic form of sampling, the discrete-time signal is formed by taking the value of the continuous-time signal

32



ECE 306: Signals and Systems 2 - Signals

at evenly-spaced intervals. The time between samples is called the sampling period, which we denote by Ts.
Given a continuous-time signal x(t), the sampled discrete-time signal is then

x[k] = x(kTs)

The sampling process is illustrated below.

t

x(t)

k

x[k]

There are three related quantities typically used to describe how fast a continuous-time signal is sampled.
• the sampling period Ts which has units of seconds (s)

• the sampling frequency fs which has units of Hertz (Hz, or inverse seconds)

• the (angular) sampling frequency ωs which has units of radians per second (rad/s)

Ts = 1
fs

= 2π
ωs

Discrete to continuous

Given a discrete-time signal, there are many ways to “fill in the gaps” to construct a continuous-time signal.
The simplest conversion method is called a zero-order hold. Here, the value of the discrete-time signal is
“held” until the time of the next sample. This constructs a piecewise constant continuous-time signal as
follows:

x(t) = x[k] for kTs ≤ t < (k + 1)Ts
Applying this procedure to the discrete-time signal from above, we obtain the following continuous-time
signal (the original signal is shown in gray). There are other (more complicated) methods to reconstruct the
signal.

k

x[k]

t

x(t)
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Systems

A system is a relationship between signals. We typically split the signals into two groups: the input signals
are those that we can use to influence the behavior of the system, and the output signals are those that we
can observe or want to control. Systems are often dynamic, meaning that the output of the system at any
given time depends not only on the current value of the input, but also on previous values of the input. In
other words, dynamic systems have memory, so the behavior now depends on what has happened to the
system in the past. This memory is captured by the state of the system, which is a set of signals internal
to the system that completely describe its current state of memory. A continuous-time system has input,
output, and state that are continuous-time signals, while a discrete-time system involves discrete signals.
The following diagram illustrates the main components of a general system.

System with
state x(t)

Input signal
u(t)

Output signal
y(t)

3.1 Examples

Circuit

Circuits are electrical systems, where the signals that the system relates to each other are the voltages and
currents in the circuit. For instance, consider the following circuit consisting of a voltage source, switch,
resistor, and capacitor.

+
−vs(t)

t = 0

R

+ −
vr(t)

C

+

−
vc(t)i(t)

The input signal to this system is the source voltage vs(t), and the output signal is the voltage across the
capacitor vc(t). Using Kirchhoff’s laws, the relationship between the source and capacitor voltage is described
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by the following first-order differential equation:

vs(t) = RC v̇c(t) + vc(t)

The solution to this equation gives the voltage across the capacitor vc(t), which depends on both the source
voltage vs(t) and the initial capacitor voltage vc(0). The memory of this system is captured by the voltage
across the capacitor, so the state is x(t) = vc(t). Together, the initial state and the input signal uniquely
determine the output.

Mechanical system

Mechanical systems relate signals like the position and velocity of an object with the forces that act on it.
For instance, consider the following mechanical system consisting of a mass attached to the wall by a spring
and a damper.

m

k

b

f

y

The input signal to this system is the external force f(t) applied to the mass, and the output signal is the
horizontal position y(t) of the mass. Using Newton’s laws, the relationship between the applied force and
the position of the mass is described by the following second-order differential equation:

f(t) = mÿ(t) + bẏ(t) + ky(t)

Since this is a second-order differential equation, two initial conditions are needed to solve for the position.
For instance, we could use the initial position y(0) and the initial velocity ẏ(0) as the initial conditions.
Since these are both needed to specify the output, the state consists of both the position and velocity, that
is, x = (y, ẏ).

Savings account

A savings account can be modeled as a discrete-time system, where the input signal is the amount A(k)
deposited into the account in month k and the output signal is the principal (or balance) P (k) of the account.
Here, the time index k corresponds to the month and takes nonnegative integer values k = 0, 1, 2, . . ., where
month zero corresponds to when the account was established. Given that the account earns interest i, the
dynamics relating the amount deposited with the principal is

P (k + 1)︸ ︷︷ ︸
balance next month

= P (k)︸ ︷︷ ︸
balance this month

+ i

12P (k)︸ ︷︷ ︸
interest

+ A(k)︸ ︷︷ ︸
deposits

While continuous-time systems are described by differential equations, discrete-time systems are described
by difference equations that involve the signals at shifted times (such as k and k + 1). For this system, the
state is the principal P (k).
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Numerical algorithms

An iterative numerical algorithm is a sequence of instructions that may be used to solve a mathematical
problem. We can interpret such algorithms as discrete-time systems. There are a numerous algorithms that
can be applied to solve a variety of problems. We now discuss a few such applications.

Square root calculation

As a simple example, we can use Newton’s method to compute the square root
√
a of a positive number

a > 0. To do so, let x(0) > 0 be the initial estimate of the square root. Then for each iteration k = 0, 1, 2, . . .,
update the estimate as

x(k + 1) = 1
2

(
x(k) + a

x(k)

)
As this system is iterated, the iterates x(k) converge to the square root

√
a in the limit as k →∞.

Fixed-point iterations

We can use numerical algorithms to solve nonlinear equations using fixed-point iterations. Consider the
nonlinear equation

2x− e−x = 1

To solve this equation, we first isolate one instance of x. For example, solving for the first instance of x gives

x = 1
2
(
1 + e−x)

To turn this into a discrete-time system, we replace x on the left-hand side by x(k+1) and x on the right-hand
side by x(k). This gives the discrete-time system

x(k + 1) = 1
2
(
1 + e−x(k))

We can start at some estimate x(0) of the solution and iterate for k = 0, 1, 2, . . .. If the iterates of the system
converge, then this must be a solution to the original nonlinear equation.

Instead of isolating the first instance of x in the equation, we could have isolated the second instance to
obtain the iteration

x(k + 1) = − ln
(
2x(k)− 1

)
But this iteration does not converge! In general, there is no guarantee that a fixed-point iteration will
converge to a solution of the nonlinear equation, so you may need to try isolating a different instance of x,
or start the iteration from a different initial condition x(0).

Optimization

Consider the problem of finding the value x that minimizes a function f(x). Some examples of optimization
problems are the following:
• x may be the number of widgets that a compancy produces and f(x) the associated production costs.

• x may be the route that you take to campus and f(x) the amount of time that you spend commuting.
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Such optimization problems are typically described mathematically as

minimize
x

f(x)

If the objective function f(x) is differentiable (meaning that its derivative exists), we can use the gradient
descent algorithm to find the minimizer:

x(k + 1) = x(k)− α d
dxf(x(k))

where α > 0 is the stepsize. Whether this algorithm converges to the optimal solution or not depends on
the properties of the objective function f(x) and the choice of stepsize α.

Logistic map

An interesting discrete-time system is the logistic map, which is defined by the iterations

x(k + 1) = r x(k) (1− x(k))

where r ∈ [0, 4] is a constant parameter. The dynamics of this system highly depend on the parameter r.
For instance, the iterates with r = 3.75 and initial condition x(0) = 0.5 are shown on the left.

One of the interesting properties of this system is that it is chaotic, meaning trajectories starting arbitrarily
closed together eventually diverge far apart. To illustrate this, suppose we instead initialize the system
with x(0) = 0.500001. The difference between the iterates using this initialization and the initialization
x(0) = 0.5 from before is shown on the right. While the trajectories start out close (so that their difference is
approximately zero), they eventually become very far apart. This illustrates some of the interesting behavior
that can occur when the dynamics are nonlinear.

3.2 Properties

It is often useful to characterize systems based on their properties. We now define some of the basic properties
that a system may have.

Memory

A system is static if the value of the output signal at any given time depends only on the value of the input
signal at the same time. In other words, y(t) is a function of u(t), but not u(τ) for any τ ̸= t. Static systems
have no state.
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Example (Static system). An example of a static system is a circuit without any energy storage elements
(such as capacitors or inductors). For instance, the output voltage vo(t) depends only on the input
voltage vi(t) at the current time in the following circuit:

+

−

vi(t)

+

−

vo(t)

vi(t)

vo(t)

The plot of the output voltage as a function of the input voltage is shown on the right. Since the system
has no memory, the output at time t is a function of the input at time t only.

A system is dynamic if the value of the output signal depends on the input signal at past (or future) times.
In other words, y(t) depends on u(τ) for some τ ̸= t. Dynamic systems have a state, and the response of the
system depends not only on the input signal, but on the initial state as well. All systems that have memory
are dynamic, so essential all “interesting” systems are dynamic.

An RC circuit is an example of a dynamic system. The voltage across the capacitor depends on what currents
have been applied to it in the past, and the output voltage depends not only on the supply voltage but the
initial capacitor voltage as well. Other examples of dynamic systems are the spring–mass–damper system,
savings account, fixed-point iterations, and logistic map.

Linearity

A system is linear if a weighted sum of input signals produces the same weighted sum of the corresponding
output signals. In particular, a system is linear if the input au1 + bu2 produces the output ay1 + by2 for all
scalars a and b and all input signals u1 and u2 and their corresponding output signals y1 and y2.

To show that a system is nonlinear, we only need to find specific input-output pairs u1 7→ y1 and u2 7→ y2
and constants a and b such that the weighted sum of inputs a u1 + b u2 does not produce the weighted sum
of outputs a y1 + b y2.

Example (Linear vs nonlinear). Examples of linear systems are the RC circuit, savings account, and the
system

y(t) = u(t) + 3
∫ t

−∞
u(τ) dτ + 2 u̇(t)

Examples of nonlinear systems include the following:

y(t) = 1
2 (u(t) + 3)2

y(t) =
∫ t

0

√
u(τ) dτ

ẏ(t) = y(t)u(t), y(0) = 1

y(k + 1) = 1
2

[
y(k) + u(k)

y(k)

]
y(k + 1) = [y(k)]2 + u(k)
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The previous example suggests a general principle that we may use to quickly detect nonlinearity: if any of
the input or output signals are raised to a power, multiplied, or divided, the system is nonlinear.

Time invariance

A system is time invariant if shifting the input signal in time shifts the output signal by the same amount
in time. Suppose the input signal u1(t) produces the output signal y1(t). Then a system is time invariant if
the shifted input signal u2(t) = u1(t− τ) produces the shifted output signal y2(t) = y1(t− τ) for all scalars
τ and all input signals u1 and its corresponding output signal y1.

A system is time varying if shifting the input signal in time does not shift the output signal by the same
amount in time. In other words, the dynamics of the system change over time.

Example (Time-varying parameter). Time-varying systems often arise from systems whose parameters
vary with time. For instance, the RC circuit is time invariant if the resistance and capacitance are
constant. But if the resistance R(t) of the resistor changes over time, then the dynamics become time
varying:

vs(t) = R(t)C v̇c(t) + vc(t)

Likewise, the savings account system is time invariant if the interest rate parameter is constant, but it
is time varying if the interest rate changes over time (which it does!):

P (k + 1) =
(

1 + i(k)
12

)
P (k) +A(k)

Causality

A system is causal if the output at any given time depends only on the input at previous times. In particular,
a system is causal if y(t) only depends on the input u(τ) at past times τ ≤ t and not future times τ > t.

Example. All physical systems are causal, as a physical signal cannot predict the values of future input
signals. However, a noncausal system can be implemented in several circumstances:

• We can implement a noncausal system if the independent variable does not actually represent time.
In image processing, for example, signals are images and the independent variables correspond to
dimensions in space along the image.

• Even when the independent variable does represent time, we can implement a noncausal system
when the entire input signal is available before processing. For example, consider processing an
audio signal that is stored on a computer. Since the entire signal is available, the algorithm need
not process the audio signal in a causal manner.

Dimensionality

A system is finite-dimensional if the statespace (the space in which the state takes its values) is a finite-
dimensional vector space such as Rn. All of the systems that we will study are finite dimensional.
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Example (Continuous-time delay). A relevant example of an infinite-dimensional (linear time-invariant)
system is a delay in continuous time. For a delay of time T , the output is y(t) = u(t− T ). The state of
this system is the set of all inputs over the past T seconds,

x(t) = {u(τ) | t− T ≤ τ ≤ t}

This is an infinite-dimensional space, since it is a function over a continuous interval.

• Time. A system evolves in continuous time if time t takes values in a continuous interval, such
as all real numbers (−∞,∞) or nonnegative real numbers [0,∞). In contrast, a system evolves in
discrete time if time t takes values in a discrete set, such as all integers {. . . ,−2,−1, 0, 1, 2, . . .} or
natural numbers {0, 1, 2, . . .}.

• Linearity. A system is linear if a weighted sum of input signals produces the same weighted sum of
the corresponding output signals. In particular, a system is linear if the input a u1 + b u2 produces
the output a y1 + b y2 for all scalars a and b and all input signals u1 and u2 and their corresponding
output signals y1 and y2.

• Time invariance. A system is time invariant if shifting the input signal in time shifts the output
signal by the same amount in time. In particular, a system is time invariant if the shifted input
signal t 7→ u(t − τ) produces the shifted output signal t 7→ y(t − τ) for all scalars τ and all input
signals u and its corresponding output signal y.

• Causality. A system is causal if at each time the output at that time only depends on the input
at previous times. In particular, a system is causal if y(t) only depends on the u(τ) for τ ≤ t. All
physical systems are causal.

• Dimensionality. A system is finite-dimensional if the state x(t) at each time t is in a finite-
dimensional vector space such as Rn.

3.3 LTI systems

An important class of systems are those that are linear and time invariant, or LTI systems. There are several
reasons to study LTI systems:

• Some systems are inherently linear and time invariant, such as RLC circuits, spring–mass–damper
systems, and many mathematical operations like differentiation and integration.

• Many systems can be adequately approximated by LTI systems. Even if a system is not LTI, we can
often approximate it by one that is.

• Understanding LTI systems forms a foundational basis for understanding more complex systems.

• LTI systems have a rich and elegant theory. They strike a balance between being simple enough to
thoroughly understand and yet are rich enough to be broadly applicable.

LTI systems are a rich class of systems for which we have a complete and thorough understanding of how
they work, and the tools that we learn will help us in understanding more complicated systems. LTI systems
are the types of systems that you study in introductory courses in circuits, mechanics, and mathematics.
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Motivation

Consider an LTI system, and suppose we know a single input/output pair for the system as shown below.

t

u1(t)

t

y1(t)

Because the system is time invariant, we can shift the input in time and the output gets shifted in time by
the same amount.

t

u2(t) = u1(t− 2)

t

y2(t) = y1(t− 2)

time invariance

Since the system is linear (and therefore also homogeneous), we can scale this shifted input and the output
gets scaled by the same amount.

t

u3(t) = −u2(t)

t

y3(t) = −y2(t)

homogeneity

Also from linearity (this time using superposition), we can sum the first and third inputs and the output
will be the sum of the corresponding outputs.

t

u4(t) = u1(t) + u3(t)

t

y4(t) = y1(t) + y3(t)

superposition
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We could continue using the linearity and time invariance properties to construct new input/output pairs,
all from knowing a single input/output pair and that the system is LTI!

Generalization

Let’s now generalize the motivating example to see all the ways in which we can exploit that a system is
linear and time invariant. As before, suppose we know a single input-output pair of an LTI system (this
time we will work with a discrete-time system for simplicity, although the procedure is similar in continuous
time).

u(k) 7→ y(k)
Since the system is time invariant, then shifting the input signal in time shifts the output signal by the same
amount in time.

u(k −m) 7→ y(k −m)
This produces a different input-output pair for each time shift (corresponding to the value of m). Now from
linearity, taking a weighted sum of inputs produces an identical weighted sum of outputs. Applying this to
the above input-output pair for all values of m gives∑

m

w(m)u(k −m) 7→
∑
m

w(m) y(k −m)

where there is a weight w(m) for each value of m.

Later, we will see that this expression is general enough to represent any input-output pair of the system.
In other words, knowing a single input-output pair is enough to completely characterize any LTI system!

3.4 System response

The most fundamental question regarding the analysis of a system is: how does the system respond to various
excitations? The output of a system, known as the response, depends on both the input signal and the initial
conditions (or initial state). In an RC circuit, for instance, the voltage across the capacitor depends on both
the source voltage and the initial capacitor voltage.

There are various types of responses, based on the nature of the input signal and initial condition. We now
describe several important responses of a system.

Zero-input response

The zero-input response (ZIR) is the output of the system due to the initial conditions when the input signal
is zero (at all times). The zero-input response depends only on the initial state of the system.

System with
state x(t)

Input signal
u(t) = 0

Zero-input response
y(t)

Example (ZIR of spring–mass-damper system). Going back to our example of a spring–mass–damper
mechanical system, the zero-input response is the position of the mass when no force is applied. In this
case, the response depends on only the initial position and velocity of the mass.
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Zero-state response

The zero-state response is the output of the system due to the input signal when the initial state is zero. By
“initial state”, we typically mean the state at time zero, in which case it is assumed that the input signal is
zero for times before the initial time.

System with
initial state
x(0) = 0

Input signal
u(t)

Zero-state response
y(t)

Example (ZSR of spring–mass-damper system). Continuing our example, the zero-state response of the
mechanical system is the position of the mass when it starts at rest. In this case, the response depends
on only the force applied to the mass.

The zero-state response depends on the particular input signal. Two common zero-state responses are the
following.
• The step response is the zero-state response due to a unit step input signal.

System with
initial state
x(0) = 0

Step input
us(t)

Step response

• The impulse response is the zero-state response due to a unit impulse input signal.

System with
initial state
x(0) = 0

Impulse input
δ(t)

Impulse response
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4

Fourier Series

Signals are functions of time. Another interpretation of a signal, however, is as a function of frequency.
This frequency-domain representation of a signal describes how much of each frequency is contained in the
signal. In this chapter, we study the frequency-domain representation of periodic signals. Later, we will
study frequency-domain representations of more general signals.

4.1 Motivation

Recall that a signal is a function of time. Fourier analysis is used to express a signal as a function of frequency.
As an example, consider the following signal x(t).

We can express the same signal in terms of its frequency components as follows.

It is now clear that the signal consists of the three distinct frequencies 262 Hz, 330 Hz, and 392 Hz which
correspond to the notes C4, E4, and G4 in a C-major chord. The small values at other frequencies correspond
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to noise that is corrupting the signal. This representation of the signal is equivalent to its description as a
function of time. There is a unique mapping that allows us to convert back and forth between the time-
domain representation x(t) and the frequency-domain representation X(f) of the signal.

The time-domain representation of a signal can be continuous or discrete depending on the values that
the time variable can have (its domain). In the same way, the frequency-domain representation can also
be continuous or discrete depending on the values that the frequency variable can have. Signals that can
be represented by a discrete set of frequencies are periodic in time, while non-periodic signals consist of a
continuous set of frequencies. Therefore, the type of transformation between the time-domain and frequency-
domain representations of a signal depend on the time domain of the signal (continuous or discrete) and its
periodicity (periodic or not). The representation of periodic signals by their frequencies is called the Fourier
series, and the representation of nonperiodic signals by their frequencies is called the Fourier transform.
The following table summarizes the transformations from the time-domain representation of a signal to its
frequency-domain representation based on the type of signal.

Continuous time Discrete time
Periodic (power) signals Fourier Series Discrete Fourier Transform

Energy signals Fourier Transform Discrete-Time Fourier Transform
Arbitrary signals Laplace Transform z-Transform

4.2 Vectors

The Fourier series represents a periodic signal in terms of a discrete set of frequencies. Each individual
frequency is a sinusoidal signal. We will represent periodic signals as a weighted sum of distinct frequencies.
In continuous time, for example, we will represent a periodic time-domain signal x(t) as a summation of a
set of sinusoids with (angular) frequencies ω1, ω2, ω3, . . ., where each frequency has a corresponding weight
w1, w2, w3, . . . that describes how much of that frequency is in the signal:

x(t) = w1 sin(ω1t) + w2 sin(ω2t) + w3 sin(ω3t) + . . .

In this section, we will learn how to determine the appropriate frequencies and their corresponding weights
such that this equation holds for all time. The expression on the right is then the frequency-domain repre-
sentation of the signal.

Orthogonal decomposition of a vector

To find the Fourier series representation of a signal, we need to find “how much” of a given sinusoid is
contained in the signal (which corresponds to the weight of that sinusoid in the summation). Before discussing
(infinite-dimensional) signals, let’s consider how to do this with finite-dimensional vectors. In the discussion
that follows, we will consider arbitrary vectors, so the formulas for signals will be the same!

Given a vector u, how much of the vector is in some given direction v? In other words, let’s approximate the
vector u by the scaled vector cv, where c is a scalar. We will find c such that the error between the vector
u and its approximation cv is minimized. We can measure the similarity between two vectors by taking the
norm of their difference. Recall that the norm of a vector is the square root of its inner product with itself.
So its squared norm is just the inner product with itself. In particular, the squared-norm of the error is

∥u− cv∥2 = ⟨u− cv, u− cv⟩ = ∥u∥2 − 2c ⟨u, v⟩+ c2∥v∥2

This is a quadratic function of c. The value of c that minimizes the error is

c = ⟨u, v⟩
∥v∥2
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Therefore, the best approximation of the vector u in terms of the vector v is

u ≈ ⟨u, v⟩
∥v∥2 v

Example (vectors). As a simple example, consider the two-dimensional vectors

u =
[
2
1

]
and v =

[
1
0

]
Computing the inner product and norm gives

⟨u, v⟩ = uTv =
[
2 1

] [1
0

]
= 2 and ∥v∥2 = vTv =

[
1 0

] [1
0

]
= 1

Therefore, the coefficient is c = 2 as expected.

Example (signals). As a more interesting example, consider the square wave u(t) = 1 for t ∈ [0, π) and
u(t) = −1 for t ∈ [π, 2π). Suppose that we want to approximate this signal by a sinusoid of the form
v(t) = sin(t). In this case, the inner product between the two signals is the integral of their product,

⟨u, v⟩ =
∫ 2π

0
u(t) v(t) dt =

∫ π

0
sin(t) dt+

∫ 2π

π

− sin(t) dt = 4

The squared-norm is the inner product of the signal with itself, which is also the power of the signal,

∥v∥2 = ⟨v, v⟩ =
∫ 2π

0
v(t)2 dt =

∫ 2π

0
sin2(t) dt = π

Therefore, the amount of the signal u in the direction v is c = 4/π. The original signal u and its
sinusoidal approximation cv are shown below.

So far, we have represented a vector by another single vector. But if we want a better approximation, we
need to use more vectors. Now suppose that we want to approximate a vector u using a set of vectors
v1, v2, v3, . . .,

u ≈ c1 v1 + c2 v2 + c3 v3 + . . .

To obtain a good approximation of u, we need the set of vectors v1, v2, v3, . . . to be “different” enough (for
instance, in the extreme case that they are all the same vector, this would not be a very good approximation!).
In particular, we will assume that the vectors are orthogonal, meaning that the inner product between any
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two different vectors is zero:
⟨vn, vm⟩ = 0 for n ̸= m.

As before, we will consider the squared-norm of the error between the signal and its approximation. Let’s
first do the computation when there are only two vectors v1 and v2. In this case, the squared norm of the
error is

∥u− (c1 v1 + c2 v2)∥2 = ⟨u− c1 v1 − c2 v2, u− c1 v1 − c2 v2⟩

Using that the properties of the inner product, we can expand this to obtain

∥u− (c1 v1 + c2 v2)∥2 = ⟨u, u⟩ − 2c1⟨u, v1⟩ − 2c2⟨u, v2⟩ − 2c1c2⟨v1, v2⟩ − c2
1⟨v1, v1⟩ − c2

2⟨v2, v2⟩

Since v1 and v2 are orthogonal (by assumption), their inner product is zero. For a general set of orthogonal
vectors, the squared norm of the error is∥∥∥∥u−∑

n

cn vn

∥∥∥∥2
= ∥u∥2 −

∑
n

2cn ⟨u, vn⟩+
∑
n

c2
n ∥vn∥2

This is a quadratic function of the coefficients cn. Moreover, because the vectors are orthogonal, each
coefficient cn only affects terms involving the corresponding vector vn. We can therefore minimize the error
with respect to each coefficient individually to obtain

cn = ⟨u, vn⟩
∥vn∥2

Therefore, the best approximation of a vector u in terms of an orthogonal set of vectors vn is

u ≈
∑
n

⟨u, vn⟩
∥vn∥2 vn

In general, this is only an approximation of the original signal (the error is not zero). But if we use a rich
enough set of vectors vn, then the approximation is exact and the above relation holds with equality. In
particular, the set of vectors must form a complete basis, meaning that any vector u can be written as a
weighted sum of the vectors vn in the set.

Example (vectors). For finite-dimensional vectors, it is trivial to write them as a weighted sum of basis
vectors. For example,  3

5
−1

 = 3

1
0
0

+ 5

0
1
0

+ (−1)

0
0
1


This is called the standard basis and is how we typically interpret a vector. When we say u2, for example,
what we really mean is the coefficient c2 of the vector u using the standard basis vector v2 = (0, 1, 0).
But we can also represent the vector using a different set of basis vectors, such as 3

5
−1

 = (1)

1
0
1

+ (−1)

−2
1
4

+ 2

0
3
1


Note that these vectors are not orthogonal, so the above formula for the coefficients does not apply.

The Fourier series represents a periodic signal using a complete orthogonal set of basis vectors that consist
of sinusoidal signals at evenly-spaced frequencies.
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Parseval’s theorem

Parseval’s theorem states that the “size” of a vector is the same as the “size” of its coefficients in a complete
orthogonal basis. That is,

∥u∥2 =
∑
n

|⟨u, vn⟩|2

∥vn∥2

The left-hand side is the squared norm (or energy) of the vector u, while the right-hand side is the sum of
all of the coefficients of its representation in terms of the basis vectors v1, v2, v3, . . .. Therefore, the nth term
in the summation is proportional to the amount the vector vn that is in the vector u.

|⟨u, vn⟩|2

∥vn∥2 ∝ amount of vn in u

4.3 Continuous time

The continuous-time Fourier series represents a periodic signal in terms of sinusoids at evenly-spaced fre-
quencies. There are several forms of the Fourier series representation for a periodic signal, depending on
what signals are used for the basis vectors. We will first use both sines and cosines, then use a more com-
pact representation using only cosines, and then another representation using complex exponentials (which
generalize sinusoids).

Inner product

For periodic continuous-time signals with period T , the inner product between two periodic signals is

⟨u, v⟩ =
∫
T

u(t)∗ v(t) dt

where the notation
∫
T

denotes an integral over any interval of length T (which is one period), and (·)∗

denotes the complex conjugate (for complex signals). The squared-norm of a periodic signal is the inner
product of the signal with itself,

∥u∥2 = ⟨u, u⟩ =
∫
T

|u(t)|2 dt

which is the signal power (or average energy).

Harmonics

For continuous-time perioidic signals with period T > 0, the fundamental frequency is

ω0 = 2π
T

which has units of radians per second. A sinusoid at the fundamental frequency has period T and therefore
oscillates once per period of the signal. This is the “slowest” frequency that is useful in representing a
periodic signal with period T .

The Fourier series representation of a signal will use a sinusoid at the fundamental frequency along with its
harmonics, which are sinusoids whose frequencies are multiplies of the fundamental frequency. The set of
harmonics is the infinite set of signals

{1, cos(ω0t), cos(2ω0t), . . . , sin(ω0t), sin(2ω0t), . . .}

49



ECE 306: Signals and Systems 4 - Fourier Series

Each harmonic is periodic with period T as illustrated below.

constant
n = 0

fundamental frequency
n = 1

second harmonic
n = 2

third harmonic
n = 3

fourth harmonic
n = 4

Trigonometric form

The set of harmonically related sinusoids are both orthogonal and complete, so any periodic signal x(t) with
period T can be written as the weighted sum

x(t) = a0 + 2
∞∑
n=1

an cos(nω0t) + bn sin(nω0t)

This is the trigonometric form of the Fourier series representation of the signal. The coefficient a0 is the
constant portion of the signal, and the coefficients an and bn are the amount of the sinusoids cos(nω0) and
sin(nω0t) in the signal. (The factor of two in front of the summation is just for convenience.)

For sinusoidal signals, the power is

∥ cos(nω0t)∥2 =
∫
T

cos2(nω0t) dt =
{
T/2 if n ̸= 0
T if n = 0

We can use these expressions for the signal power in our general expression for the Fourier coefficients. For
instance, the coefficient for the constant term is

a0 = ⟨x(t), 1⟩
∥1∥2 = 1

T

∫
T

x(t) dt

where 1 denotes the constant signal with unit value. Note that a0 is simply the average value of the signal.
Similarly, a general coefficient an for a cosine term is

an = ⟨x(t), 2 cos(nω0t)⟩
∥2 cos(nω0t)∥2 = 1

T

∫
T

x(t) cos(nω0t) dt.

Note that this expression is also valid when n = 0 since cos(0) = 1.
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The trigonometric Fourier series representation of a periodic signal x(t) with period T is the weighted
sum of sinuosoids

x(t) = a0 + 2
∞∑
n=1

an cos(nω0t) + bn sin(nω0t)

where the Fourier series coefficients are

an = 1
T

∫
T

x(t) cos(nω0t) dt n = 0, 1, 2, 3, . . .

bn = 1
T

∫
T

x(t) sin(nω0t) dt n = 1, 2, 3, . . .

and ω0 = 2π/T is the fundamental frequency.

Compact trigonometric form

The trigonometric form contains both sine and cosine terms of the same frequency. We can combine these
terms to obtain a single shifted sinusoid using the trigonometric identity

a cos θ + b sin θ = c cos(θ + ϕ) where c =
√
a2 + b2 and ϕ = tan−1

(
− bn
an

)
.

Applying this identity to the trigonometric Fourier series, we obtain the following.

The compact trigonometric Fourier series representation of a periodic signal x(t) with period T is the
weighted sum of shifted sinuosoids

x(t) = a0 + 2
∞∑
n=1

cn cos(nω0t+ θn)

where the Fourier series coefficients cn and θn can be obtained from the coefficients an and bn as

cn =
√
a2
n + b2

n and θn = tan−1
(
− bn
an

)
.

Exponential form

Instead of sinusoids, the Fourier series can also be expressed in terms of complex exponential signals. Here,
the basis vectors are signals of the form ejnω0t for n = 0,±1,±2, . . .. These vectors also form a complete
orthogonal basis, where the inner product between two complex exponentials is

⟨ejnω0t, ejmω0t⟩ =
∫
T

(
ejnω0t

)∗ (
ejmω0t

)
dt =

∫
T

ej(m−n)ω0t dt =
{

0 if m ̸= n

T if m = n

Using these expressions with our general formula for the Fourier series coefficients, we obtain the following.
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The exponential Fourier series representation of a periodic signal x(t) with period T is the weighted
sum of complex exponentials

x(t) =
∞∑

n=−∞
dn e

jnω0t

where the Fourier series coefficients dn are

dn = 1
T

∫
T

x(t) e−jnω0t dt.

In both trigonometric Fourier series representations, the coefficients an, bn, cn, and θn are all real numbers
defined for nonnegative integers n. In contrast, the coefficients dn are complex numbers (in general) that are
defined for all integers n.

To find the relationship between the trigonometric and exponential Fourier series representations, we can
rewrite the trigonometric Fourier series as follows:

x(t) = a0 + 2
∞∑
n=1

cn cos(nω0t+ θn)

= a0 + 2
∞∑
n=1

cn
ej(nω0t+θn) + e−j(nω0t+θn)

2

= a0 +
∞∑
n=1

cn e
jθnejnω0t + cn e

−jθne−jnω0t

Comparing this to the exponential Fourier series representation and using the relationship between (an, bn)
and (cn, θn), we obtain the following relationships.

The exponential Fourier series coefficients are related to the trigonometric Fourier coefficients as follows:

dn =


a0 n = 0
cn e

jθn = an − jbn n > 0
cn e

−jθn = an + jbn n < 0

We can also solve for the trigonometric Fourier series coefficients in terms of the exponential coefficients:

an = Re(dn) bn = −Im(dn) cn = |dn| θn = ∠dn
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Example (square wave). Find the Fourier series representation of the following square wave x(t).

1
2

1 3
2

2 5
2

3

−1

1

t

The signal is periodic with fundamental period T = 1, so the fundamental frequency is ω0 = 2π. We will
first compute the exponential Fourier series coefficients, which we can then use to find the trigonometric
coefficients. The nth coefficient is

dn = 1
T

∫ 1

0
x(t) e−jnω0t dt =

∫ 1/2

0
e−j2πnt dt+

∫ 1

1/2
(−1) e−j2πnt dt

where we split the integral up into two pieces since x(t) = 1 on the interval [0, 1
2 ) and x(t) = −1 on the

interval [ 1
2 , 1). Both integrals are of the form∫ b

a

e−j2πnt dt = 1
−j2πne

−j2πnt
∣∣∣∣b
t=a

= e−j2πna − e−j2πnb

j2πn

Substituting this into the expression for the coefficients, we obtain

dn = 1− e−jπn

j2πn − e−jπn − e−j2πn

j2πn

We can simplify the expression using that e−j2πn = 1 for any integer n to obtain

dn = 1− e−jπn

jπn

This expression is valid for n ̸= 0, but we must then compute the coefficient for the constant term
separately since setting n = 0 makes the denominator zero. Using the general expression for d0, we have

d0 = 1
T

∫
T

x(t) dt = 0

since the average value of the signal over one period is zero. To find the trigonometric coefficients, we
need to express dn is rectangular and polar form. To do so, note that e−jπn is positive one if n is even
and negative one if n is odd. So all of the even coefficients are actually zero, and the odd coefficients are
simply dn = 2

jπn for n odd. Using the relationship between the exponential and trigonometric Fourier
series coefficients, each of the coefficients are

an = 0 dn =
{

0 n even
2
jπn n odd

bn = cn =
{

0 n even
2
πn n odd

θn =
{

0 n even
−π2 n odd

The Fourier series representation of the square wave in trigonometric form is

x(t) =
∑
n≥1
n odd

4
πn

sin(2πnt)
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Example (rectified sinusoid). Find the Fourier series representation of the rectified sinusoid x(t) =
| sin(πt)|.

1 2 3

1

t

The signal is periodic with period T = 1, so the fundamental frequency is ω0 = 2π. The exponential
Fourier series coefficients are

dn = 1
T

∫ 1

0
x(t) e−jnω0t dt =

∫ 1

0
sin(πt) e−j2πnt dt

To compute the integral, we will use the trigonometric identity sin θ = 1
j2 (ejθ − e−jθ). Applying this to

the integrand,

dn = 1
j2

∫ 1

0

(
ejπt − e−jπt) e−j2πnt dt = 1

j2

∫ 1

0

(
ejπ(1−2n)t − e−jπ(1+2n)t)dt

Evaluating each of the integrals of an exponential gives

dn = 1
j2

(
1

jπ(1− 2n)e
jπ(1−2n)t

∣∣∣∣1
t=0
− 1
−jπ(1 + 2n)e

−jπ(1+2n)t
∣∣∣∣1
t=0

)
Applying the limits and using the fact that j2 = −1, we obtain

dn = ejπ(1−2n) − 1
−2π(1− 2n) −

e−jπ(1+2n) − 1
2π(1 + 2n)

Using that ej2πn = 1 for all integers n and e±jπ = −1, this simplifies to

dn = 1
π (1− 2n) + 1

π (1 + 2n)

We can now get a common denominator to obtain the simple expression

dn = 2
π (1− 4n2)

While the coefficients dn may be complex in general, they are real numbers in this case. The compact
trigonometric Fourier series coefficients are

an = Re(dn) = 2
π (1− 4n2) and bn = −Im(dn) = 0.

(We could also use the standard trigonometric form, but then we would have c0 = an and θ0 = 0, but
cn = −an and θn = π for n ≥ 1, since in this case dn is negative. In this case, it is simpler to use
the compact trigonometric form since dn is real.) Therefore, the Fourier series representation of the
rectified sinusoid in compact trigonometric form is

| sin(πt)| = 2
π

+
∞∑
n=1

4
π (1− 4n2) cos(2πnt)

The total power in the signal is

∥ sin(πt)∥2 =
∫ 1

0
sin(πt)2 dt = 1

2 .

Therefore, the constant term accounts for

|⟨sin(πt), 1⟩|2

∥1∥2 · 1
∥ sin(πt)∥2 = 4/π2

1 · 1
1/2 = 8

π2 = 81%

of the total signal power, and the fundamental frequency accounts for

|⟨sin(πt), cos(2πt)⟩|2

∥ cos(2πt)∥2 · 1
∥ sin(πt)∥2 = 18%

of the total signal power. So 99% of the power is in only the first two terms!
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4.4 Discrete time

The discrete-time Fourier series, also known as the discrete Fourier transform (DFT), represents a periodic
discrete-time signal as a weighted summation of complex exponentials. While we could also use sinusoids as
in the continuous-time case, complex exponentials are easier to work with and are much more common in
the discrete-time case.

Consider a discrete-time signal x(k) that is periodic with period N > 0. Define the fundamental frequency
as

θ0 = 2π
N

which has units of radians. The set of harmonics corresponding to a fundamental frequency θ0 is the set of
signals

{1, e±jθ0k, e±j2θ0k, e±j3θ0k, . . .}

In the continuous-time case there were an infinite number of harmonics. In discrete time, however, there are
only a finite number of distinct harmonics. This is due to the fact that

ej(θ0±2π)k = ejθ0k e±j2πk = ejθ0k

The consequence of this is that the N th harmonic is equal to the zero harmonic, the (N + 1)th harmonic
is equal to the first harmonic, and so on. In general, the (N + r)th harmonic is equal to the rth harmonic.
Therefore, the set of harmonics in discrete time is the finite set of N complex exponential signals

{1, ejθ0k, ej2θ0k, . . . , ej(N−1)θ0k}

The discrete-time Fourier series represents a periodic discrete-time signal as a weighted summation of these
complex exponential basis functions.

x(k) =
∑
n=⟨N⟩

cn e
jnθ0k

where the notation
∑
k=⟨N⟩ denotes a summation over any sequence of length N (that is, one period), cn

are the (complex) Fourier series coefficients, and θ0 = 2π/N is the fundamental frequency. To find the
coefficients, we can use the general expression for the coefficients in this basis. Here, the inner product
between two periodic signals is

⟨u, v⟩ =
∑
k=⟨N⟩

u(k)∗ v(k)

where (·)∗ denotes the complex conjugate (for complex signals). The squared-norm of a periodic signal is

∥u∥2 = ⟨u, u⟩ =
∑
k=⟨N⟩

|u(k)|2

which is the signal power. Just as in the continuous-time case, any two distinct discrete-time complex
exponentials are orthogonal, meaning that their inner product is zero.

⟨ejnθ0k, ejmθ0k⟩ =
∑
k=⟨N⟩

(
ejnθ0k

)∗ (
ejmθ0k

)
=
∑
k=⟨N⟩

ej(m−n)θ0k =
{

0 if m ̸= n

N if m = n

Therefore, the discrete-time Fourier series coefficients are

cn = 1
N

∑
k=⟨N⟩

x(k) e−jnθ0k

The coefficients cn are complex numbers in general and are called the spectrum of the signal.
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Example (square wave). Find the Fourier series representation of the discrete-time square wave x(k)
shown below.

0 2 4 6 8 10 12 14 16 18
0

1

k

The signal is periodic with period N = 4, so the fundamental frequency is θ0 = π/2. When computing
the Fourier series coefficients, we can sum over any sequence of length N = 4. Let us choose the sequence
{0, 1, 2, 3}. The coefficients are then

cn = 1
4

3∑
k=0

x(k) e−jnkπ/2

Since x(k) is zero for k = 2 and k = 3, the summation simplifies to

cn = 1
4
(
1 + e−jnπ/2)

Specifically, the coefficients are

c0 = 1
2 c1 = 1− j

2 c2 = 0 c3 = 1 + j

2

Therefore, the Fourier series representation of the discrete-time square wave is

x(k) =
3∑

n=0
cn e

jnkπ/2 = 1
2 + 1− j

2 ejkπ/2 + 1 + j

2 ejk3π/2

While this expression makes the signal appear to be complex, it is actually real. We can see this by
simplifying the expression. Using that ejk3π/2 = e−jkπ/2, we can rewrite this as

x(k) = 1
2 + 1

2

(
ejkπ/2 + e−jkπ/2

)
+ 1
j2

(
ejkπ/2 − e−jkπ/2

)
Now using the relationships cos θ = 1

2 (ejθ + e−jθ) and sin θ = 1
j2 (ejθ − e−jθ), we have that

x(k) = 1
2 + cos

(
kπ
2
)

+ sin
(
kπ
2
)

which emphasizes that the signal is in fact real.

Discrete-time Fourier series as matrix multiplication. The discrete-time Fourier series transforms a se-
quence of N points (the values of the periodic signal) to another sequence of N points (the Fourier series
coefficients) via the formula

cn = 1
N

N−1∑
k=0

x(k) e−jnθ0k
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We can equivalently express this relationship as the multiplication of a matrix with a vector. In particular,
the Fourier series coefficients are given by

c0
c1
c2
...

cN−1

 = 1
N


1 1 . . . 1
1 e−jθ0 . . . e−j(N−1)θ0

1 e−j2θ0 . . . e−j2(N−1)θ0

...
...

. . .
...

1 e−j(N−1)θ0 . . . e−j(N−1)(N−1)θ0




x(0)
x(1)
x(2)
...

x(N − 1)


Similarly, the discrete-time Fourier series represents the signal as a weighted sum of complex exponentials
via the formula

x(k) =
N−1∑
n=0

cn e
jnθ0k

We can express this relationship as the following matrix-vector multiplication:
x(0)
x(1)
x(2)
...

x(N − 1)

 =


1 1 . . . 1
1 ejθ0 . . . ej(N−1)θ0

1 ej2θ0 . . . ej2(N−1)θ0

...
...

. . .
...

1 ej(N−1)θ0 . . . ej(N−1)(N−1)θ0




c0
c1
c2
...

cN−1



Example (square wave — continued). Continuing our previous example, the Fourier series coefficients
for the square wave can be represented using matrix multiplication as

c0
c1
c2
c3

 = 1
4


1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j



x(0)
x(1)
x(2)
x(3)


and the values of the discrete-time signal can be recovered from the Fourier series coefficients using

x(0)
x(1)
x(2)
x(3)

 =


1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j



c0
c1
c2
c3


Note that the two matrices are very similar. In fact, they are conjugate transposes of each other. Also,
the eigenvalues of both matrices are {2,−2,−j2, 2}, which all have magnitude two.
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5

Fourier Transform

5.1 Continuous time

The frequency response is the transfer function evaluated on the imaginary axis, where the transfer function
is the Laplace transform of the impulse response. This is called the Fourier tranform.

Definition (Continuous-time Fourier transform). The Fourier transform of a continuous-time signal x(t)
is the complex function

X(jω) =
∫ ∞

−∞
x(t) e−jωt dt

if the integral exists. The inverse Fourier transform is

x(t) = 1
2π

∫ ∞

−∞
X(jω) ejωt dω.

For a time-domain signal x(t), its Fourier transform X(jω) is a frequency-domain representation of the signal.
Since the Fourier transform is invertible, this frequency-domain representation of the signal is equivalent to
its time-domain representation. This relationship is illustrated below.

Time Domain
x(t)

Frequency Domain
X(jω)

Fourier Transform

X(jω) =

∫ ∞

−∞
x(t) e−jωt dt

Inverse Fourier Transform

x(t) =
1

2π

∫ ∞

−∞
X(jω) ejωt dω
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Comments
• The signal x(t) need not be periodic.

• The Fourier transform X(jω) is in general complex.

• The magnitude of X(jω) is the amount of energy of x(t) at frequency ω.

• The factor of 1/(2π) is sometimes in first equation instead.

• For signals that start at time zero (x(t) = 0 for t < 0), the Fourier transform is the Laplace transform
evaluated on the imaginary axis.

X(jω) = X(s)
∣∣∣
s=jω

• The Fourier transform exists if the imaginary axis is in the region of convergence of the Laplace trans-
form.

• While the formula for the inverse Laplace transform requires complex integration, the inverse Fourier
transform is a much simpler integral that is quite similar to the Fourier transform itself.

• Parseval’s theorem states that the energy of the signal is the same in both the time domain and frequency
domain. ∫ ∞

−∞
|x(t)|2 dt = 1

2π

∫ ∞

−∞
|X(jω)|2 dω

• For a stable continuous-time LTI system, the frequency response is the Fourier transform of the impulse
response.

Motivation

We now motivate the definition of the Fourier transform by deriving it from the Fourier series of a periodic
signal in the limit as the period goes to infinity.

Recall that any signal that is represented by a Fourier series is periodic since

x(t+ T ) =
∞∑

k=−∞

ak e
jkω0(t+T )

=
∞∑

k=−∞

ak e
jkω0t ej2πk since T = 2π/ω0

=
∞∑

k=−∞

ak e
jkω0t

= x(t)

Therefore, the Fourier series cannot represent non-periodic signals. To construct a frequency-domain repre-
sentation of non-periodic signals, let’s first consider the following periodic square wave.

−2T −T T 2T−T1 T1

1

t

x(t)
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The complex exponential Fourier series coefficients of this signal are

ak = sin(kω0T1)
kπ

.

We can interpret the (scaled) Fourier series coefficients as samples of an envelope function:

Tak = 2 sin(ωT1)
ω

∣∣∣∣
ω=kω0

The scaled Fourier series coefficients Tak are equally spaced samples of the envelope 2 sin(ωT1)/ω. Moreover,
for fixed T1, the envelope is independent of the period T .

−4T −3T −2T −T T 2T 3T 4T−T1 T1 t

x(t)

kω0

Tak

Now consider how the envelope changes as we double the period. Since the (scaled) Fourier series coefficients
are independent of the period T , the envelope remains the same. The only thing that changes is the interval
at which the coefficients are sampled from the envelope.

−2T −T T 2T−T1 T1 t

x(t)

kω0

Tak

Doubling the period again, the Fourier series coefficients are sampled twice as fast from the envelope.
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−T T−T1 T1 t

x(t)

kω0

Tak

In the limit as the period T goes to infinity, the signal x(t) becomes non-periodic and we obtain the smooth
envelope. The limiting envelope of Tak is the Fourier transform of x(t), which is denoted by X(jω) where
the continuous-time frequency is ω = kω0.

−T1 T1 t

x(t)

ω

X(jω)

Therefore, the Fourier transform of the pulse that has a value of one on the interval [−T1, T1] and is zero
otherwise is

X(jω) = 2 sin(ωT1)
ω

.

This is called a sinc function and is commonly used in signal processing.

Now consider a general non-periodic signal x(t) that is zero outside an interval [−T1, T1]. An illustrative
example of such a signal is as follows.

Let x̃(t) be this signal repeated with period T > 2T1 (so that there is no overlap). Note that x̃(t) is periodic
with period T , and x̃(t) converges to x(t) in the limit as T →∞.
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The signal x̃(t) is periodic, and therefore has the (exponential) Fourier series

x̃(t) =
∞∑

k=−∞

ak e
jkω0t FS←−−−→ ak = 1

T

∫
T

x̃(t) e−jkω0t dt.

Similar to the square wave, define the continuous-time frequency as ω = kω0, and then define the Fourier
transform as the envelope of the (scaled) Fourier series coefficients,

X(jω) = Tak =
∫ ∞

−∞
x(t) e−jωt dt

(since x(t) = x̃(t) for |t| < T/2 and is zero outside this interval).

To obtain the inverse Fourier transform, substitute this into the Fourier series representation for x̃(t),

x̃(t) =
∞∑

k=−∞

ak e
jkω0t

=
∞∑

k=−∞

1
T
X(jω) ejωt

= 1
2π

∞∑
k=−∞

X(jω) ejωt ω0

Taking the limit as ω0 → 0, the sum becomes an integral and x̃(t) becomes x(t):

x(t) = 1
2π

∫ ∞

−∞
X(jω) ejωt dω.

5.2 Discrete time

Definition (Discrete-time Fourier transform). The Fourier transform of a discrete-time signal x(k) is the
complex function

X(ejθ) =
∞∑

k=−∞

x(k) e−jθk

if the summation exists. The inverse Fourier transform is

x(k) = 1
2π

∫
2π
X(ejθ) ejθk dθ.
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For a time-domain signal x(k), its Fourier transform X(ejθ) is a frequency-domain representation of the sig-
nal. Since the Fourier transform is invertible, this frequency-domain representation of the signal is equivalent
to its time-domain representation. This relationship is illustrated below.

Time Domain
x(k)

Frequency Domain
X(ejθ)

Fourier Transform

X(ejθ) =

∞∑

k=−∞
x(k) e−jkθ

Inverse Fourier Transform

x(k) =
1

2π

∫

2π

X(ejθ) ejkθ dθ

Comments
• The signal x(k) need not be periodic.

• The Fourier transform X(ejθ) is in general complex.

• The magnitude of X(ejθ) is the amount of energy of x(k) at frequency θ.

• The factor of 1/(2π) is sometimes in first equation instead.

• The magnitude of X(ejθ) is the amount of frequency θ that is contained in the signal x(k).

• For signals that start at time zero (x(k) = 0 for k < 0), the Fourier transform is the z-transform
evaluated on the unit circle.

X(ejθ) = X(z)
∣∣∣
z=ejθ

• The Fourier transform exists if the unit circle is in the region of convergence of the z-transform.

• While the formula for the inverse z-transform requires complex integration, the inverse Fourier transform
is a much simpler integral that is quite similar to the Fourier transform itself.

• Parseval’s theorem states that the energy of the signal is the same in both the time domain and frequency
domain.

∞∑
k=−∞

|x(k)|2 = 1
2π

∫
2π
|X(ejθ)|2 dθ

• For a stable discrete-time LTI system, the frequency response is the Fourier transform of the impulse
response.
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6

z-Transform

The z-transform is a useful tool in understanding LTI systems that interprets signals in terms of their
frequencies. The z-transform is a generalization of the discrete Fourier series, and it is the discrete-time
equivalent of the Laplace transform for continuous-time signals.

6.1 Definition

Definition. The z-transform of a discrete-time signal x(k) is the complex function

X(z) =
∞∑
k=0

x(k) z−k

where z is any complex number for which the summation converges. The values of z for which the
summation converges is the region of convergence (ROC).

Notation. We use lowercase letters for a time-domain signal such as x(k), while we use the corresponding
uppercase letter for its corresponding z-transform X(z). We denote a signal and its z-transform as the pair

x(k) Z←−−→ X(z)

Remark (Alternative definitions). This definition of the z-transform ignores the signal for negative times:
X(z) does not depend on x(k) for k < 0. This is sometimes called the unilateral z-transform. There is
also a version where the summation starts at negative infinity, which is called the bilateral z-transform.
Both versions of the z-transform are equivalent for signals that are zero for k < 0. Moreover, the unilateral
z-transform will be useful in studying how the system response depends on the initial conditions.

Remark (Connection with Laplace transform). You may have seen the Laplace transform when studying cir-
cuits or differential equations. The Laplace transform represents a continuous-time signal in terms of complex
exponentials, while the z-transform represents a discrete-time signal in terms of complex exponentials. Al-
most all of the results for the z-transform have similar results for the Laplace transform.

The definition of the z-transform is in terms of an infinite summation, which may not converge for all values
of the complex number z. It always converges, however, when the magnitude of z is sufficiently large. The
set of complex numbers z for which the summation converges is called the region of convergence, or ROC.
This is illustrated below, where the gray region is the region of convergence.
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Re(z)

Im(z)

6.2 Computation

There are several ways to compute the z-transform of a discrete-time signal. The most straightforward way
is to directly apply the definition, which involves computing an infinite summation. Alternatively, we can
use a table of z-transform pairs along with properties of the z-transform to find the transforms of many
signals. We now show how to compute the z-transform using each of these techniques.

Apply the definition

We now compute the z-transform for several simple signals by directly applying the definition. This requires
computing an infinite summation in general. We will see a few cases in which this is quite simple.

Example (z-transform of an impulse signal). The z-transform of an impulse x(k) = δ(k) is

X(z) =
∞∑
k=0

δ(k) z−k = δ(0) z−0 = 1

Therefore, the z-transform pair for an impulse signal is

δ(k) Z←−−→ 1

Example (z-transform of a finite-duration signal). A finite-duration signal has the form

x(k) = {x0, x1, x2, . . . , xm, 0, 0, 0, . . .}

The signal is zero after some time m. The z-transform is the finite summation

X(z) =
∞∑
k=0

x(k) z−k = x0 + x1 z
−1 + x2 z

−2 + . . .+ xm z
−m

Therefore, the z-transform pair for a finite-duration signal is

{x0, x1, x2, . . . , xm, 0, 0, 0, . . .}
Z←−−→ x0 z

m + x1 z
m−1 + . . .+ xm
zm
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Example (z-transform of an exponential signal). The z-transform of an exponential x(k) = ak us(k) is

X(z) =
∞∑
k=0

ak z−k =
∞∑
k=0

(
a

z

)k
= 1

1− a/z = z

z − a

where the summation converges only if |a/z| < 1. Therefore, the z-transform of an exponential signal is

ak us(k) Z←−−→ z

z − a

The region of convergence in this case is the set of z such that |z| > |a|.

6.3 Poles and zeros

The z-transform is usually a rational function of the complex number z, so it has the form

X(z) = N(z)
D(z)

where N(z) and D(z) are polynomials in the complex variable z.

• The zeros of X(z) are the roots of the numerator polynomial N(z).

• The poles of X(z) are the roots of the denominator polynomial D(z).

We can visualize the z-transform by plotting its poles and zeros in the complex plane. We use the symbol
× to represent poles and the symbol ◦ to represent zeros.

Example (Pole-zero plot). The pole-zero plot of a rational complex function X(z) with zeros at z =
0.5± j0.5 and poles at z = 0 and z = 1 is as follows.

1
××

◦

◦
Re(z)

Im(z)

Remark (Complex conjugates). Since the coefficients of the z-transform are real numbers, the poles and zeros
always appear in complex-conjugate pairs, meaning that if a+ jb is a pole or zero, then a− jb is also a pole
or zero. The pole-zero plot is therefore symmetric about the real axis.
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Example. Find the z-transform and its associated poles, zeros, and region of convergence of the signal

x(k) = 1 + (0.5)k for k ≥ 0.

Using the definition of the z-transform,

X(z) =
∞∑
k=0

(
1 + (0.5)k

)
z−k

Splitting this into two sums,

X(z) =
∞∑
k=0

(
1
z

)k
+
(

0.5
z

)k
We can use the formula for a geometric series to evaluate the sums to obtain

X(z) = 1
1− 1/z + 1

1− 0.5/z

where the region of convergence of the first term is |z| > 1, and the region of convergence of the second
term is |z| > 0.5. For X(z) to exist, both summations must converge, which means the combined region
of convergence is the intersection of the two individual ROCs, which is |z| > 1.

Multiplying the top and bottom by z in both terms, we get

X(z) = z

z − 1 + z

z − 0.5

To find the poles and zeros, we must combine these terms into a single rational expression. Getting a
common demoninator, we have

X(z) = z (z − 0.5) + z (z − 1)
(z − 1)(z − 0.5) = z (2z − 1.5)

(z − 1)(z − 0.5)

The numerator and denominator polynomials are

N(z) = z (2z − 1.5) and D(z) = (z − 1)(z − 0.5).

The zeros are the values of z that make the numerator zero, which are z = 0 and z = 0.75. The poles
are the values of z that make the denominator zero, which are z = 1 and z = 0.5.

The pole-zero plot for X(z) is as follows.

1
××◦ ◦ Re(z)

Im(z)
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6.4 Properties

The z-transform has many properties that are useful in simplifying calculations of the z-transform and its
inverse.

Linearity

The z-transform maps a discrete-time signal x(k) to its corresponding z-transform X(z). This map is linear,
meaning that the z-transform of a weighted sum of signals is the same weighted sum of their individual
z-transforms.

Specifically, suppose we have two signals x1(k) and x2(k) and their corresponding z-transforms X1(z) and
X2(z). Then for any scalars a and b,

a x1(k) + b x2(k) Z←−−→ aX1(z) + bX2(z)

Example. As we have seen, the z-transform of an impulse is one, and the z-transform of a unit step is
z
z−1 . We can then use the linearity property to obtain the z-transform pair

2 δ(k)− us(k) Z←−−→ 2− z

z − 1

Time shifting

Advancing a signal in time multiplies its z-transform by z.

x(k + 1) Z←−−→ z X(z)− z x(0)
Delaying a signal in time divides its z-transform by z.

x(k − 1) Z←−−→ 1
z
X(z) + x(−1)

Notice that the second term on the right in both cases involves the time-domain signal.

Example. We know that the z-transform of the exponential signal x(k) = ak us(k) is X(z) = z
z−a . We

can then use the time shifting properties of the z-transform to obtain the additional pairs

ak+1 us(k + 1) Z←−−→ z · z

z − a
− z (1) = az

z − a

and
ak−1 us(k − 1) Z←−−→ 1

z
· z

z − a
+ 0 = 1

z − a

Multiplication by time

Multiplying a signal by k in time differentiates the z-transform.

k x(k) Z←−−→ −z d
dz

(
X(z)

)
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Example. Using that the z-transform of a unit step is z
z−1 , the z-transform of k us(k) is

−z d
dz

(
z

z − 1

)
= −z (1)(z − 1)− z (1)

(z − 1)2 = z

(z − 1)2

where we used the quotient rule to compute the derivative.

Initial-value theorem

In terms of its z-transform, the initial value of a signal is

x(0) = lim
z→∞

X(z) if the limit exists.

Example.
lim
z→∞

z

z − a
= 1 = ak us(k)

∣∣∣
k=0

Final-value theorem

In terms of its z-transform, the final value of a signal is

lim
k→∞

x(k) = lim
z→1

(z − 1)X(z)

if both limits exist.
• The final value theorem only exists when all poles of X(z) are strictly inside the unit circle except for

possibly a single pole at z = 1.

• If all poles of X(z) are strictly inside the unit circle, then the limit is trivially zero.

• Therefore, the final value theorem only exists and is useful when all poles are strictly inside the unit
circle except for a single pole at z = 1.

1
×

The limit of x(k) as
k → ∞ does not exist, so
the FVT does not apply.

Re(z)

Im(z)

1
×

×

×

The limit of x(k) as
k → ∞ is zero; the FVT
applies but is not useful.

Re(z)

Im(z)

1
×

×

×
×

The FVT applies and is useful.

Re(z)

Im(z)
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Example. The limit of (0.5)k us(k) is

lim
z→1

(z − 1) · z

z − 0.5 = 0

The limit of us(k) is
lim
z→1

(z − 1) · z

z − 1 = 1

6.5 Inverse z-transform

The z-transform maps a discrete-time signal x(k) to the complex function X(z). The z-transform does not
lose any information about the signal in that X(z) contains all the same information as x(k), just in a
different form. Mathematically, this means that the z-transform is invertible, so we can always go back and
forth between a discrete-time signal x(k) and its z-transform X(z). We now see how to compute the inverse.

There is a formula for the inverse z-transform, but we will never use it! For those that are interested, the
formula is

x(k) = 1
j2π

∮
X(z) zk−1 dz

where the contour integral is over a counterclockwise closed path in the complex plane that encircles the
origin and is entirely in the region of convergence. While we could use this formula, it involves complex
integration. Instead, we will use a method called partial fraction expansion that allows us to simply look up
the z-transform from a table.

Partial fraction expansion

Partial fraction expansion (PFE) is a method for computing the inverse z-transform. The idea is to express
X(z) as a sum of simple terms and then use linearity to find x(k). Here, simple terms are those that we
either have in our table or can easily obtain using properties of the z-transform.

X(z) = X1(z) + X2(z) + X3(z)

↕ ↕ ↕ ↕

x(k) = x1(k) + x2(k) + x3(k)
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Example. Find the inverse z-transform of X(z) = z − 2
z − 1 .

Let’s try writing X(z) as the sum

X(z) = z − 2
z − 1 = A

z

z − 1 +B (1)

where z
z−1 and 1 (a constant) are z-transforms in our table. If we can find coefficients A and B such

that this equation holds for all z, then the inverse z-transform is

x(k) = Aus(k) +Bδ(k)

To see if this is possible, multiply both sides by z − 1 to obtain the polynomial equation

z − 2 = Az +B (z − 1)

This is a polynomial equation in z. For the equation to hold for all z, the coefficients of each power
of z much match. The constant terms give the equation −2 = −B, and the z terms give the equation
1 = A + B. Solving this system of equations gives the coefficients B = 2 and A = −1. Therefore, the
inverse z-transform is

x(k) = 2δ(k)− us(k)

For the previous example, the partial fraction expansion consisted of the term z
z−1 due to the pole of X(z)

at z = 1 and a constant. In the next few examples we will see what form the partial fraction expansion
should have in more complicated scenarios.

Example. Find the inverse z-transform of X(z) = z2 + 3z + 5
(z − 1)(z − 2) .

In this case X(z) has two poles: z = 1 and z = 2. Therefore, the form of the partial fraction expansion
is

X(z) = z2 + 3z + 5
(z − 1)(z − 2) = A

z

z − 1 +B
z

z − 2 + C

Now that we have the form of the partial fraction expansion, we can apply our general method. Multi-
plying both sides by the denominator of X(z) gives the polynomial equation

z2 + 3z + 5 = Az(z − 2) +Bz(z − 1) + C (z − 1)(z − 2)

Equating the coefficients of the powers of z produces the linear system of three equations:

1 = A+B + C z2 terms
3 = −2A−B − 3C z1 terms
5 = 2C z0 terms

The solution to this linear system of equations is A = −9, B = 15/2, and C = 5/2. From the table of
z-transform pairs, the inverse z-transform of z/(z − a) is ak us(k), and the inverse z-transform of the
constant 1 is an impulse δ(k). Therefore, the inverse z-transform is

x(k) = −9us(k) + 15
2 (2)kus(k) + 5

2δ(k)
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Example. Find the inverse z-transform of X(z) = z3

(z + 1)(z − 2)(z − 1) .

x(k) =
[
−1

6(−1)k + 4
3(2)k − 1

2

]
us(k)

Example (Repeated roots). Find the inverse z-transform of X(z) = 5z (z + 1)
(z + 2)2(z + 3) .

Since the root at z = 2 is repeated twice, the partial fraction expansion has a term of the form z/(z+2)2.
This corresponds to the following entry in the table,

k 2k−1 us(k) Z←−−→ z

(z + 2)2

The form of the partial fraction expansion is then

X(z) = 5z (z + 1)
(z + 2)2(z + 3) = Az

z + 2 + Bz

(z + 2)2 + Cz

z + 3 +D

Multiplying both sides by the denominator of X(z) yields the polynomial equation

5z (z + 1) = Az(z + 2)(z + 3) +Bz(z + 3) + Cz(z + 2)2 +D (z + 2)2(z + 3)

Equating the coefficients of powers of z, we obtain the linear system of equations

0 = A+ C +D z3 terms
5 = 5A+B + 4C + 7D z2 terms
5 = 6A+ 3B + 4C + 16D z1 terms
0 = 12D z0 terms

The coefficients are A = 10, B = −5, C = −10, and D = 0. Therefore, the inverse z-transform is

x(k) =
[
10 (−2)k − 5k (−2)k−1 − 10 (−3)k

]
us(k)
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Example (Complex roots). Find the inverse z-transform of X(z) = z + 1
z2 + z + 1 .

The denominator of X(z) does not factor, so we need to use the quadratic formula to find the poles:

z = −1
2 ± j

√
3

2

The magnitude of the poles is
|z| =

√(
− 1

2
)2 +

(√
3

2
)2 = 1

so the poles are on the unit circle in the complex plane. The angle of the poles are ±θ where

θ = atan2
(√

3
2 ,−

1
2
)

= 2π
3

For complex roots on the unit circle at an angle θ, the relevant entries in the z-transform table are

cos(kθ)us(k) Z←−−→ z (z − cos θ)
z2 − 2 cos θz + 1 = z (z + 0.5)

z2 + z + 1

sin(kθ)us(k) Z←−−→ sin θz
z2 − 2 cos θz + 1 = 0.5

√
3z

z2 + z + 1

The form of the partial fraction expansion is then

X(z) = z + 1
z2 + z + 1 = A

z (z + 0.5)
z2 + z + 1 +B

0.5
√

3z
z2 + z + 1 + C

Multiplying both sides by the denominator, we obtain the polynomial equation

z + 1 = Az(z + 0.5) +B 0.5
√

3z + C (z2 + z + 1)

Equating the coefficients of powers of z, we obtain the linear system of equations

0 = A+ C z2 terms
1 = 0.5A+ 0.5

√
3B + C z1 terms

1 = C z0 terms

The coefficients are A = −1, B = 1√
3 , and C = 1. Therefore, the inverse z-transform is

x(k) =
[
− cos

(
k 2π

3
)

+ 1√
3 sin

(
k 2π

3
)]
us(k) + δ(k)
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A general method for finding the inverse z-transform of a rational function X(z) is as follows:
a) Write out the form of the partial fraction expansion and set it equal to X(z).

• The partial fraction expansion always includes a constant term.

• A pole at z = a produces a term of the form z
z−a in the partial fraction expansion.

• A pole at z = a that is repeated m times produce terms of the form

z

z − a
,

z

(z − a)2 , . . . ,
z

(z − a)m

• Complex conjugate poles with magnitude r and angle ±θ produce terms of the form

z (z − r cos θ)
z2 − 2 r cos(θ) z + r2 and z r sin θ

z2 − 2 r cos(θ) z + r2

• A pole at z = 0 produces a term of the form 1/z in the partial fraction expansion.

b) Multiply both sides of the equation by the denominator of X(z) to obtain a polynomial equation
in z.

c) Equate the coefficients of each power of z to obtain a system of equations.

d) Solve the system of equations to find the coefficients of the partial fraction expansion.

e) Use a table to find the inverse z-transform of each term, and use the linearity property of the
z-transform to write down the inverse z-transform x(k).

Shortcuts

The above procedure can always be used to find the inverse z-transform. The process, however, requires
solving a system of equations that can be rather tedious. In many cases, there are some shortcuts that we
can take to simplify the calculations.

The partial fraction expansion always includes a constant term. All of the other terms, however, have a
factor of z in the numerator. Setting z = 0 in X(z) and its partial fraction expansion, we have that

X(0) = constant term

Therefore, we can solve for the constant term before solving the system of equations, which reduces the
dimension of the system of equations by one.

Similarly, we can directly solve for the coefficients corresponding to terms of the form z/(z − a) for simple
roots without solving the system of equations. The idea is to multiply both X(z) and its partial fraction
expansion by z − a and then set z = a to cancel all other terms in the partial fraction expansion.
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Example (Repeated roots, revisited). Find the inverse z-transform of X(z) = 5z (z + 1)
(z + 2)2(z + 3) .

As before, the form of the partial fraction expansion is

X(z) = 5z (z + 1)
(z + 2)2(z + 3) = Az

z + 2 + Bz

(z + 2)2 + Cz

z + 3 +D

We can immediately find the constant term D = X(0) = 0. Similarly, we can immediately find the
coefficient C as follows. First, multiply both sides by z + 3 to obtain

5z (z + 1)
(z + 2)2 = Az(z + 3)

z + 2 + Bz(z + 3)
(z + 2)2 + Cz +D (z + 3)

All terms on the right-hand side except for the C term contain a factor of z + 3 in the numerator, so
they all become zero when we set z = −3. Substituting this into the equation, we have

5(−3)(−3 + 1)
(−3 + 2)2 = −3C

which implies that C = −10. We can also find the coefficient B as follows. First, multiply both sides
by (z + 2)2 to obtain

5z (z + 1)
z + 3 = Az(z + 2) +Bz + Cz(z + 2)2

z + 3 +D (z + 2)2

All terms on the right-hand side except for the B term contain a factor of z + 2 in the numerator, so
they all become zero when we set z = −2. Substituting this into the equation, we have

5(−2)(−2 + 1)
−2 + 3 = −2B

which implies that B = −5. We cannot do something similar to find A since multiplying by z + 2 gives

5z (z + 1)
(z + 2)(z + 3) = Az + Bz

z + 2 + Cz(z + 2)
z + 3 +D (z + 2)

This still has z+2 in the denominator, so we cannot set z = −2 as before. In this case, we must procede
as in the general procedure, except that we already know B, C, and D so the system of equations will
only involve the single unknown A. Using the linear system of equations from before, the z3 coefficients
give that 0 = A+ C +D which implies that A = 10. Therefore, the inverse z-transform is

x(k) =
[
10 (−2)k − 5k (−2)k−1 − 10 (−3)k

]
us(k)

This shortcut is most useful when X(z) has all real distinct poles, since it can then be used to find all
coefficients in the partial fraction expansion without needing to solve a system of equations.
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Laplace Transform

The Laplace transform is a useful tool in understanding LTI systems that interprets signals in terms of their
frequencies. The Laplace transform is a generalization of the Fourier series, and it is the continuous-time
equivalent of the z-transform for discrete-time signals.

7.1 Definition

Definition. The Laplace transform of a continuous-time signal x(t) is the complex function

X(s) =
∫ ∞

0
x(t) e−st dt

where s is any complex number for which the integral converges. The values of s for which the integral
converges is the region of convergence (ROC).
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Transform Summary

We have seen various ways of transforming time-domain signals into a frequency-domain representation. We
now summarize these various transforms in both continuous and discrete time.

8.1 Continuous time

• The most general transform in continuous time is the Laplace transform, which is a rational function
of the complex number s. The zeros and poles of the Laplace transform are the roots of the numerator
and denominator polynomials. The region of convergence is the set of complex numbers s for which the
integral converges, which is to the right of the rightmost pole.

• The Fourier transform is the Laplace transform evaluated on the imaginary axis. The Fourier transform
exists only if all poles of the Laplace transform are strictly in the left-half plane so that the imaginary
axis is inside the ROC.

• For periodic signals, the Fourier series coefficients are evenly-spaced values of the Fourier transform.

Re(s)

Im(s)

−4ω0

−3ω0

−2ω0

−ω0

ω0

2ω0

3ω0

4ω0 Laplace transform

X(s) =

∫ ∞

0

x(t) e−st dt

Fourier transform

X(jω) =

∫ ∞

−∞
x(t) e−jωt dt

Fourier series

ck =
1

T

∫

T

x(t) e−jkω0t dt where ω0 =
2π

T
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8.2 Discrete time

• The most general transform in discrete time is the z-transform, which is a rational function of the
complex number z. The zeros and poles of the z-transform are the roots of the numerator and denomi-
nator polynomials. The region of convergence is the set of complex numbers z for which the summation
converges, which is outside of the circle through the outermost pole.

• The discrete-time Fourier transform is the z-transform evaluated on the unit circle. The discrete-time
Fourier transform exists only if all poles of the z-transform are strictly inside the unit circle so that the
unit circle is inside the ROC.

• For periodic signals, the discrete Fourier transform coefficients are evenly-spaced values of the discrete-
time Fourier transform.

Re(z)

Im(z)

−3θ0

−2θ0

−θ0

θ0

2θ0

3θ0

z-transform

X(z) =

∞∑

k=0

x(k) z−k

Discrete-time Fourier transform

X(ejθ) =

∞∑

k=−∞
x(k) e−jkθ

Discrete Fourier transform

ck =
1

N

∑

k=⟨N⟩
x(k) e−jkθ0n where θ0 =

2π

N
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9

Input-Output Representations

We now focus on causal finite-dimensional discrete-time linear time-invariant systems. We can represent
such systems in various ways. While the representations are all equivalent, each one will lead to a deeper
understanding of the system, and some representations are more useful in certain scenarios than others.
Here, we focus on input-output representations that do not explicitly model the internal state of the system.

9.1 Difference equation

A difference equation is an equation whose expressions consist of discrete-time signals evaluated at different
times.

Example (savings account). Previously, we modeled a savings account as a discrete-time system, where
we expressed the principal balance next month in terms of the balance this month. Because the equation
involves a signal (the principle balance) at different points in time (this month and next month), this
is a difference equation for the savings account system.

Theorem. Every causal finite-dimensional discrete-time LTI system can be represented by a difference
equation of the following form:

y(k) +
n∑
i=1

ai y(k − i) =
m∑
j=0

bj u(k − j)

where
• u(k) is the input signal

• y(k) is the output signal

• n is the order of the system (assuming an ̸= 0)

• ai and bi are constant parameters
Conversely, every difference equation of this form represents a causal finite-dimensional discrete-time
LTI system.
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Example. An example of a difference equation is

y(k)− 1
2y(k − 1) = u(k − 1)

This fits into the general form with n = m = 1, a1 = − 1
2 , b0 = 0, and b1 = 1.

An alternative way to write a difference equation is as a recursion, where we solve for the last output y(k)
in terms of the input signal and previous outputs:

y(k) = −
n∑
i=1

ai y(k − i) +
m∑
j=0

bj u(k − j)

This is a recursion because the current value of the output y(k) depends on its previous values y(k − 1),
y(k − 2), ..., y(k − n). In order to compute the response (or output signal), we need n initial conditions.
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Example (iterating a difference equation by hand). Consider the first-order difference equation from the
example above:

y(k)− 1
2y(k − 1) = u(k − 1)

To set this up as a recursion, we solve for the last-most output:

y(k) = 1
2y(k − 1) + u(k − 1)

Given the input signal u(k) and the initial condition y(0), we can use recursion to compute the output
at each time k. Let’s consider several cases.

• Zero-input response. First, suppose that the input signal is u(k) = 0 for all k and the initial
condition is y(0) = 2. Then we can substitute k = 1 into the recursion to obtain

y(1) = 1
2y(0) + u(0) = 1

Now that we know y(1), we can substitute k = 2 into the recursion to obtain

y(2) = 1
2y(1) + u(1) = 1

2

And now that we know y(2), we can substitute k = 3 into the recursion to obtain

y(3) = 1
2y(2) + u(2) = 1

4

and so on. Looking at the recursion, we notice that the output is being multiplied by a half at each
iteration. In fact, we can guess the solution in this case! It is just

y(k) = 2
( 1

2
)k

which is a decaying exponential.

• Step response. Now suppose that the input signal is a unit step, u(k) = us(k), and the initial
condition is y(0) = 0. Iterating the recursion, we obtain the output:

y(1) = 1
2y(0) + x(0) = 1

y(2) = 1
2y(1) + x(1) = 3

2

y(3) = 1
2y(2) + x(2) = 7

4
...

y(k) = 2− 2
( 1

2
)k

where we found the general expression again by inspection. Since we put in a constant input, the
output now exponentially approaches the value two. Both responses are plotted below.

k

y(k)

k

y(k)

This first-order discrete-time system behaves similar to a first-order continuous-time system, such
as an RC circuit. In this analogy, the first scenario corresponds to the capacitor discharging its
initial charge, while the second scenario corresponds to the capacitor being charged by a constant
input voltage.
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Example (undamped oscillator). While first-order systems have relatively simple behavior, second-order
systems can be more complex. Consider the second-order system

y(k)− y(k − 1) + y(k − 2) = 2u(k − 1) + u(k − 2)

Once again, we can turn this into a recursion by solving for y(k).

y(k) = y(k − 1)− y(k − 2) + 2u(k − 1) + u(k − 2)

Instead of iterating by hand, let’s write a MATLAB program to do this for us. Since this is a second-
order difference equation, we will need two initial conditions and the input signal in order to iterate.
We also need to specify how many iterations to perform. We will put our code in a function so that we
can call it with different scenarios, and we’ll have it create a plot showing both the input and output
signals.

1 function undamped_oscillator (N,y1 ,y2 ,u,name)
2 %
3 % To use , run the following code in the command line:
4 %
5 % u1 = @(k) k-3 == 0;
6 % u2 = @(k) zeros(size(k));
7 % u3 = @(k) ( (mod(k ,6) ==0) - (mod(k ,6) ==3) );
8 %
9 % undamped_oscillator (30,0,0,u1 ,' undamped oscillator with impulse input ');

10 % undamped_oscillator (30,0,1,u2 ,' undamped oscillator with nonzero initial
conditions ');

11 % undamped_oscillator (30,0,0,u3 ,' undamped oscillator with resonance ');
12
13 % initial conditions
14 y(1) = y1;
15 y(2) = y2;
16
17 % iterate the difference equation
18 for k = 3:N
19 y(k) = y(k -1) - y(k -2) + 2*u(k -1) + u(k -2);
20 end
21
22 % plot the result
23 figure ;
24 stem (1:N,u(1:N)); hold on;
25 stem (1:N,y);
26 xlim ([0 N]);
27 grid on;
28 legend ('input signal u(k)','output signal y(k)','Location ','Northwest ');
29 xlabel ('k');
30 title(name);
31
32 pbaspect ([2 1 1]);
33
34 end

• Zero-input response. For the first scenario, let’s see what happens to the system when we start it
in some nonzero initial state and let it go (that is, the input is zero).

1 N = 30; % number of iterations
2 y1 = 0; % initial condition y(1)
3 y2 = 1; % initial condition y(2)
4 u = @(k) zeros(size(k)); % input signal u(k)
5
6 undamped_oscillator (N,y1 ,y2 ,u);

Our program produces the following plot. Even though we didn’t put any input into the system
besides the initial conditions, it continues oscillating forever! This is why the system is called an
undamped oscillator.

• Impulse response. Next, let’s set the initial conditions to zero and input a pulse at iteration k = 3
(since the initial conditions are at times k = 1 and k = 2).

1 N = 30; % number of iterations
2 y1 = 0; % initial condition y(1)
3 y2 = 0; % initial condition y(2)
4 u = @(k) k == 3; % input signal u(k)
5
6 undamped_oscillator (N,y1 ,y2 ,u);

The output signal still oscillates! The oscillations look a little different, but notice that they have
the same frequency (they both repeat every six iterations).

• Oscillating input with resonance. One last simulation. This time, let’s make the input signal look
similar to the responses of the system above in that it also oscillates every six iterations.

1 N = 30; % number of iterations
2 y1 = 0; % initial condition y(1)
3 y2 = 0; % initial condition y(2)
4 u = @(k) (mod(k ,6) ==0) - (mod(k ,6) ==3); % input signal u(k)
5
6 undamped_oscillator (N,y1 ,y2 ,u);

In this case, the output signal grows exponentially! What happened? The input signal resonated
with the natural dynamics of the system.

You can think of the undamped oscillator as the discrete-time version of a swing (or a pendulum)
without friction. If we start the swing at some nonzero angle (first scenario), the swing will keep
on swinging forever in the absence of friction. Likewise, if we push the swing and then let it go
(second scenario), it also swings forever. In the third scenario, we push the swing with its natural
frequency. Even without pushing very hard (the input signal is always −1, 0, or 1), the swing
continues to go higher and higher.
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Remark (Noncausal recursions). When setting up the recursion, what would happen if we solved for a different
term involving the output? Let’s go back to our first-order system:

y(k)− 1
2y(k − 1) = u(k − 1)

Insteading of solving for the first term y(k), let’s solve for the second term y(k − 1). Doing so, we get

y(k − 1) = 2y(k)− 2u(k)

But how do we iterate this? Given the input and the initial condition y(0), we can solve for the previous
output y(−1). And then we can use this value to find y(−2), and so on. Here, we are iterating backwards in
time by viewing the difference equation as a noncausal system, as opposed to the causal recursion running
forward in time that we did above. We can interpret any difference equation as representing either a causal
system or a noncausal system. This is why you will sometimes see things like

y(k)− 1
2y(k − 1) = u(k − 1), k ≥ 0

to specify that the iteration goes forward in time, so the difference equation represents a causal system.
Unless specified, you can typically assume that difference equations represent causal systems.

9.2 Transfer function

We previously saw how to represent a discrete-time LTI system as a difference equation. We now learn how
to represent it as a transfer function, which is a powerful and compact representation of the system.

Advance and delay

In order to describe the transfer function, we need one of the most simple systems: an advance. This system,
which we denote by E, takes in a signal and shifts it to the left by one iteration:

u(k) E7−→ u(k + 1)

This is a discrete-time LTI system, but it is noncausal since the output at iteration k + 1 depends on the
previous input at iteration k. For example, advancing the signal

u(k) = (0.75)k us(k) =
{

(0.75)k if k ≥ 0
0 if k < 0

produces

E u(k) = u(k + 1) =
{

(0.75)k+1 if k + 1 ≥ 0
0 if k + 1 < 0

What system undoes an advance? A delay! Shifting a signal to the left by one and then shifting it to the
right by one are inverse operations, so we represent a delay by 1/E or E−1.

u(k) E−1

7−−−→ u(k − 1)

This is also a discrete-time LTI system, and this system is also causal! Going back to our example,

E−1 u(k) = u(k − 1) =
{

(0.75)k−1 if k − 1 ≥ 0
0 if k − 1 < 0
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Describing difference equations using the advance operator

We are now going to form more general systems by taking weighted summations of powers of the advance
operator. In other words, we are going to do algebra with E. For example, we can use the advance to form
a new system aE + b where a and b are scalars. When we apply this system to an input signal, we can
distribute the signal through to each term

(aE + b)u(k) = aE u(k) + b u(k)

and then replace the advance operator by its definition

(aE + b)u(k) = a u(k + 1) + b u(k)

Notice that the right-hand side of this equation looks like a difference equation! Let’s take a look at how we
can use the advance operator to rewrite a difference equation.

Example. Consider the undamped oscillator that we studied previously:

y(k + 2)− y(k + 1) + y(k) = 2u(k + 1) + u(k)

Working backwards, we will rewrite this difference equation using the advance operator. First, rewrite
each side so that the signals only appear as u(k) and y(k).

E2 y(k)− E y(k) + y(k) = 2E u(k) + u(k)

Now factor out the signals u(k) and y(k) to obtain

(E2 − E + 1) y(k) = (2E + 1)u(k)

Since our goal is to find the output y(k) in terms of the input u(k), let’s solve for the output just as
you would in algebra.

y(k) = 2E + 1
E2 − E + 1 u(k)

This is an equivalent representation of the difference equation. We could just as easily do each of these
steps in reverse to get back to the original difference equation. The system that gets applied to the
input to obtain the output is the transfer function, which is often denoted H(E). In this example,

H(E) = 2E + 1
E2 − E + 1

The transfer function is the system H(E), which depends on the advance E, that produces the output signal
when applied to the input:

y(k) = H(E)u(k)
The transfer function...

• is a rational function of the advance operator E, meaning that it is the ratio of two polynomials

• is equivalent to the difference equation (and it is straightforward to convert between the two represen-
tations)

• represents only the difference equation and provides no information about initial conditions

System properties from the transfer function

Since the transfer function is a complete representation of the system, we should be able to determine the
properties of the system directly from H(E). To describe these properties, denote the numerator by N(E)
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and the denominator by D(E) so that

H(E) = N(E)
D(E)

• Causality. A system is causal if and only if the degree of the numerator polynomial N(E) is less than
or equal to the degree of the denominator polynomial D(E), that is,

deg
(
N(E)

)
< deg

(
D(E)

)
For example, consider the system with transfer function H(E) = E2

E−2 in which the degree of the
numerator (two) is larger than that of the denominator (one). The output is

y(k) = E2

E − 2 u(k)

Multiplying both sides by the denominator,

(E − 2) y(k) = E2 u(k)

which represents the difference equation

y(k + 1)− 2 y(k) = u(k + 2)

This system is noncausal since the output at iteration k + 1 depends on the future input at time k + 2.

• Degree. The degree of the system is the integer n in the difference equation representation

y(k) +
n∑
i=1

ai y(k − i) =
m∑
j=0

bj u(k − j)

which is the degree of the denominator polynomial D(E).

Example (Hidden structure). One simple application of the transfer function is to find a minimal repre-
sentation of a system. For example, consider the system described by the third-order difference equation

y(k + 3) + 2 y(k + 2)− y(k + 1)− 2 y(k) = u(k + 2) + 3u(k + 1) + 2u(k)

At first observation, it is difficult to understand how this system behaves; it is quite complicated! Let’s
compute its transfer function. Rewriting the difference equation using the advance operator,

(E3 + 2E2 − E − 2) y(k) = (E2 + 3E + 2)u(k)

Solving for the output,

y(k) = E2 + 3E + 2
E3 + 2E2 − E − 2 u(k)

This isn’t much simpler yet. However, notice that the numerator and denominator polynomials factor.

y(k) = (E + 1)(E + 2)
(E + 1)(E + 2)(E − 1) u(k)

The numerator and denominator both have factors of (E + 1) and (E + 2). Cancelling these common
factors, we have the simple representation

y(k) = 1
E − 1 u(k)

Now going back to a difference equation, we have

y(k + 1) = y(k) + u(k)

It is now straightforward to interpret the behavior of the system: it sums the input signal.
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Caution! The transfer function can only represent LTI systems (and any system represented by a transfer
function is LTI). For nonlinear or time-varying systems, the transfer function does not exist!
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Convolution

For discrete-time systems, we can solve for the response by iterating the difference equation that represents
the system. This approach, however, does not give insight into how the response changes for various scenarios
(different input signals, initial conditions, and/or system parameters). In this chapter, we focus on the zero-
state response (the output of the system when it is initially at rest) and learn how to find a closed-form
expression for the response of a discrete-time LTI system given the input signal. The main result is that:

The zero-state response is the convolution of the input signal with the impulse response of the system.

10.1 Motivation

Suppose we want to find the zero-state response of a discrete-time LTI system due to an input signal u(k).
Let’s first consider just the time k = 0. The value of the signal at this time is u(0). We can also represent
this as an entire signal with only this single value as u(0) δ(k). At the next time step, the value of the signal
is u(1), and a signal with only this value is u(1) δ(k − 1), where the impulse is now shifted to occur at time
k = 1. At a general point k = m, the point is represented by u(m) δ(k − m). We can keep doing so to
represent each individual point in the signal as a weighted and shifted impulse. The signal is the sum of
each of its individual points, so

u(k) =
∞∑

m=−∞
δ(k −m)u(m)

This is known as the sifting property of the impulse signal and holds for any signal u(k).
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So far, we have just rewritten the input signal in a more complicated way (as an infinite sum of weighted
impulses). However, suppose we know the impulse response of the system:

δ(k) 7→ h(k)

Because the system is time-invariant, we know that shifting the input signal will shift the output signal by
the same amount, so

δ(k −m) 7→ h(k −m)

Recall that linearity is equivalent to homogeneity and superposition. From homogeneity, we know that
multiplying the input signal by a constant will scale the output signal by the same amount, so

δ(k −m)u(m) 7→ h(k −m)u(m)

where u(m) is constant with respect to the time index k. This holds for any time shift m and any constant
u(m). Applying superposition, we know that summing the input signals (over m) will sum the corresponding
output signals, so

∞∑
m=−∞

δ(k −m)u(m) 7→
∞∑

m=−∞
h(k −m)u(m)

From the sifting property of the impulse signal, the left-hand side is simply u(k). In other words,

u(k) 7→ y(k) =
∞∑

m=−∞
h(k −m)u(m)

Recall that this holds for any signal u(k). Therefore, the zero-state response due to an input signal u(k)
is the signal y(k) given by the summation on the right-hand side. The zero-state response depends on the
input signal u(k) and the impulse response h(k).

10.2 Definition and main result

Definition (convolution). The convolution of discrete-time signals h and u is the signal h ∗ u given by

(h ∗ u)(k) =
∞∑

m=−∞
h(k −m)u(m)

Using the sifting property of the impulse signal with our motivation that a weighted sum of shifted inputs
produces the same weighted sum of shifted outputs, we obtain the following main result for convolution.

Main result (convolution): The zero-state response of an LTI system is the convolution of the input
signal with the impulse response:

yZSR(k) = (h ∗ u)(k) =
∞∑

m=−∞
h(k −m)u(m)

We can often simplify the limits of the summation.

• If the system is causal, then the impulse response is zero for negative times, so h(k) = 0 for k < 0. Then
all terms in the convolutional sum with m > k are zero, so we can set the upper limit to k.

• If the input signal does not start until time zero (that is, u(k) = 0 for k < 0), then all terms in the
convolutional sum with m < 0 are zero, so we can set the lower limit to zero.
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We often work with causal systems and input signals that are initially zero, in which case the zero-state
response simplifies to the finite summation

yZSR(k) =
k∑

m=0
h(k −m)u(m)
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Example (first-order system). Consider the discrete-time LTI system with impulse response

h(k) = (0.5)k us(k)

Find the zero-state response due to the input signal u(k) = 3k us(k).

The zero-state response is the convolution of the input signal with the impulse response:

y(k) = (h ∗ u)(k) =
∞∑

m=−∞
h(k −m)u(m)

Substituting the input signal and the impulse response,

y(k) =
∞∑

m=−∞
(0.5)k−m us(k −m) 3m us(m)

The first unit step us(k −m) is zero whenever k −m < 0, or equivalently m > k. Therefore, we can
replace the upper limit in the summation with m = k since all terms after this are zero.

y(k) =
k∑

m=−∞
(0.5)k−m 3m us(m)

The other unit step us(m) is zero whenever m < 0, so we can replace the lower limit in the summation
with m = 0 since all terms before this are zero.

y(k) =
k∑

m=0
(0.5)k−m 3m

To evaluate the summation, let’s first break the first exponential into two terms,

y(k) =
k∑

m=0
(0.5)k (0.5)−m 3m

The first exponential does not depend on m and can therefore be pulled outside of the summation, and
we can combine the other two terms into a single exponential.

y(k) = (0.5)k
k∑

m=0

(
3

0.5

)m
We can now apply the geometric series formula

k∑
m=0

ak = 1− ak+1

1− a us(k)

to obtain
y(k) = (0.5)k 1− 6k+1

1− 6 us(k)

Simplifying this expression, we have

y(k) = 1
5 (0.5)k

(
6k+1 − 1

)
us(k)

which further simplifies to

y(k) = 6
5 (3)k us(k)︸ ︷︷ ︸

particular

− 1
5 (0.5)k us(k)︸ ︷︷ ︸

homogeneous

where we can identify the homogeneous and particular solutions in the response.
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Example (second-order system). Consider the discrete-time LTI system with impulse response

h(k) =
[
−100 (0.1)k + 50 (0.2)k

]
us(k − 1)

Find the step response of the system. To check your solution, the step response is

y(k) =
[ 25

18 −
25
2 (0.2)k + 100

9 (0.1)k
]
us(k − 1)

10.3 Properties

Convolution is an operator that takes two signals and produces another signal. The convolution operator
satisfies the following properties.

• Commutative
Convolution is commutative, meaning that the result does not depend on the order in which two signals
are convolved.

u ∗ h = h ∗ u

• Distributive
Convolution is distributive over addition, meaning that the convolution of a sum is equal to the sum of
the convolutions.

u ∗ (h1 + h2) = u ∗ h1 + u ∗ h2

• Associative
Convolution is associative, meaning that the order in which you convolve multiple signals does not
change the result.

u ∗ (h1 ∗ h2) = (u ∗ h1) ∗ h2

• Sifting property
The sifting property of the impulse signal shows that convolving any signal with an impulse does not
change the signal.

δ ∗ u = u = u ∗ δ

In other words, the impulse signal is the identity element for convolution (similar to how the number
one is the identity element for multiplication).

• Time shifting
Convolution also has a property that multiplication does not have, which is the time shifting property.
This property states that if we shift either of the signals in the convolution in time, then the convoluted
signal also gets shifted by the same amount in time. Mathematically,

u1 ∗ u2 = y =⇒ Enu1 ∗ Emu2 = En+my

where E is the advance operator.

Remark (analogy to scalar multiplication). As an analogy, let’s first think about basic multiplication. Multi-
plication is an operator that takes two numbers and multiplies them together to produce another number.
While we typically denote multiplication by juxtaposition (writing two numbers side-by-side as in ab), let’s
make this explicit and write a× b. As we all know, multiplication satisfies several important properties. For
example, it is commutative, meaning that the order in which you multiply two numbers does not matter, so
a× b = b× a. It is also distributive over addition, meaning that a× (b+ c) = a× b+ a× c. Multiplication
is also associative, meaning that a × (b × c) = (a × b) × c. And finally, the number one is special in that
multiplying any number by one does not change the number, sp a × 1 = a. The number one is called the
identity element for multiplication.
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These properties of addition and multiplication are generalized in the mathematical field of abstract algebra
as a ring. While the multiplication operator acts on scalars, the convolution operator acts on signals. Just
like for multiplication, addition and convolution of signals also form a ring and therefore have all of the same
properties. While the number one is the identity element for multiplication, the impulse signal is the identity
element for convolution.

Implications for interconnected systems

The properties of convolution have important implications for interconnections of LTI systems.

• Series connection. The zero-state response of two LTI systems connected in series is independent of
the order of the systems.
Consider the series interconnection of two LTI systems with impulse responses h and g.

u h g y = g ∗ (h ∗ u)h ∗ u

The zero-state response of the first system is the signal h ∗ u, and the response of the second system is
the signal

y = g ∗ (h ∗ u)
= (g ∗ h) ∗ u (associativity)
= (h ∗ g) ∗ u (commutativity)
= h ∗ (g ∗ u) (associativity)

This is the same output as the interconnected system with the order of the two subsystems switched.

u g h y = h ∗ (g ∗ u)
g ∗ u

This property only holds for single-input single-output systems. This is because, while multiplication
commutes for scalars, matrix multiplication is in general not commutative.

• Parallel connection. A parallel connection of LTI systems is equivalent to an LTI system whose impulse
response is the sum of the individual impulse responses.
Consider the parallel connection of two LTI systems with impulse responses h and g.

u

h

g

y = h ∗ u+ g ∗ u

The zero-state response of the interconnection is

y = h ∗ u+ g ∗ u
= u ∗ h+ u ∗ g (commutativity)
= u ∗ (h+ g) (distributivity)
= (h+ g) ∗ u (commutativity)

This is the same output as a single LTI system whose impulse response is the sum of the two individual
impulse responses.
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u h+ g y = (h+ g) ∗ u

10.4 Application: Matched filter

An important application of convolution is the matched filter, which is an LTI system that is designed to
detect a specific signal. Matched filters are used in a variety of systems.

• Digital communication. In communication systems, information may be encoded as a sequence of bits.
To transmit these signals, each bit may be associated with a signal. To decode the message, the receiver
must detect which signal has been transmitted. One way to do this is to have two filters in the receiver,
each one tuned to detect one of the signals.

• Radar. In radar systems, an electromagnetic pulse is transmitted at a target. The target reflects
the pulse, which then returns to the transmitter. The amount of time between when the signal was
transmitted and received is proportional to the distance to the target. Ideally, the received signal will
be identical to the original signal, except shifted in time and scaled (due to attenuation). The receiver
should then be designed to detect this signal to measure the distance to the target.

Let s(k) be the signal that we want the system to detect, and suppose that the signal is zero for k < 0 and
k > T for some time T . Our goal is then to design an LTI system (or filter) to detect this signal.

Definition (matched filter). The matched filter designed to detect a signal s(k) is the LTI system whose
impulse response is the shifted and time-reversed signal, h(k) = s(T − k).

Note that h(k) is zero for k < 0 and k > T due to the corresponding properties for s(k). The output of the
filter due to an input signal u(k) is then the convolution of the input signal with the impulse response:

y(k) = (h ∗ u)(k) =
k∑

m=0
h(k −m)u(m)

When the input to the matched filter is the signal s(k), the output is

y(k) =
k∑

m=0
s(N − (k −m)) s(m)

In particular, the output at time T is the energy of the signal s(k),

y(T ) =
T∑

m=0
s(m)2 = ∥s∥2

The matched filter is precisely the filter that maximizes this value.

We can use the matched filter to detect a delayed version of the signal s(k) as follows. Suppose we receive
the signal s(k − d), where d is the time delay. Then the output of the matched filter at time T + d is the
energy, y(T + d) = ∥s∥2. So given the time d + T at which the output of the matched filter has its peak
value, the amount by which the transmitted signal is delayed is d.
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Time Domain

For a given system, the most fundamental analysis question is: how does the system respond to various
excitations? The output of a system, known as the response, depends on both the input signal and the
initial conditions. In an RC circuit, for instance, the voltage across the capacitor depends on both the source
voltage and the initial capacitor voltage. For discrete-time systems, we can solve for the response by iterating
the difference equation. This approach, however, does not give insight into how the response changes for
various scenarios (different input signals, initial conditions, and/or system parameters). In this chapter, we
learn how to find a closed-form expression for the response of a discrete-time LTI system given the input
signal and initial conditions.

11.1 Overview

Consider an LTI system described by the difference equation

D(E) y(k) = N(E)u(k)

where u(k) is the input signal, y(k) is the output signal (or response), and N(E) and D(E) are polynomials
in the advance operator E. As we will see, the structure of the response depends on that of the input signal
and the roots of the characteristic polynomial D(E).

To find the response of the system to a particular input signal and set of initial conditions, we apply the
following general procedure that will be described in detail throughout the remainder of this chapter.

To find the response of an nth-order discrete-time LTI system:
a) Find the homogeneous solution, which contains n parameters.

b) Find a particular solution.

c) Add the homogeneous and particular solutions.

d) Apply the initial conditions to solve for the n parameters.
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11.2 Homogeneous solution

The homogeneous equation is the difference equation describing the dynamics of the system when the input
signal is zero,

D(E) y(k) = 0

This equation is called homogeneous because we can scale any solution y(k) and it remains a solution. The
solution to the homogeneous equation is the homogeneous solution. For an nth-order system, there are n
independent solutions to the homogeneous equation, so the homogeneous solution contains n parameters. To
find the homogeneous solution, we will start with a simple system and work toward the more general case.

Case: first-order system

The characteristic polynomial of a first-order system is of the form D(E) = E − a, so the homogeneous
equation is the first-order difference equation

y(k + 1)− a y(k) = 0

Suppose the initial condition is y(0) = m. Since this system is so simple, we can find the solution by just
iterating until we see a pattern:

y(0) = m

y(1) = a y(0) = am

y(2) = a y(1) = a2 m

y(3) = a y(2) = a3 m

...

This leads to the homogeneous solution
y(k) = mak

The solution depends on the root a of the characteristic polynomial and has a single parameter m since this
is a first-order system.

Case: second-order system with distinct real roots

The characteristic polynomial of a second-order system is quadratic. For now, let’s suppose that it factors
as

(E − b)(E − a) y(k) = 0

where a and b are not equal. From our analysis of first-order systems, one solution is y1(k) = m1 a
k since

(E − b)(E − a) y1(k) = (E − b)
(
(E − a)m1 a

k
)

= (E − b) · 0 = 0

Similarly, we can switch the order of the two factors to show that another solution is y2(k) = m2 b
k. If a

and b are not equal, then these are two different solutions. Since the system is linear, we can take a linear
combination of these two solutions to get the general solution

y(k) = m1 a
k +m2 b

k if a ̸= b
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Case: nth-order system with distinct real roots

For an nth-order system whose characteristic polynomial has all distinct roots, the polynomial factors and
the homogeneous equation can be written as

(E − a1)(E − a2) . . . (E − an) y(k) = 0

where the roots ai are all distinct. This equation has n independent solutions of the form mi a
k
i , so the

general solution is
y(k) = m1 a

k
1 +m2 a

k
2 + . . .+mn a

k
n if ai all distinct

Example. Let’s solve the homogeneous difference equation

y(k + 2)− 3 y(k + 1) + 2 y(k) = 0

First, write the difference equation using the advance operator E.

(E2 − 3E + 2) y(k) = 0

Factor the characteristic polynomial.

(E − 1)(E − 2) y(k) = 0

The characteristic polynomial is quadratic with two distinct roots, so the homogeneous solution is

y(k) = m1 (1)k +m2 (2)k = m1 +m2 2k

So far, we have assumed that the roots of the characteristic polynomial are real and distinct. But in general,
the roots of a polynomial may be complex and repeated. We cover these two cases next.

Case: two repeated roots

Let’s start with the quadratic case where the root is repeated.

(E − a)2 y(k) = 0

As before, one solution is y1(k) = m1 a
k. We need two solutions for a second-order system. But since the

roots are the same, we cannot take y2(k) = m2 a
k as before because this is the same as the first solution.

Instead, let’s define an intermediate signal

w(k) = (E − a) y(k)

This signal satisfies the first-order homogeneous equation

(E − a)w(k) = 0

which we know has the solution w(k) = mak. Now substituting this back into how we defined w(k),

(E − a) y(k) = mak
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This is still a first-order equation, but it is no longer homogeneous (it has a nonzero right-hand side). To
find its solution, let’s iterate the difference equation and look for a pattern:

y(1) = ma0 = m

y(2) = am+ma1 = 2ma
y(3) = a · 2ma+ma2 = 3ma2

...

y(k) = kmak−1

Since m was an arbitrary parameter, we can set m2 = m/a to simplify the solution to y(k) = km2 a
k. The

homogeneous solution is then the sum of both solutions,

y(k) = (m1 + km2) ak

Example (two repeated roots). Let’s solve the homogeneous recursion

y(k) = 2.5 y(k − 1)− 2 y(k − 2) + 0.5 y(k − 3)

We first shift time by three iterations and bring all the terms to the same side.

y(k + 3)− 2.5 y(k + 2) + 2 y(k + 1)− 0.5 y(k) = 0

Now rewrite the equation using the advance operator.

(E3 − 2.5E2 + 2E − 0.5) y(k) = 0

To find the homogeneous solution, we need to factor the characteristic polynomial.

(E − 0.5)(E − 1)2 y(k) = 0

The characteristic polynomial has a single real root at 0.5 and a repeated real root at 1, so the homo-
geneous solution is

y(k) = m1 (0.5)k +m2 +m3 k

where the first term is due to the real root at 0.5 and the second two terms are due to the repeated
root at 1.

Case: more repeated roots

The form of the solution when a root is repeated more times is as follows:

(E − a) y(k) = 0 =⇒ y(k) = m1 a
k

(E − a)2 y(k) = 0 =⇒ y(k) = (m1 +m2 k) ak

(E − a)3 y(k) = 0 =⇒ y(k) = (m1 +m2 k +m3 k
2) ak

...

(E − a)n y(k) = 0 =⇒ y(k) = (m1 +m2 k + . . .+mn k
n−1) ak
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Example (more repeated roots). The homogeneous equation

(E − 0.5)2(E + 0.2)3 y(k) = 0

has the homogeneous solution

y(k) = (m1 +m2 k) (0.5)k + (m3 +m4 k +m5 k
2) (−0.2)k

Roots at zero

For repeated roots at zero, we cannot use the general formula above because the solutions all collapse to a
single solution (an impulse signal). For n repeated roots at zero, the solution to the homogeneous difference
equation

En y(k) = 0

is a weighted sum of shifted impulses:

y(k) = m1 δ(k) +m2 δ(k − 1) + . . .+mn δ(k − n+ 1)

Example (roots at zero). The homogeneous equation

E2(E − 0.5) y(k) = 0

has the homogeneous solution

y(k) = m1 δ(k) +m2 δ(k − 1) +m3 (0.5)k

Case: complex roots

Since the coefficients of the characteristic polynomial are real numbers, complex roots of the characteristic
polynomial always come in complex conjugate pairs. Recall that, for a complex number a+ jb, its complex
conjugate is a− jb. For a second-order system with two complex conjugate roots, the homogeneous equation
has the form

(E − p)(E − p̄) y(k) = 0

where p is a complex number and p̄ is its complex conjugate. We can still apply the formula for distinct
roots in this case to get the solution

y(k) = m1 p
k +m2 p̄

k

but now the coefficients m1 and m2 will in general be complex, even though the signal y(k) is real! Instead,
we prefer to use a form with only real numbers to emphasize that the signal is real.

To find a better expression, let’s write p in polar form as r ejθ where r is the magnitude and θ the angle of
the complex number. Then its complex conjugate is p̄ = r e−jθ, so the solution is

y(k) = m1
(
r ejθ

)k +m2
(
r e−jθ)k

Since the output signal y(k) is real, the coefficients m1 and m2 must be complex conjugates of each other.

Proof. For the signal
y(k) = m1 p

k +m2 p̄
k
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to be real for all k, we will show that the complex coefficients m1 and m2 must be complex conjugates of
each other. Let’s write all of the complex numbers in polar form:

p = r ejθ m1 = a ejϕ m2 = b ejψ

Substituting these expressions into y(k), we obtain

y(k) = a ejϕ r ejkθ + b ejψ r e−jkθ

Combining the complex exponentials and factoring out r,

y(k) = r
[
a ej(ϕ+kθ) + b ej(ψ−kθ)

]
Now use Euler’s formula to rewrite the complex exponentials in rectangular form,

y(k) = r
[
a
(

cos(ϕ+ kθ) + j sin(ϕ+ kθ)
)

+ b
(

cos(ψ − kθ) + j sin(ψ − kθ)
)]

Grouping the real and imaginary parts,

y(k) = r
[(
a cos(ϕ+ kθ) + b cos(ψ − kθ)

)
+ j

(
a sin(ϕ+ kθ) + b sin(ψ − kθ)

)]
All of the parameters are real (they are the magnitudes and angles of the complex numbers p, m1, and m2),
so we can now clearly identify the real and imaginary parts of the signal. Since we know that y(k) must be
a real signal, the imaginary part must be zero. That is,

0 = Im{y(k)} = a sin(ϕ+ kθ) + b sin(ψ − kθ)

For this to be zero for all values of k, we must have that ψ = −ϕ and a = b so that the two terms cancel (using
that sine is an odd function). Therefore, the complex coefficients m1 and m2 must be complex conjugates
of each other.

Since m1 and m2 are complex conjugates of each other, we can write them in polar form as

m1 = m

2 ejϕ and m2 = m

2 e−jϕ

(we included the factor of one half for convenience, so here m is twice the magnitude of m1 and m2).
Substituting these expressions, the homogeneous solution is

y(k) = m

2 rk
(
ej(kθ+ϕ) + e−j(kθ+ϕ))

Applying the trigonometric identity cos θ = 1
2 (ejθ + e−jθ) we get the form

y(k) = mrk cos(kθ + ϕ)

where the parameters are now m and ϕ, which are both real. The other parameters r and θ in the solution are
the magnitude and angle of the complex roots of the characteristic polynomial. While this form emphasizes
the fact that the response is a real signal, to find the parameters m and ϕ we need to solve a nonlinear
system of equations. Instead, we can use the equivalent form

y(k) = rk
[
m1 cos(kθ) +m2 sin(kθ)

]
where the parameters are now m1 and m2 (these are both real, and are not the same as the complex ones
used above). The parameters now appear linearly, so it is generally easier to solve for the parameters in this
form. However, both forms are equivalent and you can use whichever you like.
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When the characteristic polynomial has two complex conjugate roots with magnitude r and angle ±θ,
the homogeneous solution can be written in either form

y(k) = mrk cos(kθ + ϕ) = rk
[
m1 cos(kθ) +m2 sin(kθ)

]
where the two parameters are m and ϕ in the first form and m1 and m2 in the second form.

Example (complex roots). Consider the difference equation

(E2 − 2E + 4) y(k) = 0

The characteristic polynomial does not factor, so we have to resort to the quadratic equation. This
gives the two complex roots

p = 2±
√

4− 16
2 = 1± j

√
3

The magnitude of the roots is
r = |p| =

√
(1)2 +

(√
3
)2 = 2

and the angle is
θ = ∠p = arctan

(√
3/1
)

= π

3 = 60◦

Therefore, the homogeneous solution is of the form

y(k) = m 2k cos
(
k π3 + ϕ

)
= 2k

[
m1 cos

(
k π3
)

+m2 sin
(
k π3
)]

with real parameters m and ϕ, or equivalently, m1 and m2.

11.3 Particular solution

A particular solution is a response y(k) that satisfies the difference equation (with the input), but need not
satisfy the initial conditions. In general, the particular solution has the same form as the input signal. There
are many particular solutions, but we only need to find one of them.

The general method to find a particular solution is to try a generalized form of the input signal. For instance,
if the input signal is sinusoidal, then the particular solution should also be sinusoidal with the same frequency.
Here are some examples of input signals u(k) and the corresponding form of the particular solution y(k).

u(k) = 2k y(k) = A 2k

u(k) = k (0.5)k y(k) = A (0.5)k +Bk (0.5)k

u(k) = 6 cos
(
k π6
)

y(k) = A cos
(
k π6
)

+B sin
(
k π6
)

u(k) = 4 (0.5)k + 2 (0.3)k y(k) = A (0.5)k +B (0.3)k

The generalized form of the input signal contains some parameters that we must solve for. To find the param-
eters, substitute the particular solution into the difference equation. Unlike when solving the homogeneous
equation, we can immediately solve for the parameters in the particular solution.
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Example. Find a particular solution to the difference equation

(E − 0.3) y(k) = 3 · 2k

Using a similar form as the input signal, let’s try y(k) = A 2k. Substituting this into the difference
equation gives

3 · 2k = (E − 0.3)(A 2k) = A 2k+1 − 0.3A 2k

While this equation depends on k, we can divide both sides by 2k to eliminate time from the equation:

3 = 2A− 0.3A

We can now solve for the coefficient to obtain A = 3/1.7. Therefore, the particular solution is

y(k) = 3
1.7 2k

A troublesome example

Find the particular solution to the difference equation

(E − 1)(E − 2) y(k) = 2k

As before, let’s try using a generalized form of the input signal for the particular solution, so y(k) = A 2k.
Substituting this into the difference equation,

2k = (E2 − 3E + 2) (A 2k) = A 2k+2 − 3A 2k+1 + 2A 2k

Once again, we can divide by 2k to eliminate k from the equation,

1 = 4A− 6A+ 2A = 0

But this says that 1 = 0, which is a contradiction! To see what happened, let’s think about the solution to
the homogeneous equation:

yh(k) = m1 +m2 2k

The form that we chose for the particular solution already appears in the homogeneous solution! So our
chosen form for the particular solution of A 2k solves the homogeneous difference equation, where the right-
hand side is zero instead of 2k as desired. To fix this, we need to include an extra factor of k in the particular
solution (similar to when we were solving the homogeneous equation and the characteristic polynomial had
repeated roots). Setting y(k) = Ak 2k and substituting this into the difference equation, we now get

2k = A(k + 2)2k+2 − 3A(k + 1)2k+1 + 2Ak2k

Dividing both sides by 2k, all of the terms with k cancel and we obtain

1 = 4A(k + 2)− 6A(k + 1) + 2Ak = 2A

which implies that A = 1/2. The particular solution is then

y(k) = k
2 2k
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Example. Find the particular solution to the difference equation

(E − 1)(E − 2) y(k) = 2k + 3k

Learning from the previous example, we should use the form of the homogeneous solution when choosing
the form of the particular solution. The solution to the homogeneous equation is

yh(k) = m1 +m2 2k

so the particular solution should have the form

yp(k) = Ak 2k +B 3k

where we used an extra factor of k in the 2k term since it already appears in the homogeneous solution.
Substituting this into the difference equation,

2k + 3k = (E2 − 3E + 2)
(
Ak 2k +B 3k

)
= A (k + 2) 2k+2 − 3A (k + 1) 2k+1 + 2Ak 2k +B 3k+2 − 3B 3k+1 + 2B 3k

Collecting like terms,

2k + 3k = (4A− 6A+ 2A) k 2k + (8A− 6A) 2k + (9B − 9B + 2B) 3k

In order for these to be equal for all k, the coefficients in front of like terms must be equal. The first
term on the right-hand side is zero, which it should be since there is no k 2k term on the left-hand side.
From the 2k terms, we get the equation 2A = 1, and from the 3k terms we get 2B = 1. Therefore, the
particular solution is

yp(k) = k
2 2k + 1

2 3k

Example. Find the particular solution to the difference equation

(E − 1)2 y(k) = 3

The homogeneous solution has the form

yh(k) = m1 +m2 k

Since the form of the input (constant) already appears in the homogeneous solution, we should multiply
by k. But this also appears in the homogeneous solution, so we need to multiply by k again. The form
of the particular solution is then

yp(k) = Ak2

To find the coefficient, we can substitute the particular solution into the difference equation to obtain

3 = (E − 1)2 (Ak2) = A(k + 2)2 − 2A(k + 1)2 +Ak2

Collecting like terms,

3 = (A− 2A+A) k2 + (4A− 4A) k + (4A− 2A) = 2A

All of the k and k2 terms on the right-hand side cancel out, which is expected since they are in the
homogeneous solution. Solving gives A = 3/2, so the particular solution is

yp(k) = 3
2 k

2
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11.4 The total response

Now that we know how to find the particular solution, we can solve for the total response by summing the
homogeneous and particular solutions and then applying the initial conditions.

Example. Solve the difference equation

(E − 0.3) y(k) = 3 · 2k, y(0) = 0

We already found that the homogeneous and particular solutions are

yh(k) = m (0.3)k and yp(k) = 3
1.7 2k

Summing the homogeneous and particular solutions, the total response is

y(k) = m (0.3)k + 3
1.7 2k

We can now apply the initial condition,

0 = y(0) = m+ 3
1.7

which implies that the parameter is m = −3/1.7. Therefore, the total response is

y(k) = 3
1.7

(
2k − (0.3)k

)
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Example. Solve the difference equation

(E − 1)(E − 2) y(k) = 2k + 3k y(0) = 1, y(1) = 1

Since we already found the homogeneous and particular solutions, the total response is the sum

y(k) = m1 +m2 2k︸ ︷︷ ︸
homogeneous

+ k
2 2k + 1

2 3k︸ ︷︷ ︸
particular

Since this is a second-order system, we have two initial conditions and two parameters. Applying the
initial conditions yields the linear system of equations

1 = y(0) = m1 +m2 + 1
2

1 = y(1) = m1 + 2m2 + 1 + 3
2

Let’s see how to solve this system of linear equations two different ways.
• The most straightforward approach is to pick one of the equations, solve for one of the parameters,

substitute the solution into the other equation, and then solve for the other parameter. It does not
matter which equation we choose to start with, so let’s pick the first one.

1 = m1 +m2 + 1
2

It also does not matter which variable we solve for first, so let’s solve for m1 to obtain

m1 = 1
2 −m2

Now substituting this into the second equation, we get

1 =
( 1

2 −m2︸ ︷︷ ︸
m1

)
+ 2m2 + 1 + 3

2

This equation now depends on only m2, so we can solve it to obtain m2 = −2. Now that we know
m2, we can substitute this back into our equation for m1 to get

m1 = 1
2 −m2 = 5

2

Therefore, the solution to the system of equation is m1 = −2 and m2 = 5
2 .

• Instead of solving the system of equations by hand, we can set this up in matrix form as[ 1
2
− 3

2

]
=
[
1 1
1 2

] [
m1
m2

]
Inverting this matrix (using a computer) gives the solution[

m1
m2

]
=
[
1 1
1 2

]−1 [ 1
2
− 3

2

]
=
[ 5

2
−2

]
which is the same as we found by directly solving by hand. This high-level approach is more easily
done using a computer.

Therefore, the solution to the difference equation is

y(k) = 5
2 +

(
−2 + k

2
)

2k + 1
2 3k
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11.5 Zero-input response

Two important outputs of a system are the zero-input and zero-state responses.

• The zero-input response is the output of the system due to the initial conditions when the input is zero,
that is, u(k) = 0 for all k.

• The zero-state response is the output of the system due to the input signal when the initial conditions
are zero (meaning that the system is initially at rest), that is, y(−1) = y(−2) = . . . = y(−n) = 0.

For LTI systems, the total response is the sum of the zero-input and zero-state responses.

total response = zero-input response + zero-state response

We already have all of the tools needed to find the zero-input and zero-state responses from the difference
equation describing the dynamics of the system. The zero-state response is found by setting the initial
conditions to zero, while the zero-input response is found by setting the input signal to zero and then solving
the corresponding difference equation.

Since the zero-input response is the solution to the homogeneous difference equation, it has the same form
as the homogeneous solution. To find the zero-input response, we will find the homogeneous solution and
then apply the initial conditions to find the n parameters (there is no particular solution in this case since
the input is zero).
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Example. Find the zero-input response of the system described by the difference equation

y(k + 2)− 3 y(k + 1) + 2 y(k) = u(k), y(0) = 2, y(1) = 1

Since we are finding the zero-input response, the input is u(k) = 0. Write the homogeneous difference
equation using the advance operator E.

(E2 − 3E + 2) y(k) = 0

Factor the characteristic polynomial.

(E − 1)(E − 2) y(k) = 0

Since the characteristic polynomial has two real distinct roots, the general solution is then of the form

y(k) = m1 (1)k +m2 (2)k = m1 +m2 2k

To find the coefficients, apply the initial conditions.

2 = y(0) = m1 +m2

1 = y(1) = m1 + 2m2

This is a system of two coupled linear equations. One way to solve a system of equations is by picking one
of the equations, solving for one of the coefficients, and then substituting this into the other equation.
For instance, let’s solve the first equation for m1 to get

m1 = 2−m2

We are not done yet since this depends on m2, so let’s substitute this expression for m1 into the second
equation:

1 = (2−m2) + 2m2

This equation only depends on m2, so we can solve it to get that m2 = −1. We can now back-substitute
this into our previous expression for m1 in terms of m2 to find that m1 = 3. The zero-input response
is then

y(k) = 3− 2k
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Example. Find the zero-input response of the system described by the difference equation

(E2 − 2E + 4) y(k) = u(k), y(0) = −1, y(1) = 2

The characteristic polynomial does not factor in this case, so we have to resort to the quadratic equation.
This gives the two complex roots

p = 2±
√

4− 16
2 = 1± j

√
3

The magnitude and angle of the roots are

r = |p| =
√

(1)2 +
(√

3
)2 = 2 and θ = ∠p = arctan

(√
3/1
)

= π

3 = 60◦

We saw two equivalent forms for the solution to the homogeneous equation when the roots of the
characteristic polynomial are complex:

y(k) = mrk cos(kθ + ϕ) = rk (m1 cos kθ +m2 sin kθ)

Using the first form, the homogeneous solution is of the form

y(k) = m 2k cos
(
k π3 + ϕ

)
with parameters m and ϕ. Substituting the initial conditions yields the nonlinear equations

−1 = y(0) = m cos
(
ϕ
)

2 = y(1) = 2m cos
(
π
3 + ϕ

)
Applying the trigonometric identity

cos(a± b) = cos a cos b∓ sin a sin b

to the second equation produces the system of equations[
−1
2

]
=
[

1 0
2 cos

(
π
3
)

2 sin π
3

] [
m cosϕ
m sinϕ

]
This is a linear system of equations in the unknowns m cosϕ and m sinϕ, which has the solution

m cosϕ = −1 and m sinϕ = −
√

3

Squaring both equations and summing gives that m = ±2, where we used the trigonometric identity

cos2 ϕ+ sin2 ϕ = 1

Taking the positive solution m = 2, the angle is ϕ = −2π/3. Therefore, the zero-input response is

y(k) = 2k+1 cos
(
k π3 −

2π
3
)
.
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Example (Continued). For the previous example, instead of using all of the trigonometric identities
needed to solve the nonlinear system of equations, we can instead express the homogeneous solution in
the second form

y(k) = 2k
[
m1 cos

(
k π3
)

+m2 sin
(
k π3
)]

with real parameters m1 and m2. Substituting in the initial conditions leads to the linear system of
equations

−1 = y(0) = m1

2 = y(1) = m1 +
√

3m2

which has the solution m1 = −1 and m2 =
√

3. Therefore, the zero-input response is

y(k) = 2k
[
− cos

(
k π3
)

+
√

3 sin
(
k π3
)]
.

While these expressions are equivalent, the second form is much easier to find since it involves solving
a linear system of equations.

11.6 Zero-state response

The zero-state response is the solution when the initial conditions are zero, which means that

0 = y(−1) = y(−2) = · · · = y(−n)

One complication in applying these initial conditions is that they all apply to times before zero, while the
expression for the solution is only valid for times greater than or equal to zero. Therefore, we cannot apply
the initial conditions directly. Instead, we will need to iterate the recursion n times using these initial
conditions and the input signal to find y(0), y(1), . . . , y(n − 1). We can then use these values to solve for
the n parameters in the homogeneous solution. The form of the zero-state response will include those of the
homogeneous and particular solutions.

Two common zero-state responses are:
• The step response is the zero-state response due to a unit step input signal, u(k) = us(k).

• The impulse response is the zero-state response due to a unit impulse input signal, u(k) = δ(k). We
typically denote the impulse response by h(k).
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Example. Find the zero-state response of the system

y(k + 2)− 0.3 y(k + 1) + 0.02 y(k) = us(k)

We first write the difference equation in operator form as

(E2 − 0.3E + 0.02) y(k) = us(k)

Factoring the characteristic polynomial,

(E − 0.1)(E − 0.2) y(k) = us(k)

Since the characteristic polynomial has two distinct real roots, the homogeneous solution has the form

yh(k) = m1 (0.1)k +m2 (0.2)k

The input signal is constant, which does not appear in the homogeneous solution, so the particular
solution is also a constant, yp(k) = A. Substituting this into the difference equation,

1 = A− 0.3A+ 0.02A = 18
25A

Therefore, the particular solution is
yp(k) = 25

18
The total response is the sum of the homogeneous and particular solutions,

y(k) = m1 (0.1)k +m2 (0.2)k + 25
18

which is only valid for k ≥ 0, so we cannot apply the zero-state conditions y(−1) = y(−2) = 0 directly.
Instead, we need to iterate the recursion

y(k) = 0.3 y(k − 1)− 0.02 y(k − 2) + us(k − 2)

to obtain y(0) = 0 and y(1) = 0. We can now apply these initial conditions to the total response, which
leads to the linear system of equations0

0

 =

y(0)

y(1)

 =

 1 1

0.1 0.2

m1

m2

+

 25
18

25
18


which has the solution m1 = 100

9 and m2 = − 25
2 . Therefore, the zero-state response due to a unit step

input signal is
y(k) = 100

9 (0.1)k − 25
2 (0.2)k + 25

18 for k ≥ 0
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Example. Find the zero-state response of the system

y(k + 2)− 0.3 y(k + 1) + 0.02 y(k) = δ(k)

This is the same system as before, only the input has changed. Therefore, the form of the homogeneous
solution is the same as before. The input signal is now an impulse, which does not appear in the
homogeneous solution, so the particular solution is also an impulse, yp(k) = Aδ(k). Substituting this
into the difference equation, we have

Aδ(k + 2)− 0.3Aδ(k + 1) + 0.02Aδ(k) = δ(k)

Keep in mind that this equation only holds for k ≥ 0, so the first two impulses never affect the equation!
If we use any k > 0, the equation is vacuous since all of the terms on both sides are zero. So the only
non-trivial equation comes from k = 0, in which case we find that A = 50. The total response is the
sum of the homogeneous and particular solutions,

y(k) = m1 (0.1)k +m2 (0.2)k + 50 δ(k)

Once again, this difference equation is only valid for k ≥ 0, so we cannot apply the zero-state conditions
y(−1) = y(−2) = 0 directly. Instead, we need to iterate the recursion

y(k) = 0.3 y(k − 1)− 0.02 y(k − 2) + δ(k − 2)

to obtain y(0) = 0 and y(1) = 0. We can now apply these initial conditions to the total response, which
leads to the linear system of equations[

0
0

]
=
[
y(0)
y(1)

]
=
[

1 1
0.1 0.2

] [
m1
m2

]
+
[
50
0

]
which has the solution m1 = −100 and m2 = 50. Therefore, the zero-state response due to an impulse
input signal is

y(k) = −100 (0.1)k + 50 (0.2)k + 50 δ(k) for k ≥ 0
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Example. Find the step responses of the linear time-invariant system

y(k) = 2E2 + 3E + 4
E2 + 3E + 2 u(k)

First, let’s multiply by the denominator to get the difference equation

(E2 + 3E + 2) y(k) = (2E2 + 3E + 4)u(k)

or equivalently,

y(k + 2) + 3 y(k + 1) + 2 y(k) = 2u(k + 2) + 3u(k + 1) + 4u(k)

Shifting the time index and writing this as a recursion,

y(k) = −3 y(k − 1)− 2 y(k − 2) + 2u(k) + 3u(k − 1) + 4u(k − 2)

We first find the solution to the homogeneous equation. Factoring the characteristic polynomial, the
homogeneous equation is

(E + 1)(E + 2) y(k) = 0

which has the solution
yh(k) = m1 (−1)k +m2 (−2)k

For the step response, the input signal is a unit step, u(k) = us(k). The particular solution is then also
a unit step, yp(k) = Aus(k). Substituting this into the difference equation,

A+ 3A+ 2A = 2 + 3 + 4

which implies that A = 3/2, so the total response is

y(k) = m1 (−1)k +m2 (−2)k + 3
2 for k ≥ 0

To find the parameters, we need to iterate the recursion using zero initial conditions. Doing so, we find
that the output at time k = 0 is

y(0) = −3 y(−1)︸ ︷︷ ︸
0

−2 y(−2)︸ ︷︷ ︸
0

+2 us(0)︸ ︷︷ ︸
1

+3 us(−1)︸ ︷︷ ︸
0

+4 us(−2)︸ ︷︷ ︸
0

= 2

and the output at time k = 1 is

y(1) = −3 y(0)︸︷︷︸
2

−2 y(−1)︸ ︷︷ ︸
0

+2 us(1)︸ ︷︷ ︸
1

+3 us(0)︸ ︷︷ ︸
1

+4 us(−1)︸ ︷︷ ︸
0

= −1

Applying these initial conditions to our expression for the total response, we obtain the linear system
of equations [

2
−1

]
=
[
y(0)
y(1)

]
=
[

1 1
−1 −2

] [
m1
m2

]
+
[
3/2
3/2

]
which has the solution m1 = −3/2 and m2 = 2. Therefore, the step response is

y(k) = − 3
2 (−1)k + 2 (−2)k + 3

2 for k ≥ 0
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Example. Find the impulse response of the system in the previous example.

For the impulse response, the input signal is an impulse, u(k) = δ(k). The homogeneous solution has
the same form as before, so we only need to find the particular solution. The particular solution is also
an impulse, yp(k) = Aδ(k). Substituting this into the difference equation,

Aδ(k + 2) + 3Aδ(k + 1) + 2Aδ(k) = 2 δ(k + 2) + 3 δ(k + 1) + 4 δ(k) for k ≥ 0

Note that this difference equation only holds for nonnegative times k ≥ 0. Substituting k = 0, we get
that 2A = 4, so A = 2. The total response is then

y(k) = m1 (−1)k +m2 (−2)k + 2 δ(k) for k ≥ 0

To find the parameters, we need to iterate the recursion using zero initial conditions. Doing so, we find
that the output at time k = 0 is

y(0) = −3 y(−1)︸ ︷︷ ︸
0

−2 y(−2)︸ ︷︷ ︸
0

+2 δ(0)︸︷︷︸
1

+3 δ(−1)︸ ︷︷ ︸
0

+4 δ(−2)︸ ︷︷ ︸
0

= 2

and the output at time k = 1 is

y(1) = −3 y(0)︸︷︷︸
2

−2 y(−1)︸ ︷︷ ︸
0

+2 δ(1)︸︷︷︸
0

+3 δ(0)︸︷︷︸
1

+4 δ(−1)︸ ︷︷ ︸
0

= −3

Applying these initial conditions to our expression for the total response, we obtain the linear system
of equations [

2
−3

]
=
[
y(0)
y(1)

]
=
[

1 1
−1 −2

] [
m1
m2

]
+
[
2
0

]
which has the solution m1 = −3 and m2 = 3. Therefore, the impulse response is

y(k) = −3 (−1)k + 3 (−2)k + 2 δ(k) for k ≥ 0
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Frequency Domain

We can interpret signals as functions of either time or frequency. When representing signals as functions of
time, the zero-state response of an LTI system is the convolution of the input signal with the impulse response
of the system. While this characterizes the response of the system, we must recompute the convolution for
each particular input signal. In this chapter, we interpret signals as functions of frequency. Instead of
convolution in the time domain, the zero-state response of an LTI system in the frequency domain will be
described by basic multiplication. This simple interpretation for the response of the system will provide
significant insight into how the system behaves which can then be used for design.

12.1 Zero-state response due to complex exponentials

To start, let’s see how a causal LTI system responds to a complex exponential input signal. Recall that we
can always represent a complex number in polar form as z = r ejθ where r is the magnitude and θ the angle
of the complex number. Then using Euler’s formula, a complex exponential signal has the form

zk = rk
(
cos(kθ) + j sin(kθ)

)
.

The first term is an exponential signal and the second term is a complex sinusoid. If the input signal is
u(k) = zk, then the zero-state response is the convolution

y(k) = (h ∗ u)(k) =
∞∑
m=0

zk−m h(m).

Splitting up zk−m and pulling zk outside of the summation (since it is constant with respect to m) gives

y(k) = zk
∞∑
m=0

h(m) z−m.

Notice that the term inside the summation does not depend on k at all; it only depends on the impulse
response h(k) and the complex number z. In fact, the summation is precisely the z-transform of the impulse
response,

H(z) =
∞∑
m=0

h(m) z−m.

Then the zero-state response is y(k) = H(z) zk, which is the input scaled by the complex number H(z).
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Zero-state response due to complex exponentials. The zero-state response of a causal LTI system
with impulse response h(k) due to a complex exponential signal zk is the same complex exponential
signal scaled by the complex number H(z).

zk
Causal LTI system

with impulse
response h(k)

H(z) zk where H(z) =

∞∑

k=0

h(k) z−k

Remark (Connection to linear algebra). The fact that LTI systems scale complex exponential signals is con-
nected with a fundamental concept from linear algebra: eigenvalues and eigenvectors. Recall that an eigen-
value λ ̸= 0 and eigenvector x for a matrix A are such that

Ax = λx,

which can also be represented by the block diagram:

Ax λx

The interpretation of this is that the matrix A maps the eigenvector x to itself scaled by the eigenvalue.
Eigenvectors are directions in which multiplication by the matrix does not change, and the scaling of the
eigenvector is the eigenvalue. We can think of signals as infinite-dimensional vectors and linear systems as
infinite-dimensional matrices that map the input signal to the output signal. With this interpretation, the
complex exponential signal zk is an eigenvector of the system with eigenvalue H(z).

Complex exponential signals are eigenvectors of LTI systems.

The remarkable property of LTI systems is that every complex exponential signal is an eigenvector for
any LTI system. This is certainly not true in general for finite-dimensional matrices, which typically have
different eigenvectors.

12.2 Zero-state response

We previously found the zero-state response of a causal LTI system due to a complex exponential signal. We
now generalize this to find the zero-state response due to an arbitrary input signal using the z-transform.

Recall that the zero-state response of a causal LTI system with impulse response h(k) is the convolution of
the impulse response with the input signal,

y(k) = (h ∗ u)(k) =
∞∑
m=0

h(k −m)u(m).

By definition, the z-transform Y (z) of the output y(k) is

Y (z) =
∞∑
k=0

y(k) z−k.

Substituting the expression for the output as the convolution of the input with the impulse response,

Y (z) =
∞∑
k=0

( ∞∑
m=0

h(k −m)u(m)
)
z−k.
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Switching the order of the summations,

Y (z) =
∞∑
m=0

∞∑
k=m

h(k −m)u(m) z−k

where we started the second summation at k = m since the impulse response h(k −m) is zero for k < m
since the system is causal. Rewriting z−k as z−(k−m)z−m and rearranging terms,

Y (z) =
∞∑
m=0

( ∞∑
k=m

h(k −m) z−(k−m)

)
u(m) z−m.

To simplify the term in parentheses, let ℓ = k −m so that

Y (z) =
∞∑
m=0

( ∞∑
ℓ=0

h(ℓ) z−ℓ

)
u(m) z−m.

It is now clear that the term inside the parentheses is H(z), the z-transform of the impulse response h(k).
Since this does not depend on m, we can pull it out of the first summation to have

Y (z) = H(z)
∞∑
m=0

u(m) z−m.

The summation is U(z), the z-transform of the input signal u(k). Therefore, the z-transform of the zero-state
response is the product of the z-transform of the impulse response with the z-transform of the input signal,

Y (z) = H(z)U(z).

Finding the zero-state response required convolution in the time domain, but this becomes simple multipli-
cation in the frequency domain (in terms of z-transforms).

Zero-state response. In the time domain, the zero-state response is the convolution of the input signal
with the impulse response. The corresponding relationship in the frequency domain is that the z-
transform of the zero-state response is the product of the z-transform of the impulse response with the
z-transform of the input signal.

u(k) h(k) y(k) = (h ∗ u)(k)

U(z) H(z) Y (z) = H(z)U(z)

Time domain:

Frequency domain:

Z Z Z
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Example. Consider an LTI system with finite-duration impulse response h(k) = {0, 2, 1, 0, 0, . . .}. Find
the zero-state response due to the finite-duration input signal u(k) = {1, 2, 3, 0, 0, . . .}.

To illustrate the connection by the time domain and frequency domain, we will find the zero-state
response using both convolution and the z-transform.
• Convolution. Since both the impulse response and input signal are finite in duration, the convolu-

tional sum is the finite summation

y(k) =
∞∑
m=0

h(k −m)u(m) = u(0)h(k) + u(1)h(k − 1) + u(2)h(k − 2).

Substituting the values for the signals, we have that

y(k) = 1 · {0, 2, 1, 0, 0, 0, 0, . . .}
+ 2 · {0, 0, 2, 1, 0, 0, 0, . . .}
+ 3 · {0, 0, 0, 2, 1, 0, 0, . . .}.

Summing over each time gives y(k) = {0, 2, 5, 8, 3, 0, 0, . . .}.

• z-Transform. We now find the zero-state response using the z-transform. The z-transform of the
input signal is

U(z) = u(0) + u(1) z−1 + u(2) z−2 = z2 + 2z + 3
z2

and the z-transform of the impulse response is

H(z) = h(0) + h(1) z−1 + h(2) z−2 = 2z + 1
z2 .

The z-transform of the zero-state response is then the product of these two,

Y (z) = H(z)U(z) = 2z + 1
z2 · z

2 + 2z + 3
z2 = 2z3 + 5z2 + 8z + 3

z4 = 2
z

+ 5
z2 + 8

z3 + 3
z4 .

We can then simply read off the coefficients of the zero-state response, y(k) = {0, 2, 5, 8, 3, 0, 0, . . .}.
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Example. Find the zero-state response of the LTI system with impulse response h(k) = (0.5)k us(k)
due to the input signal u(k) = 3k us(k).

Using a table to take z-transforms of the signals, we have that

H(z) = z

z − 0.5 and U(z) = z

z − 3 .

The z-transform of the zero-state response is then

Y (z) = H(z)U(z) = z2

(z − 0.5)(z − 3) = Az

z − 0.5 + Bz

z − 3 + C.

To find y(k) we need to take the inverse z-transform. Using the form of the partial fraction expansion
above, we can find the coefficient A by multiplying both sides by z − 0.5 and then setting z = 0.5 to
obtain

(z − 0.5)Y (z)
∣∣
z=0.5 = (0.5)2

0.5− 3 = 0.5A

which implies that A = −1/5. Similarly,

(z − 3)Y (z)
∣∣
z=3 = 32

3− 0.5 = 3B

which implies that B = 6/5. Setting z = 0, we find that C = 0. Therefore, the zero-state response is

y(k) = 6
5 (3)k − 1

5 (0.5)k for k ≥ 0.

Example. Find the step response of the LTI system with impulse response

h(k) =
[
50 (0.2)k − 100 (0.1)k

]
us(k − 1)

To use the table of z-transform pairs, we first rewrite the impulse response so that the exponents are
k − 1 to match the unit step,

h(k) =
[
10 (0.2)k−1 − 10 (0.1)k−1]us(k − 1).

We can now use a table to take z-transforms of the signals to find that

H(z) = 10
z − 0.2 −

10
z − 0.1 = 1

(z − 0.2)(z − 0.1) .

Since we are finding the step response, the input is a step signal u(k) = us(k) whose z-transform is
U(z) = z

z−1 . The z-transform of the zero-state response is then

Y (z) = H(z)U(z) = z

(z − 1)(z − 0.1)(z − 0.2) = Az

z − 1 + Bz

z − 0.1 + Cz

z − 0.2 +D.

To find y(k) we need to take the inverse z-transform. Using the form of the partial fraction expansion
above, we find that the coefficients are A = 25/18, B = 100/9, C = −25/2, and = 0. Therefore, the
zero-state response is

y(k) = 25
18 + 100

9 (0.1)k − 25
2 (0.2)k for k ≥ 0.
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12.3 Transfer function

So far, we have used the symbol H to denote two quantities:
• H(E) is the transfer function of an LTI system, which is a function of the advance operator E.

• H(z) is the z-transform of the impulse response h(k), which is a function of the complex number z.
In this section, we describe the relationship between these two quantities. We have been using the same
symbol for both (a slight abuse of notation), which hints that there is a strong relationship between them.
As we will see, H(E) and H(z) have the same expression and are therefore both a representation of the
transfer function of the system.

The transfer function and z-transform of the impulse response

To understand this relationship, let’s consider a generic second-order difference equation,

y(k + 2) + a y(k + 1) + b y(k) = c u(k + 2) + d u(k + 1) + e u(k).

The transfer function relates the input to the output by y(k) = H(E)u(k) and is given by

H(E) = cE2 + dE + e

E2 + aE + b
.

Now let’s find H(z) for this system. While H(z) is the z-transform of the impulse response, this is not easy
to calculate for our generic second-order system. Instead, we can use the fact that the zero-state response is
the product of the z-transforms of the impulse response and input, Y (z) = H(z)U(z). If we can find Y (z)
and U(z), then we can solve this equation for H(z). To find the z-transforms, let’s first shift the difference
equation in time to obtain

y(k) + a y(k − 1) + b y(k − 2) = c u(k) + d u(k − 1) + e u(k − 2).

Now take the z-transform of this equation and use that the initial conditions are zero (since y(k) is the
zero-state response) to obtain (

1 + a

z
+ b

z2

)
Y (z) =

(
c+ d

z
+ e

z2

)
U(z)

Solving for the zero-state response gives

Y (z) = cz2 + dz + e

z2 + az + b
U(z)

which implies that the z-transform of the impulse response is

H(z) = cz2 + dz + e

z2 + az + b
.

This has the same form as H(E), just with the advance operator E replaced with the complex number z.
For this reason, we refer to both H(E) and H(z) as the transfer function of the system. This is summarized
as follows.

The transfer function of an LTI system has two interpretations.
• The transfer function H(E) is the operator such that the zero-state response is y(k) = H(E)u(k).
• The transfer function H(z) is the z-transform of the impulse response h(k).

While both H(E) and H(z) have the same expression, one is a function of the advance operator E while
the other is a function of the complex number z.

h(k) Z←−−→ H(z) = H(E)
∣∣
E→z
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Using this equivalence between H(E) and H(z), we can now find the impulse response of an LTI system by
taking the inverse z-transform of its transfer function (instead of solving the difference equation).

Example. Find the impulse response of the system

y(k + 1)− a y(k) = u(k + 1).

We could find the impulse response by solving the difference equation. It is typically easier, however, to
find the impulse response by computing the inverse z-transform of the transfer function. In this case,
the transfer function is H(E) = E

E−a , so the z-transform of the impulse response is H(z) = z
z−a . Taking

the inverse z-transform gives the impulse response h(k) = ak us(k).

Transfer function of a difference equation

From our previous discussion, we found that the difference equation

y(k + 2) + a y(k + 1) + b y(k) = c u(k + 2) + d u(k + 1) + e u(k)

has the transfer function
H(z) = cz2 + dz + e

z2 + az + b
.

The coefficients on the input signal in the difference equation are the coefficients of the numerator polynomial,
while the coefficients on the output signal in the difference equation are the coefficients of the denominator
polynomial. Therefore, we can construct the transfer function directly from the coefficients of the difference
equation. Conversely, given a transfer function, we can use the coefficients of its numerator and denominator
polynomials to directly write down the corresponding difference equation. This relationship is summarized
as follows.

A discrete-time LTI system described by the nth-order difference equation

y(k) +
n∑
i=1

ai y(k − i) =
m∑
j=0

bj u(k − j)

has transfer function

H(z) =

m∑
j=0

bj z
−j

1 +
n∑
i=1

ai z
−i

Example. The discrete-time LII system described by the difference equation

y(k + 1)− a y(k) = u(k + 1)

has the transfer function (and impulse response)

h(k) = ak us(k) Z←−−→ H(z) = z

z − a
.
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12.4 System response

We have seen that the zero-state response is represented in the frequency domain as Y (z) = H(z)U(z) where
H(z) is the transfer function. But this only describes the part of the response due to the input signal. To find
the complete response (including the part due to the initial conditions), we can use the following procedure.

To find the total response of an LTI system using the z-transform,
a) take the z-transform of the difference equation using the advance/delay properties of the z-transform

b) solve for Y (z)

c) compute the inverse z-transform to obtain the response y(k)
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Example. Solve the difference equation

y(k + 1)− 0.2 y(k) = u(k + 1)

with initial condition y(0) = 5 and input signal u(k) = us(k).

Recall the advance property of the z-transform,

y(k + 1) Z←−−→ z Y (z)− z y(0).

Taking the z-transform of the difference equation and using this property twice, we have that

z Y (z)− z y(0)− 0.2Y (z) = z U(z)− z u(0).

Solving for the response gives

Y (z) = z

z − 0.2
(
U(z)− u(0)

)
︸ ︷︷ ︸

zero-state response

+ z y(0)
z − 0.2︸ ︷︷ ︸

zero-input response

The first term is the zero-state response, which is zero when the initial condition is zero, and the second
term is the zero-input response which is zero when the input is zero. It is not necessary to separate the
terms like this; we only did it here to illustrate the different components of the response. This form also
highlights the transfer function which is the term that multiplies U(z), so H(z) = z

z−0.2 . From this, we
can tell that the impulse response is h(k) = (0.2)k us(k), the system has a zero at z = 0 and a pole at
z = 0.2, and the system is stable.

Returning to solving the difference equation, let’s substitute in values. Since the input is a unit step,
its z-transform is U(z) = z

z−1 . Substituting this and the initial values u(0) = 1 and y(0) = 5,

Y (z) = z2

(z − 1)(z − 0.2) + 4z
z − 0.2

While we could combine these, it is simpler to just find the partial fraction expansion of the first term
since the second term is already of a form in the table. The partial fraction expansion is

Y (z) = 5
4

z

z − 1 −
1
4

z

z − 0.2 + 4z
z − 0.2 .

Therefore, the solution to the difference equation is

y(k) = 5
4 + 15

4 (0.2)k for k ≥ 0
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Example. Solve the difference equation

y(k + 1)− 0.3 y(k) = u(k)

with initial condition y(0) = 0 and input signal u(k) = 3 (2)k us(k).

Taking the z-transform of the difference equation and using the advance property, we have[
z Y (z)− z y(0)

]
− 0.3Y (z) = 3z

z − 2

Since the initial condition is zero, the output is

Y (z) = 3z
(z − 0.3)(z − 2) = Az

z − 0.3 + Bz

z − 2 + C

where the right-hand side is a partial fraction expansion.
• To find the coefficient A, multiply by z − 0.3 and then set z = 0.3.

(z − 0.3)Y (z)
∣∣∣
z=0.3

= 0.3A = 0.9
−1.7 =⇒ A = − 3

1.7

• To find the coefficient B, multiply by z − 2 and then set z = 2.

(z − 2)Y (z)
∣∣∣
z=2

= 2B = 6
1.7 =⇒ B = 3

1.7

• To find the coefficient C, set z = 0 to obtain C = 0.
Therefore, the partial fraction expansion is

Y (z) = 3
1.7

(
z

z − 2 −
z

z − 0.3

)
Then using the table of z-transforms, the inverse z-transform is

y(k) = 3
1.7

(
2k − (0.3)k

)
for k ≥ 0
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Example. Solve the difference equation

y(k + 2)− 3 y(k + 1) + 2 y(k) = u(k)

with initial condition y(0) = 1 and y(1) = 1 and input signal u(k) = (2k + 3k)us(k).

Taking the z-transform of the difference equation and using the advance property, we have[
z2 Y (z)− z2 y(0)− z y(1)

]
− 3

[
z Y (z)− z y(0)

]
+ 2Y (z) = z

z − 2 + z

z − 3

Substituting the initial condition, we have

(z − 1)(z − 2)Y (z) = z

z − 2 + z

z − 3 + z (z − 2)

Solving for the output,

Y (z) = z

(z − 1)(z − 2)2 + z

(z − 1)(z − 2)(z − 3) + z

z − 1

We could get a common denominator to write Y (z) as a rational function of z, but this is unecessary
and leads to a complicated expression. Instead, let’s just use this expression to find the partial fraction
expansion.

Y (z) = Az

z − 1 + Bz

z − 2 + Cz

(z − 2)2 + Dz

z − 3 + E

• To find the coefficient A, multiply by z − 1 and then set z = 1.

(z − 1)Y (z)
∣∣∣
z=1

= A = 1 + 1
2 + 1 =⇒ A = 5

2

• To find the coefficient C, multiply by (z − 2)2 and then set z = 2.

(z − 2)2 Y (z)
∣∣∣
z=2

= 2C = 2 =⇒ C = 1

• To find the coefficient D, multiply by z − 3 and then set z = 3.

(z − 3)Y (z)
∣∣∣
z=3

= 3D = 3
2 =⇒ D = 1

2

• To find the coefficient E, set z = 0 to obtain E = 0.

• To find the coefficient B, set z = −1 to obtain

Y (−1) = A

2 + B

3 −
C

9 + D

4 + E

Substituting the values for A, C, D, and E, we find that B = −2.
Therefore, the partial fraction expansion is

Y (z) =
5
2z

z − 1 −
2z
z − 2 + z

(z − 2)2 +
1
2z

z − 3

Then using the table of z-transforms, the inverse z-transform is

y(k) = 5
2 − 2 (2)k + k (2)k+1 + 1

2(3)k for k ≥ 0
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12.5 Frequency response

The frequency response of a stable LTI system characterizes how the system acts on individual frequencies.
The frequency response is based on the fact that, for stable LTI systems, sinusoid inputs produce sinusoid
outputs.

H

H

H

The output sinusoid has the same frequency, but it may be shifted in time and/or scaled in magnitude.

Definition. For a stable LTI system, the frequency response is the amount that the system scales and
shifts sinusoidal input signals.

cos(kθ)
Stable LTI
system

M cos(kθ + ϕ)

For each frequency θ, the frequency response magnitude M is the amount that the sinusoid is scaled,
and the frequency response phase ϕ is the amount that it is shifted.

We can find the frequency response in terms of the transfer function H(z). First, decompose the sinusoidal
input as a sum of complex exponentials,

u(k) = cos(kθ) = ejkθ + e−jkθ

2

Recall that H(z) is the amount that the system scales the complex exponential zk. Since the system is
linear, a weighted sum of inputs produces the same weighted sum of the corresponding outputs. Therefore,
the output due to the sinusoid is

y(k) = H(ejθ) ejkθ +H(e−jθ) e−jkθ

2

The second term is the complex conjugate of the first. Since the sum of a complex number and its conjugate
is twice its real part (that is, (a+ jb) + (a− jb) = 2a), we have that

y(k) = Re[H(ejθ) ejkθ]

Let M be the magnitude and ϕ the phase of the transfer function evaluated on the unit circle at an angle θ
so that H(ejθ) = M ejϕ. Then

y(k) = Re[M ej(kθ+ϕ)]
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Applying Euler’s formula to the complex exponential and then taking the real part,

y(k) = M cos(kθ + ϕ)

Since M and ϕ were the magnitude and phase of the transfer function evaluated on the unit circle at an
angle θ, we have the following.

For a stable discrete-time LTI system, the frequency response is the transfer function evaluated on the
unit circle in the complex plane:

Frequency response at θ = H(ejθ)

The magnitude M = |H(ejθ)| is how much the system scales a sinusoid with frequency θ, and the phase
ϕ = ∠H(ejθ) is how much the system shifts the sinuoid.

Plotting the frequency response

We can visualize the frequency response by plotting the magnitude and phase as a function of the input
frequency.

Example. The frequency response of the LTI system with transfer function H(z) = (z+1)(z2+1)
z3 is as

follows.
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Comments

• The frequency response is periodic with period 2π since

H(ej(θ+2π)) = H(ejθ)

• The frequency response is conjugate symmetric (meaning the magnitude is even and the phase is odd)
since

H(ejθ) = M e−jϕ = H(e−jθ)

• Combining these facts, the frequency response is completely specified by its magnitude and phase on
the interval [0, π]. We therefore typically plot the magnitude M and phase ϕ as functions of θ in the
interval [0, π].

Example. Going back to the previous example, the frequency response over the interval [0, π] is as
follows.

0 20 40 60 80 100 120 140 160 180

0
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0

45

Frequency response from pole-zero plot

The frequency response can be evaluated geometrically (up to a constant) from the pole-zero plot of the
transfer function. This provides insight into how the poles and zeros of the transfer function affect the
frequency response and is particularly useful for studying frequency-selective filters.

Consider a discrete-time LTI system with transfer function

H(z) = z − a
(z − b)(z − c)
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where a is real and b and c are complex conjugates. The pole-zero plot of the transfer function is as follows.

1
◦

×

×

a

b

c

ejθ

θ
Re(z)

Im(z)

The complex exponential ejθ is on the unit circle with an angle of θ with the positive real axis. Let d1, d2,
and d3 denote the distances from each of the poles and zeros to the complex exponential as shown below.
The magnitude of the frequency response at the angle θ is then

|H(ejθ) = |ejθ − a|
|ejθ − b| |ejθ − c|

= d1

d2 d3

1
◦

×

×

a

b

c

ejθ

d1

d2

d3
Re(z)

Im(z)

Similarly, let ϕ1, ϕ2, and ϕ3 denote the angles from each of the poles and zeros to the complex exponential
as shown below. The phase of the frequency response at the angle θ is then

∠H(ejθ) = ∠(ejθ − a)− ∠(ejθ − b)− ∠(ejθ − c) = ϕ1 − ϕ2 − ϕ3
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1
◦

×

×

a

b

c

ejθ

Re(z)

Im(z)

ϕ1

ϕ2

ϕ3

The frequency response can be found (up to a constant) from the poles and zeros of the transfer function
as follows.

|H(ejθ)| = K · product of distances to zeros
product of distances to poles

and
∠H(ejθ) = sum of angles to zeros− sum of angles to poles

Based on this geometric interpretation of the frequency response, we make the following observations.

Observation 1. A zero near the unit circle produces a “low spot” (notch) in the frequency response mag-
nitude.

The time-domain interpretation of this is that the zero near the unit circle approximately cancels inputs at
that frequency, that is, N(E) cos(kθ) ≈ 0 for θ near the zero, so the input produces a small output.

Example. Consider the system with transfer function H(z) = z−1
z−0.5 . The input corresponding to the

zero at z = 1 is a constant, such as us(k) which has z-transform U(z) = z
z−1 . The difference equation

for this system is
y(k + 1) = 0.5 y(k) + u(k + 1)− u(k)

Iterating the difference equation,

y(0) = 0 + 1− 0 = 1
y(1) = 0.5 + 1− 1 = 0.5
y(2) = 0.25 + 1− 1 = 0.25

...

where the input terms cancel due to the zero at z = 1.

Observation 2. A pole near the unit circle produces a “high spot” (peak) in the frequency response mag-
nitude.

The time-domain interpretation of this is that the input resonates with the pole near the unit circle to
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amplify the output at that frequency.

Example. Consider the system with transfer function H(z) = z
z+1 . The input corresponding to the

pole at z = −1 is u(k) = (−1)k us(k) which has z-transform U(z) = z
z+1 . The difference equation for

this system is
y(k + 1) = −y(k) + u(k + 1)

Iterating the difference equation,

y(0) = 0 + 1 = 1
y(1) = −1− 1 = −2
y(2) = 2 + 1 = 3
y(3) = −3− 1 = −4

...

The output grows unbounded due to the pole at z = −1.

Bode plot

A Bode plot is a particular way of plotting the frequency response.
• The magnitude is plotted on a logarithmic scale in units of decibels.

• The angle is plotted on a linear scale.

• The frequency ω = θ/T is plotted on a logarithmic scale, where T is the sampling period.
A decibel is a unit of measure that is often used to measure the intensity of sound. Decibels use a logarithmic
scale that is useful in analyzing signals over a wide range of amplitudes, from very small (such as 10−9) to
very large (such as 109).

A unitless gain G is equivalent to g = 20 log10 G decibels, or equivalently, a gain of g decibels is . Some
common gains and their corresponding value in decibels are shown below.

Gain (unitless) Decibels
100 40 dB
10 20 dB
1 0 dB

0.7079 -3 dB
0.1 -20 dB
0.01 -40 dB
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Filters

Filtering is the process of changing relative amplitudes of the frequency components of a signal. A common
application of filtering is in audio systems, where we may want to adjust the energy at low frequencies
(bass) and high frequencies (treble). When playing music through speakers, for instance, we may want to
apply an equalizing filter to compensate for the frequency response of the speakers, or we may want to use a
lowpass filter to remove high-frequency noise. Frequency-selective filters are designed to select some bands of
frequencies and reject others. In this chapter, we study the main types of frequency-selective filters: lowpass,
highpass, bandpass, and bandstop filters. We will also see why it is not possible (and often not desireable)
to implement an ideal frequency-selective filter.

13.1 Lowpass filter

A lowpass filter is a frequency-selective filter that passes low frequencies and blocks high frequencies. The
magnitude of the frequency response for a lowpass filter looks like the following:

θc

1

pass band stop band

θ = ωTs

∣∣H
(
ejθ

)∣∣

Low frequencies in the pass band are scaled by approximately one and therefore have approximately the
same magnitude after filtering. High frequencies in the stop band are scaled by a number close to zero and
therefore are attenuated (or reduced) after filtering. The cutoff frequency is the (approximate) frequency
that separates the pass band and stop band.
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Example (First-order lowpass filter). A simple first-order lowpass filter has the transfer function

H(z) = K
z

z − a

which has a zero at the origin and a pole at the parameter a. The pole-zero plot of the transfer function
is as follows:

1
×◦ Re(z)

Im(z)

From our intuition about the shape of the frequency response from the locations of the poles and zeros,
we should have 0 < a < 1 for this to be a lowpass filter. The closer a is to one the lower the cutoff
frequency will be, and the magnitude of the frequency response will be the largest at θ = 0. Therefore,
let’s choose the gain K such that the magnitude of the frequency response is one for a constant input
(that is, zero frequency). The magnitude of the frequency response at θ = 0 is

|H(ej0)| = |H(1)| = K

1− a

Therefore, we choose K = 1− a. The lowpass filter is then

H(z) = (1− a)z
z − a

which corresponds to the recursion

y(k + 1) = a y(k) + (1− a)u(k + 1)

The output is a weighted difference of the current input with the previous output, where the weights
are positive and sum to one. In the extreme cases, when a = 0 the filter passes everything (the output
is equal to the input), and when a = 1 the filter rejects everything (the output is constant).

13.2 Highpass filter

A highpass filter is a frequency-selective filter that passes high frequencies and blocks low frequencies (the
opposite of a lowpass filter). The magnitude of the frequency response for a highpass filter looks like the
following:
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θc

1

stop band pass band

θ = ωTs

∣∣H
(
ejθ

)∣∣

Just like a lowpass filter, a highpass filter also has a pass band, stop band, and cutoff frequency. The only
difference is that the pass band consists of all frequencies above the cutoff frequency while the stop band
consists of all frequencies below the cutoff frequency.

Example (First-order highpass filter). A simple first-order highpass filter has the transfer function

H(z) = K
z − a
z

where the parameter a of the zero satisfies 0 < a ≤ 1. The pole-zero plot of the transfer function is as
follows:

1
×◦ Re(z)

Im(z)

The magnitude of the frequency response is largest when θ = π, so let’s choose the gain K to be unity
at this frequency. Then

1 = |H(ejπ)| = |H(−1)| = K (1 + a)

which implies that K = 1
1+a . The corresponding difference equation is

y(k + 1) = 1
1 + a

(
u(k + 1)− a u(k)

)
Note that this is an FIR filter since all poles of the transfer function are at zero and the difference
equation has no feedback! The output is a weighted difference of the two previous inputs, where the
weights are positive and sum to one. When a = 1, the output is simply y(k + 1) = 1

2u(k + 1)− 1
2u(k).

This is called the backward difference of the input signal and is an approximation to the derivative.

13.3 Bandpass filter

A bandpass filter is a frequency-selective filter that passes an interval of frequencies [θc1, θc2] and blocks both
higher and lower frequencies. The magnitude of the frequency response for a bandpass filter looks like the
following:
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θc1 θc2

1

stop band stop bandpass band

θ = ωTs

∣∣H
(
ejθ

)∣∣

Example (Second-order bandpass filter). While we have seen first-order highpass and lowpass filters, a
bandpass filter must have degree at least two. A simple bandpass filter has the transfer function

H(z) = K
z2 − 1

z2 − 2r cos(ϕ)z + r2

with parameters r and ϕ. The zeros are at ±1, and the poles are complex conjugates at r exp(±jϕ).
The pole-zero plot is as follows:

1
◦◦

×

×

ϕ
Re(z)

Im(z)

The poles near the unit circle cause a peak in the magnitude of the frequency response at that angle, so
the passband of the filter is centered about ϕ. As r approaches one, the poles approach the unit circle
which causes the peak in the magnitude of the frequency response to increase.

To design the gain, we may choose K such that the peak of the magnitude of the frequency response is
one. Since this occurs at θ = ejϕ, we choose K such that |H(ejϕ)| = 1.

13.4 Bandstop filter

A bandstop filter is a frequency-selective filter that attenuates an interval of frequencies [θc1, θc2] and passes
both higher and lower frequencies. The magnitude of the frequency response for a bandstop filter looks like
the following:
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θc1 θc2

1

pass band pass bandstop band

θ = ωTs

∣∣H
(
ejθ

)∣∣

Example (Second-order bandstop filter). A simple bandstop filter has the transfer function

H(z) = K
z2 − 2 cos(ϕ)z + 1
z2 − 2r cos(ϕ)z + r2

with parameters r and ϕ. The zeros are complex conjugates on the unit circle at exp(±jϕ), and the
poles are complex conjugates at r exp(±jϕ). The pole-zero plot is as follows:

1

◦

◦

×

×

ϕ
Re(z)

Im(z)

The zero on the unit circle cause a low spot in the magnitude of the frequency response at that angle,
so the stopband of the filter is centered about ϕ. As r approaches one, the poles approach the zeros on
the unit circle which causes the width of the stop band to narrow.

To design the gain, we may choose K such that the magnitude of the frequency response is one at zero
frequency, so |H(1)| = 1.

13.5 Ideal filters

You may wonder, why not use an ideal frequency-selective filter? An ideal lowpass filter with cutoff frequency
θc has the frequency response

H
(
ejθ
)

=
{

1 if 0 ≤ θ ≤ θc
0 otherwise

The ideal filter exactly passes low frequencies and completely blocks high frequencies. But if we compute
the inverse z-transform of the ideal filter, we get the following impulse response.
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θ

∣∣H
(
ejθ

)∣∣

k

h(k)

The impulse response is not zero for negative times, so the filter is noncausal and therefore cannot be
implemented in real time. However, we typically do not actually want an ideal filter anyway, since the cutoff
frequency is often an estimate of the separation between the signal and the noise, with some parts of the
noise below this frequency and some parts of the signal above this frequency.

Example (Ideal lowpass filter). Consider the ideal lowpass filter with cutoff frequency θc,

H
(
ejθ
)

=
{

1 if 0 ≤ θ ≤ θc,
0 otherwise.

The inverse discrete-time Fourier transform is

h(k) = 1
2π

∫
2π
H
(
ejθ
)
ejθk dθ = 1

2π

∫ θc

−θc

ejθk dθ.

Evaluating the integral yields the impulse response

h(k) = 1
2πjk

(
ejkθc − e−jkθc

)
= sin(kθc)

πk
.

This is called a sinc function, which is a sinusoid that decays to zero both as k → +∞ and as k → −∞.
In particular, the impulse response is nonzero for k < 0, so the filter is noncausal and therefore not
implementable.

13.6 More advanced filters

In this brief introduction to frequency selective filters, we only considered the most basic filter configurations.
Using our intuition about the shape of the frequency response in terms of the poles and zeros of the transfer
function, however, we could easily construct more sophisticated higher-order filters. Some examples of
highpass filters are as follows:

137



ECE 306: Signals and Systems 13 - Filters

138



14

BIBO Stability

Stability is a fundamental concept in the study of dynamical systems that describes the behavior of the
system trajectories over time. A system is said to be stable if its trajectories remain bounded or converge
to a fixed point as time progresses. This means that small perturbations or disturbances to the system do
not cause its behavior to change drastically. Stability is particularly important in the field of control, where
it ensures that a controlled system behaves predictably and does not exhibit undesirable behavior.

14.1 Overview

There are many ways to characterize stability of a dynamical system. For instance, we may describe stability
in terms of properties of the output signal in relation to the input signal, which is called external stability.
Alternatively, we could describe stability in terms of all signals internal to the system, which is called internal
stability.

Here, we focus on external (or input-output) stability, which means that the output of a system is “small”
whenever the input is “small”. There are many ways of characterizing external stability depending on how
we measure the size of a signal (what does it mean for a signal to be small?). For LTI systems, however, all
notions of stability are equivalent.

Example (Stability examples).
• For a chair in which the inputs are applied forces and the outputs are its position, we want the

system to be stable in that small forces to result in the chair falling over.

• Positive feedback in an audio system is an example of undesirable unstable system. Here, a small
sound into the microphone gets amplified by the speaker, which then is picked up by the microphone
and amplified, over and over again, resulting in loud piercing noises that hurt our ears.

• A system that is purposefully unstable is a fighter jet. Pilots need to be able to perform fast
maneuvers, so the dynamics of the aircraft are intentionally designed to be unstable. These unstable
dynamics are then stabilized by a control system so that the aircraft can fly (otherwise, the pilot
would be unable to control the aircraft!).

• A passenger airline, on the other hand, is intentionally very stable so that even large disturbances
(such as turbulence or losing an engine) do not result in drastic changes in flight.
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Definition (Bounded signal). A signal y(k) is bounded if there exists a constant M > 0 such that

|y(k)| < M for all k.

k

Bounded

k

Unbounded

Remark. A discrete-time signal can be unbounded only if its magnitude grows without bound as k →∞, it
cannot be unbounded “in the middle” (at finite times). Continuous-time signals, however, can be unbounded
at finite times (if it has a vertical asymptote).

Definition (BIBO stability). A system is bounded-input bounded output (BIBO) stable if the output signal
is bounded whenever the input signal is bounded.

stable
system

bounded input bounded output

Remark. For BIBO stability, the bounds on the input and output signals can be different. For instance, if
the output signal is bounded by 100 whenever the input signal is bounded by 1, the system is still BIBO
stable.

Example (Using the definition). One way to determine stability of a system is to directly apply the
definition. Consider the system

y(k) = 3 sin(k + 2)u(k − 3)

If the input is bounded, then there exists a constant M such that |u(k)| < M for all k, which implies
that

|y(k)| = 3 | sin(k + 2)| |u(k − 3)| < 3M,

so the output is also bounded. Therefore, the system is BIBO stable.
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14.2 Characterization using the characteristic polynomial

A discrete-time system is BIBO stable if and only if all roots of the characteristic polynomial D(E) have
magnitude strictly less than one.

• Case 1: if all roots of D(E) lie strictly within (not on) the unit circle, then the system is stable by any
definition

1
××

×
×

- the homogeneous solution consists of decaying exponen-
tials and/or decaying sinusoids

- the particular solution has the same form as the input, so
it is bounded if the input is bounded

• Case 2: if any root of D(E) is outside the unit circle, then the system is unstable by any definition

1
××

×

×
1

×

×
× ×or

• Case 3: if any root of D(E) is on the unit circle, then the system is not BIBO stable (this is sometimes
called marginally stable)

1
××

×

×

- the homogeneous solution is constant or sinusoidal and
therefore bounded

- if the input has the same form as the homogeneous solu-
tion, then the particular solution will be multiplied by a
factor of k, which will be unbounded (resonance)

Example (Using the poles). Consider the system described by the difference equation

y(k + 1) = 2.5y(k)− y(k − 1) + 3u(k)− u(k − 1)

The transfer function of the system is

H(z) = 3z − 1
z2 − 2.5z + 1 = 3z − 1

(z − 0.5)(z − 2)

The transfer function has a pole at z = 2 which is outside the unit circle, so the system is not BIBO
stable.
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Example (Integrator).

y(k + 1) = y(k) + u(k) H(z) = 1
z − 1 h(k) = us(k − 1)

u(k)

1

E

y(k)

−
1

×

Suppose the input signal is a (bounded) unit step. Using convolution or the z-transform, the output is

y(k) = k us(k)

which is unbounded, so the system is not BIBO stable.

14.3 Characterization using the impulse response

A system is BIBO stable if and only if its impulse response is absolutely summable.
∞∑

k=−∞

|h(k)| finite

The argument is as follows. Suppose the input is bounded. Then there exists a constant M > 0 such that
|u(k)| < M for all k. The output is then the convolution of the input signal with the impulse response.
Using the bound on the input, we can bound the output as

|y(k)| =
∣∣∣∣ ∞∑
m=−∞

h(k −m)u(m)
∣∣∣∣

≤
∞∑

m=−∞
|h(k −m)u(m)|

=
∞∑

m=−∞
|h(k −m)| · |u(m)|

≤ M

∞∑
m=−∞

|h(k −m)|

= M

∞∑
m=−∞

|h(m)|

So, if the impulse response is absolutely summable, then the output is also bounded and the system is BIBO
stable. Moreover, it can be shown that, if the impulse response is not absolutely summable, then there is a
particular bounded input signal for which the output is unbounded.
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Example (Using the impulse response). Consider the discrete-time LTI system with impulse response

h(k) = (0.5)k us(k)

The summation of the absolute value of the impulse response is
∞∑

k=−∞

|h(k)| =
∞∑
k=0

(0.5)k = 1
1− 0.5 = 2

which is finite, so the system is BIBO stable.

Example (FIR system). Recall that a finite-impulse response (FIR) system has an impulse response that
is only nonzero for a finite amount of time. The transfer function of an FIR system has all poles at the
origin (z = 0).

u(k)
1

E

1

E
3

2

y(k)

• the impulse response is absolutely summable

h(k) = {2, 1, 3, 0, 0, 0, . . .}

• the characteristic polynomial has all roots at the origin

H(E) = 2 + 1
E

+ 3
E2 = 2E2 + E + 3

E2

The impulse response of an FIR system is always absolutely summable (since it has finite duration),
and all poles are strictly inside the unit circle in the complex plane (since they are all at z = 0), so FIR
systems are always BIBO stable.
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Continuous-Time LTI Systems

We have focused our study so far on discrete-time signals and systems. Many of the same tools and concepts
apply to continuous-time systems as well, with a few notable excepts. We now briefly discuss continuous-time
LTI systems and emphasize the differences with discrete time.

15.1 Differential equations

Every causal finite-dimensional continuous-time LTI system can be represented by a differential equation
of the following form:

n∑
i=0

ai

(
d
dt

)i
y(t) =

m∑
j=0

bj

(
d
dt

)j
u(t)

where
• u(t) is the input signal

• y(t) is the output signal

• n is the order of the system (assuming an ̸= 0)

• ai and bi are constant parameters
Conversely, every differential equation of this form represents a causal finite-dimensional continuous-time
LTI system.

15.2 Impulse signal, impulse response, and convolution

Recall that we defined the discrete-time impulse signal as

δ(k) =
{

1 if k = 0
0 otherwise

However, we did not define a continuous-time impulse signal δ(t). The reason is that, unlike in discrete time,
the impulse signal in continuous time is quite complicated. In fact, it is not even a function, so we cannot
write a formula for the continuous-time impulse signal as a function of time. As we will see, however, we can
still define a continuous-time impulse signal that will be useful in studying continuous-time LTI systems.
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To motivate the continuous-time impulse signal, let’s first consider the impulse response, which is the output
of the system when the input is an impulse and the initial conditions are zero (that is, the zero-state response).
Then we can describe every zero-state response of the system through convolution with the impulse response
just as in discrete time.

Impulse response

The impulse response is the response of the system due to an impulse input when the initial conditions are
zero:

We have not yet defined what the continuous-time impulse signal is, but we draw it as an arrow at time
t = 0. If the system is time invariant, then shifting the input signal in time also shifts the output signal by
the same amount of time, so

δ(t− τ) → h(t− τ)
for any time shift τ . If the system is linear, then a weighted sum of inputs produces the same weighted sum
of the corresponding outputs. For each τ , we will weight the input by u(τ) for some arbitrary signal u. Then
summing over all τ results in∫ ∞

−∞
u(τ) δ(t− τ) dτ →

∫ ∞

−∞
u(τ)h(t− τ) dτ

This argument is similar to what we saw in discrete time, where we had
∞∑

m=−∞
u(m) δ(k −m) →

∞∑
m=−∞

u(m)h(k −m)

The term on the left is an infinite sum, where each term in the summation is a shifted and scaled impulse,
which is nonzero at only a single point in time (that is, when k = m). We plotted each of these terms to
conclude that the left-hand side is simply u(k), which is an arbitrary input signal. We then defined the
right-hand side to be the convolution of the input signal with the impulse response.

Impulse signal

We would like to make the same argument in continuous time. To do so, we need the impulse signal to
satisfy

u(t) =
∫ ∞

−∞
u(τ) δ(t− τ) dτ

for any signal u(t). The intuitive solution is to set δ(t) to be the same as the discrete-time impulse, but
then the term inside the integral is zero everywhere except for at a single point which has no area so its
integral is zero. In fact, there is no such function that satisfies this equation! We need a function that is
zero everywhere except for a spike at t = τ that has unit area so that the integral is nonzero. While such a
function does not exist, we can approximate the impulse signal as a pulse that has width ε and height 1/ε
centered about the origin.
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The continuous-time impulse signal can then be defined as the limit of this signal as ε→ 0.

Definition (Continuous-time impulse signal). The continuous-time impulse signal, denoted δ(t), is the
limit as ε→ 0 of the pulse centered about t = 0 with width ε and height 1/ε,

δ(t) = lim
ε→0

δε(t).

This is also known as the Dirac delta function.

The continuous-time impulse signal is not a function, so we cannot write an expression for δ(t) as a function
of t (without using limits). On plots, we represent the continuous-time impulse signal as an arrow whose
height is the area of the impulse. For instance, the impulse signal 2 δ(t− 3) would be an arrow with height
two centered at time t = 3.

As we have seen, the output of the system is an integral that depends on the input signal and the impulse
response. We define this as the convolution of the two signals.

Definition (Continuous-time convolution). The convolution of two continuous-time signals h(t) and u(t)
is another signal, denoted h ∗ u, whose value at time t is the integral

(h ∗ u)(t) =
∫ ∞

−∞
h(t− τ)u(τ) dτ.

Note that we cannot actually put an impulse into a system since it has infinite energy. We can, however,
approximate the impulse response by putting its approximation into the system for small ε.

From this definition of the continuous-time impulse signal as the limit of its approximation, we have that the
above equation is satisfied for any signal u(t). This is known as the sifting property of the impulse signal.

Fact (Sifting property). The continuous-time impulse signal is the identity signal for convolution, mean-
ing that convolving it with any signal does not change the signal:

u(t) =
∫ ∞

−∞
δ(t− τ)u(τ) dτ.

Continuous-time impulse and step signals

We can also interpret the impulse as the derivative of the unit step signal, and likewise the step signal is the
integral of the impulse. While the derivative of the continuous-time step signal does not exist in the strict
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sense, it does when we allow for generalized signals such as the impulse.

δ(t) = d
dtus(t) and us(t) =

∫ t

−∞
δ(τ) dτ

The complexity of the continuous-time impulse signal is one of the reasons that we began by studying
discrete-time signals and systems! While the continuous-time impulse signal does not actually exist, we will
use it much like in the discrete-time case to study linear time-invariant systems.

Convolution

Fact (Zero-state response). The zero-state response of an LTI system with impulse response h(t) due to
an input signal u(t) is the convolution

y(t) = (h ∗ u)(t) =
∫ ∞

−∞
h(t− τ)u(τ) dτ.

Similar to discrete time, some properties of convolution are as follows:
• Convolution is commutative, meaning that (h ∗ u)(t) = (u ∗ h)(t).

• The system is causal if and only if the impulse response is zero for negative times, h(t) = 0 for t < 0.

• Convolving an impulse with any signal does not affect the signal, that is, (x ∗ δ)(t) = x(t) for any
signal x(t).
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Example. Find the zero-state response of the continuous-time LTI system with impulse response h(t) =
e−t us(t) due to the input signal u(t) = e−3t us(t).

The zero-state response is the convolution of the input signal with the impulse response,

y(t) = (h ∗ u)(t) =
∫ ∞

−∞
h(t− τ)u(τ) dτ

Substituting the input impulse response signals,

y(t) =
∫ ∞

−∞
e−(t−τ) us(t− τ) e−3τ us(τ) dτ

The unit steps make the integrand zero for τ < 0 and τ > t, and are one for all other times. Therefore,
we can change the limits of integration to obtain

y(t) =
∫ t

0
e−(t−τ) e−3τ dτ

Manipulating the exponentials,

y(t) = e−t
∫ t

0
e−2τ dτ

Now evaluating the integral,

y(t) = e−t[− 1
2e

−2τ ]∣∣t
τ=0 = − 1

2e
−t[e−2t − 1

]
us(t)

where the unit step is due to the fact that the intgral is zero if t < 0. Simplifying, the zero-state response
is

y(t) = 1
2
(
e−t − e−3t)us(t)

which contains terms similar to both the input signal and the impulse response.

15.3 Complex exponentials

A continuous-time complex exponential signal has the form est where s is a complex number. The shape of
the signal depends on the value of the complex number s. To understand the shape of the signal, write the
complex number in rectangular form as s = a+ jb. Then the complex signal is

est = e(a+jb)t = eatejbt = eat
(
cos(bt) + j sin(bt)

)
where we used properties of the exponential and Euler’s formula for complex numbers. This reveals that
a complex number is the product of a (real) exponential signal with the summation of real and imaginary
sinusoidal signals.

est = eat︸︷︷︸
exponential

(
cos(bt) + j sin(bt)

)
︸ ︷︷ ︸

sinusoid

The parameter a is the real part of the complex number s, which determines whether the exponential is
growing, decaying, or constant. The parameter b is the imaginary part of the complex number s, which
determines how fast the real and imaginary parts of the signal are oscillating.
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15.4 Transfer function

Just like in discrete time, complex exponential signals are eigenvectors of LTI systems and can therefore be
used to construct the transfer function, which is how much the system scales a complex exponential.

est → H(s) est

To construct the transfer function, use convolution to find the response due to a complex exponential input
signal. Suppose the system is causal (so the impulse is zero for negative times). If the input is the complex
exponential u(t) = est, then the output is

y(t) = (h ∗ u)(t) =
∫ ∞

0
h(τ) es (t−τ) dτ = est

∫ ∞

0
h(τ) e−sτ dτ

The transfer function H(s) is defined as the amount the system scales the complex exponential est.

H(s) =
∫ ∞

0
h(t) e−st dt

The transfer function H(s) is the Laplace transform of the impulse response h(t).

We can use the transfer function to find the zero-state response due to any input signal. Using convolution,
the Laplace transform of the output due to the input signal u(t) is

Y (s) =
∫ ∞

0
y(t) e−st dt

=
∫ ∞

0

(∫ ∞

0
u(τ)h(t− τ) dτ

)
e−st dt

=
∫ ∞

0

∫ ∞

0
h(t− τ) e−s (t−τ) u(τ) e−sτ dτ dt

=
∫ ∞

0

(∫ ∞

0
h(t− τ) e−s (t−τ)dt

)
︸ ︷︷ ︸

H(s)

u(τ) e−sτ dτ

= H(s)
∫ ∞

0
u(τ) e−sτ dτ

= H(s)U(s)

Therefore, the zero-state response in the frequency domain is simply Y (s) = H(s)U(s).

In the time domain, the zero-state response is the convolution of the input signal with the impulse
response. In the frequency domain, the Laplace transform of the zero-state response is the product of
the transfer function with the Laplace transform of the input signal.

u(t) h(t) y(t) = (h ∗ u)(t)

U(s) H(s) Y (s) = H(s)U(s)

Time domain:

Frequency domain:

L L L
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15.5 Laplace transform

Definition. The Laplace transform of a continuous-time signal x(t) is the complex function

X(s) =
∫ ∞

0
x(t) e−st dt

where s is any complex number for which the integral converges. The values of s for which the integral
converges is the region of convergence (ROC).

• The Laplace transform is the continuous-time equivalent of the z-transform for discrete-time signals.

• We use lowercase letters for time-domain signals such as x(t) and the corresponding uppercase letter
for its Laplace transform such as X(s).

• This is called the unilateral Laplace transform since the integral starts at zero; there is a bilateral version
that integrates over all time.

• The ROC is all values of s to the right of the rightmost pole.

15.6 Stability

For a continuous-time LTI system, the following statements are equivalent:
• The system is BIBO stable.

• The transfer function has all poles in the open left-half plane.

• The impulse response is absolutely integrable.

Re(s)

Im(s)

1
Re(z)

Im(z)

Stable discrete-time LTI systems have poles inside the unit circle, while stable continuous-time LTI systems
have poles in the left-half plane. One significant difference between continuous and discrete time is that the
stability region in continuous time is an unbounded set, while in discrete time the stability region is bounded.
This makes it much easier to design stable systems in continuous time!

15.7 Frequency response

The frequency response of a stable LTI system characterizes how the system acts on individual frequencies.
The frequency response is based on the fact that, for stable LTI systems, sinusoid inputs produce sinusoid
outputs.

151



ECE 306: Signals and Systems 15 - Continuous-Time LTI Systems

H

H

H

The output sinusoid has the same frequency, but it may be shifted and/or scaled.

Definition. For a stable LTI system, the frequency response is the amount that the system scales and
shifts sinusoidal input signals.

cos(ωt)
Stable LTI
system

M cos(ωt+ ϕ)

For each frequency ω, the frequency response magnitude M is the amount that the sinusoid is scaled,
and the frequency response phase ϕ is the amount that it is shifted.

We can find the frequency response in terms of the transfer function H(s). First, decompose the sinusoidal
input as a sum of complex exponentials,

u(t) = cos(ωt) = ejωt + e−jωt

2
Recall that H(s) is the amount that the system scales the complex exponential est. Since the system is
linear, a weighted sum of inputs produces the same weighted sum of the corresponding outputs. Therefore,
the output due to the sinusoid is

y(t) = H(jω) ejωt +H(−jω) e−jωt

2
The second term is the complex conjugate of the first. Since the sum of a complex number and its conjugate
is twice its real part (that is, (a+ jb) + (a− jb) = 2a), we have that

y(t) = Re[H(jω) ejωt]

Let M be the magnitude and ϕ the phase of the complex number H(jω). Then

y(t) = Re[M ej(ωt+ϕ)]

Applying Euler’s formula to the complex exponential and then taking the real part,

y(t) = M cos(ωt+ ϕ)

We summarize this result as follows.

For a stable continuous-time LTI system, the frequency response is the transfer function evaluated on
the imaginary axis in the complex plane, which is the complex function of ω given by

H(jω) = M ejϕ where M = |H(jω)| and ϕ = ∠H(jω)
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15.8 Fourier transform

The frequency response is the transfer function evaluated on the imaginary axis, where the transfer function
is the Laplace transform of the impulse response. This is called the Fourier tranform.

Definition. The Fourier transform of a continuous-time signal x(t) is the complex function

X(jω) =
∫ ∞

−∞
x(t) e−jωt dt

if the integral exists. The inverse Fourier transform is

x(t) = 1
2π

∫ ∞

−∞
X(jω) ejωt dt

• The quantity |X(jω)| is the amount of frequency ω that is in the signal x(t).

• For signals that start at time zero (x(t) = 0 for t < 0), the Fourier transform is the Laplace transform
evaluated on the imaginary axis.

X(jω) = X(s)
∣∣∣
s=jω

• The Fourier transform exists if the imaginary axis is in the region of convergence of the Laplace trans-
form.

• While the formula for the inverse Laplace transform requires complex integration, the inverse Fourier
transform is a much simpler integral that is quite similar to the Fourier transform itself.

• Parseval’s theorem states that the energy of the signal is the same in both the time domain and frequency
domain. ∫ ∞

−∞
|x(t)|2 dt = 1

2π

∫ ∞

−∞
|X(jω)|2 dω

• For a stable continuous-time LTI system, the frequency response is the Fourier transform of the impulse
response.

15.9 Example: RC circuit

We now use a simple RC circuit to illustrate many of the concepts from the course.

+
−vs(t)

t = 0

R

+ −
vr(t)

C

+

−
vc(t)i(t)
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Modeling

One way to analyze the circuit is to use Kirchhoff’s laws to write down differential equations that describe
the relationship between the signals in the circuit. From Kirchhoff’s voltage law (KVL), the sum of the
voltages around the loop is zero, so the supplied voltage is equal to the sum of the voltage across the resistor
and the capacitor,

vs(t) = vr(t) + vc(t)

From Kirchhoff’s current law (KCL), the same current flows through the resistor and capacitor,

i(t) = 1
R
vr(t) = C v̇c(t)

where we used the relationship between voltage and current for the resistor and the capacitor. Solving for
the voltage across the resistor in terms of the voltage across the capacitor and substituting into the above
equation yields the relationship

vs(t) = RC v̇c(t) + vc(t)

This is a first-order differential equation that relates the source voltage vs(t) and the capacitor voltage vc(t).
The product τ = RC of the resistance and capacitance is called the time constant since it describes how
quickly the circuit responds to changes in the input signal (as we will see below).

Transfer function

We can find the transfer function from the source voltage to the voltage across the capacitor by taking
the Laplace transform (with zero initial conditions) of the differential equation. In particular, the Laplace
transform X(s) of a signal x(t) satisfies

ẋ(t) L←−−→ sX(s) and ẍ(t) L←−−→ s2X(s)

when x(0) = 0 and ẋ(0) = 0. Taking the Laplace transform of the differential equation and using this
property yields

Vs(s) = (τs+ 1)Vc(s)

where Vs(s) and Vc(s) are the Laplace transforms of the source and capacitor voltages, respectively. Solving
for the ratio of the output to the input yields the transfer function

H(s) = Vc(s)
Vs(s)

= 1
τs+ 1

The transfer function has a single pole at s = −1/τ and no zeros. Since the pole is in the left-half of the
complex plane, the system is stable.

Frequency response

The frequency response describes how the circuit responds to various frequencies in the source voltage. For
continuous-time systems, the frequency response is the transfer function evaluated on the imaginary axis
(that is, s = jω), so the frequency response is

H(jω) = 1
jωτ + 1

The magnitude of the frequency response is

|H(jω)| = 1√
(ωτ)2 + 1
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For constant input signals, the frequency is zero and the corresponding gain is one. For high frequencies, ω
is large and the magnitude of the frequency response is small. Therefore, this system acts as a lowpass filter
that passes low frequencies and attenuates high frequencies. The bode plot of the system is as follows.

Impulse response

Recall that the impulse response is the output of the system due to an impulse input when the system is
initially at rest. Since the transfer function is the Laplace transform of the impulse response, we can take
the inverse Laplace transform of H(s) to obtain the impulse response h(t). For this simple system, we can
find the inverse Laplace transform using a table of Laplace transform pairs to obtain

h(t) = 1
τ
e−t/τ us(t)

which is a decaying exponential. Note that the time constant τ determines how quickly the impulse response
decays, with larger time constants resulting in slower decay.

Step response

Recall that the step response is the output of the system due to a step input when the system is initially at
rest. Now that we have both the impulse response and transfer function, we can find the step response (which
is a particular zero-state response) using either convolution in the time domain or the transfer function in
the frequency domain.

In the time domain, the step response is the convolution of the impulse response with a unit step signal,

y(t) = (h ∗ us)(t) = 1
τ

∫ t

0
e−r/τ dr = −e−r/τ

∣∣∣t
r=0

=
(
1− e−t/τ)us(t)
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which grows exponentially to one (the size of the source voltage).

We can also find the step resonse in the frequency domain. The Laplace transform of the step response is

Y (s) = H(s)Us(s) = 1
τs+ 1

1
s

To find the inverse Laplace transform, we perform a partial fraction expansion using terms that are in the
table,

Y (s) = A

τs+ 1 + B

s

Unlike the partial fraction expansion for the z-transform, we do not include the Laplace variable in the
numerator since the terms in the table are of the form 1/(s+a), and we do not need the constant term when
using this form (you could include it, but it can always be taken as zero). We can solve for the parameters
in the partial fraction expansion just like in the discrete-time case. To find A, multiply by the demoninator
τs + 1 and then set s = −1/τ to obtain A = −τ . Similarly, multiply by s and then set s = 0 to obtain
B = 1. Then using the entries in the table of Laplace transform pairs, the step response is

y(t) =
(
1− e−t/τ)us(t)

which is the same as found using convolution.

Complete response

We can find the response of the system due to both the input signal and initial condition by taking the
Laplace transform of the differential equation. Since the differential equation involves the derivative of the
capacitor voltage, we need the following property of the Laplace transform:

ẋ(t) L←−−→ sX(s)− x(0)

Taking the Laplace transform of the differential equation and using this property, we obtain

Vs(s) = τ [s Vc(s)− vc(0)] + Vc(s)

Solving for the Laplace transform of the capacitor voltage,

Vc(s) = 1
τs+ 1Vs(s)−

τ

τs+ 1vc(0)

The first term is the zero-state response, which is the product of the transfer function with the Laplace
transform of the input signal. The second term is the zero-input response, which depends on the initial
capacitor voltage. Given a particular input signal and initial condition, we can substitute them into this
equation and take the inverse Laplace transform (using a partial fraction expansion) to find the complete
response.

MATLAB code

All of the above analysis can be done easily in MATLAB as follows.

1 tau = R*C; % time constant
2 s = tf('s'); % Laplace variable
3 H = 1/( tau*s + 1); % transfer function
4 bode(H); % bode plot
5 impulse (H); % impulse response
6 step(H); % step response
7 lsim(H,u,t,x0); % total response due to input u(t) with initial condition x0
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A

Complex Numbers

Complex numbers are are fundamental tool used to study signals and systems, and we will use them ex-
tensively throughout this course. While the term imaginary may make them seem less practical than other
numbers, they are no less real than a negative number (such as −2), irrational number (such as π), or even
a natural number (such as 3). Numbers are just mathematical objects that we use to describe the world,
and we will see that they are quite useful for studying signals and systems.

A.1 Motivation

Historically, the development of complex numbers was motivated by the need to solve the cubic equation

x3 + ax+ b = 0

In 1545, the mathematician Cardano found the general solution for x given by

x =
3

√
− b2 +

√
b2

4 + a3

27 +
3

√
− b2 −

√
b2

4 + a3

27

You can substitute this expression into the cubic to verify that it is indeed a solution. For example, a = 6
and b = −20 gives the solution x = 2. But when we try substituting the coefficients a = −15 and b = −4
into the formula, we get an expression that contains the square root of a negative number.

x = 3
√

2 +
√
−121 + 3

√
2−
√
−121

We know how to take the square root of positive numbers: the square root of a positive number y is a number
whose square is y. For instance, the square root of 16 is 4 since 42 = 16. But to interpret the square root of
a negative number, we need to use complex numbers.

Using complex numbers, we have that

(2± j)3 = 2± j11 = 2±
√
−121

which suggests that the cube root of 2 ±
√
−121 is 2 ± j. Substituting this into the expression for x, the

solution to the cubic is simply x = 4, which is a real number! This example illustrates the usefulness of
complex numbers: they enable us to solve real problems that we could not solve before, or to solve them in
a much simpler way.
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A.2 Definition

The imaginary unit is defined as the number j whose square is negative one, that is, j2 = −1.

Notation. Engineers typically use j for the imaginary unit while mathematicians use i.

While no real number satsifies the equation j2 = −1, we define it’s solution to be the imaginary unit j. From
this, it follows that both ±j are square roots of −1.

A.3 Representations

There are several different ways of writing a complex number z.

z = a+ jb︸ ︷︷ ︸
rectangular form

= r ejθ︸︷︷︸
polar form

The constants a, b, r, and θ describe various aspects of the complex number. In rectangular form, a is called
the real part of the complex number while b is called the imaginary part. In polar form, r is called the
magnitude and θ is called the angle (or phase). The constant e is referred to as Euler’s number and is the
irrational number

e = 2.7182818...

The rectangular and polar forms are equivalent in that any complex number can be written uniquely in
either form. For a complex number z, its real and imaginary parts, magnitude, and phase are denoted as
follows.
• Re(z) = a is the real part

• Im(z) = b is the imaginary part

• |z| = r is the magnitude (which is nonnegative)

• ∠z = θ is the angle or phase
Rectangular and polar coordinates are linked through Euler’s equation, which states that

ejθ = cos θ + j sin θ

On the left hand side, ejθ is a complex number in polar form, and on the right-hand side is cos θ + j sin θ,
which is a complex number in rectangular form. Euler’s equation allows us to transform complex numbers
between the two forms. Multiplying both sides by r, we get that a = r cos θ and b = r sin θ. This relates the
real and imaginary parts of the complex number to its magnitude and phase. By inverting this relationship,
we can solve for r and θ in terms of a and b. Doing so yields the following relationships to convert between
the two forms.

Polar to rectangular Rectangular to polar

a = r cos θ r =
√
a2 + b2

b = r sin θ θ = arctan(b/a)
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A.4 Complex plane

It is often useful to visualize complex numbers in the complex plane. The complex plane is a two-dimensional
plane in which the real part of the complex number is plotted on the x-axis and the imaginary part on the
y-axis.

r

z

a

b

θ Re(z)

Im(z)

For a complex number in rectangular form, the coefficients a and b denote the x and y coordinates in the
complex plane. In polar form, the magnitude r is the distance from the origin, and θ is the angle between
the real axis and the line connecting the origin to the complex number.

From this visualization in the complex plane, we can use trigonometry to derive the relationship between
the rectangular and polar forms of a complex number. For instance, since the magnitude r is the hypotenuse
of the triangle with side lengths a and b, we have from Pythagorean’s theorem that r2 = a2 + b2. Similarly,
the tangent of θ is the opposite side length b divided by the adjacent side length a.

A.5 Algebra with complex numbers

We can do algebra with complex numbers, just like with real numbers.
• Addition/subtraction

- rectangular form

z1 + z2 = (a1 + jb1) + (a2 + jb2) = (a1 + a2) + j(b1 + b2)

z1 − z2 = (a1 + jb1)− (a2 + jb2) = (a1 − a2) + j(b1 − b2)

- to add or subtract two complex numbers in polar form, first convert them to rectangular form

• Multiplication/division

- polar form

z1z2 =
(
r1e

jθ1
)(
r2e

jθ2
)

= (r1r2) ej(θ1+θ2)

z1

z2
= r1e

jθ1

r2ejθ2
= r1

r2
ej(θ1−θ2)
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- multiplication in rectangular form (use the fact that j2 = −1)

(a1 + jb1)(a2 + jb2) = a1a2 + j(a1b2 + b1a2) + j2b1b2 = (a1a2 − b1b2) + j(a1b2 + b1a2)

- division in rectangular form (multiply and divide by the the same complex number to make the
denominator real)

a1 + jb1

a2 + jb2
= a1 + jb1

a2 + jb2
· a2 − jb2

a2 − jb2
= (a1a2 + b1b2) + j(b1a2 − a1b2)

a2
2 + b2

2
= a1a2 + b1b2

a2
2 + b2

2
+ j

b1a2 − a1b2

a2
2 + b2

2

Remark (Complex numbers as vectors). Since we can visualize complex numbers in the complex plane, we
can interpret them as two-dimensional real vectors.

a+ jb corresponds to
[
a
b

]
While this is a valid interpretation, it is slightly misleading. The reason is that complex numbers have more
structure than a two-dimensional real vector. In particular, we can multiply and divide any two complex
numbers (as long as the denominator is nonzero for division), while there is no corresponding operation on
vectors (you cannot multiply two vectors to get another vector).

A.6 Trigonometric formulas

Below is a list of some useful trigonometric formulas.

ejθ = cos θ + j sin θ (Euler’s formula)

cos θ = ejθ + e−jθ

2

sin θ = ejθ − e−jθ

j2

ej2πk = 1 k an integer

ejπk = (−1)k =
{

+1 if k even
−1 if k odd

k an integer
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Linear Algebra

Linear algebra is the branch of mathematics concerned with linear equations and linear maps, along with
their representations in vector spaces and through matrices.

a11 x1 + a12 x2 = b1

a21 x1 + a22 x2 = b2
⇐⇒

[
a11 a12
a21 a22

] [
x1
x2

]
=
[
b1
b2

]
⇐⇒ Ax = b

The main mathematical objects in linear algebra are scalars, vectors, and matrices.

B.1 Vector space

A vector space is a set of objects, called vectors, over another set of objects, called scalars, that satisfy
certain properties. For instance, vectors can be added together, and a vector can be scaled (or multiplied)
by a scalar to produce another vector.

Scalars

A scalar is a number, such as 2,
√

5, or π. Scalars may be real numbers or complex numbers. We can do
standard algebraic operations with scalars, such as addition, subtraction, multiplication, and division.

Vectors

A vector is a one-dimensional array of numbers, such as[
1
0

]
,

[√
3
−2

]
, or

1
2
3


The dimension of a vector is its number of elements. For example,

v =
[

3
−2

]
is a two-dimensional vector since it has two elements. In two dimensions, we can visualize a vector as an
arrow extending from the origin to its coordinates in the plane.
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0.5 1 1.5 2 2.5 3

−2

−1.5

−1

−0.5

The inner product of two vectors with the same dimension is the scalar

⟨a, b⟩ =
∑
i

ai bi

For example, 〈1
2
3

 ,
2

0
1

〉 = (1)(2) + (2)(0) + (3)(1) = 5

Two vectors of the same dimension are orthogonal if their inner product is zero, ⟨a, b⟩ = 0. For example,〈[
1
2

]
,

[
4
−2

]〉
= (1)(4) + (2)(−2) = 0

Orthogonality is a generalization of two lines being perpendicular. In two dimensions, vectors are orthogonal
if they are perpendicular to each other.

1 2 3

−2

−1

1

2

The length of a vector is the square root of its inner product with itself.

|a| =
√
⟨a, a⟩

For example, ∣∣∣∣∣∣
1

2
3

∣∣∣∣∣∣ =
√

12 + 22 + 32 =
√

14
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In two dimensions, the length is the standard length of the vector from the origin (this is the Pythagorean
theorem).

Matrices

A matrix is a rectangular array of numbers, such as[
1 0
0 0

]
,

[
−2

√
3

1 5

]
, or

1 2 3
4 5 6
7 8 9


Notation. Matrices are typically denoted by uppercase letters, while their individual elements are repre-
sented by the same lowercase letter. For example, we might write A = [aij ] to denote a matrix A with
elements a11, a12, and so on.

The dimensions of a matrix are the number of rows and columns. For instance, the matrix[
1 0 2
4 3 4

]
has dimensions 2× 3, meaning that it has two rows and three columns.

The transpose of a matrix is denoted AT, and is a matrix with the rows and columns switched. For example,[
1 0 2
4 3 4

]T
=

1 4
0 3
2 4


The matrix has dimensions 2 × 3 while its transpose has dimensions 3 × 2. The first row of the matrix
becomes the first column of its transpose, and so on.

The sum of two matrices of the same dimensions is

A+B = [aij + bij ]

Each element of the sum is the sum of the corresponding elements of the two matrices. For example,[
1 0 2
4 3 4

]
+
[
1 1 0
0 1 0

]
=
[
2 1 2
4 4 4

]

A matrix can be multiplied by a scalar α, which multiplies every element of the matrix by the scalar.

αA = [αaij ]

For example,

3
[
1 0 2
4 3 4

]
=
[

3 0 6
12 9 12

]

Matrix multiplication

Consider a matrix A with dimensions m × n and a matrix B with dimensions p × q. We can multiply A
times B only if n = p, in which case the product is the m× q matrix

C = AB = [cij ] where cij =
n∑
k=1

aik bkj
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For example, [
1 0 2
4 3 4

]1 1
1 0
0 0

 =
[
1 1
7 4

]
Unlike scalar multiplication, matrix multiplication in general is not commutative! So AB ̸= BA. For
example, [

1 1
0 1

] [
1 2
3 4

]
=
[
4 6
3 4

]
̸=

[
1 3
3 7

]
=
[
1 2
3 4

] [
1 1
0 1

]
The product may not even have the same dimensions,

[
1 0 2
4 3 4

]1 1
1 0
0 0

 =
[
1 1
7 4

]
̸=

5 3 7
1 0 2
0 0 0

 =

1 1
1 0
0 0

[1 0 2
4 3 4

]

The product of two matrices may exist when multiplied in one order but not in the other.1 1
1 0
0 0

[1 2
3 4

]
=

4 6
1 2
0 0

 ̸=
[
1 2
3 4

]1 1
1 0
0 0

 does not exist!

Determinant

The determinant of a square matrix is a scalar, denoted det(A). While the precise formula for the determinant
is complicated, for a two-dimensional matrix it is simply the product of the diagonal terms minus the product
of the off-diagonal terms:

det
[
a11 a12
a21 a22

]
= a11 a22 − a12 a21

Special matrices

The identity matrix, typically denoted I, is a square matrix with ones on the diagonal and zeros on the
off-diagonal. For example, the identity matrix in three dimensions is

I =

1 0 0
0 1 0
0 0 1



Inverse

The inverse of a square matrix A is a square matrix A−1 of the same dimensions such that its product with
the original matrix (in any order) is the identity matrix.

AA−1 = A−1A = I

A matrix has an inverse only if its determinant is not zero. For a two-dimensional matrix with nonzero
determinant, its inverse is the two-dimensional matrix[

a11 a12
a21 a22

]−1
= 1

a11 a22 − a12 a21

[
a22 −a12
−a21 a11

]
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B.2 Eigenvalues and eigenvectors

Definition. If multiplying a square matrix A by a nonzero vector x scales the vector by a (possibly
complex) scalar λ, then λ is an eigenvalue of A with eigenvector x. That is, an eigenvalue and eigenvector
satisfy the relationship

Ax = λx.

A pair (λ, x) of an eigenvalue and its corresponding eigenvector is an eigenpair.

Remark (Dimensions). If A has dimensions n×n, then an eigenvector x must have dimension n, and A must
be square so that the vector Ax also has dimension n.

Example. Consider the 2× 2 matrix

A =
[
2 1
0 1

]
One eigenvector and eigenvalue pair is

x =
[
1
0

]
λ = 2

We can directly verify that this satisfies the eigen equation

Ax =
[
2 1
0 1

] [
1
0

]
=
[
2
0

]
= 2

[
1
0

]
= λx

1 2

x

1 2

Ax

Another eigenvector and eigenvalue pair is

x =
[

1
−1

]
λ = 1

1

−1
x

1

−1
Ax

Note that Ax points in the same direction as x and is scaled by λ.
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Example (Differential). Signals are infinite-dimensional vectors, in which case the matrix A can be a
general linear operator. For instance, the differential operator d

dt maps a continuous-time signal to
another continuous-time signal. Moreover, one of the basic results in calculus is that this operation is
linear:

d
dt
(
ax(t) + by(t)

)
= a

d
dtx(t) + b

d
dty(t).

The eigenvectors (also called eigenfunctions) of the differential operator are the exponential signals eλt
with corresponding eigenvalue λ since they satisfy

d
dte

λt = λ eλt.

Note that this is true for any λ, so there are an infinite number of eigenpairs!

Computing eigenvalues

If (λ, x) is an eigenpair of A, then they satisfy (λI−A)x = 0, so the columns of λI−A are linearly dependent,
which implies that its determinant is zero. Therefore, the eigenvalues of A are the solutions to the polynomial
equation

det(λI −A) = 0.

This is called the characteristic equation of A, and the polynomial det(λI−A) is its characteristic polynomial.

Remark (Number of eigenvalues). If A is an n× n matrix, then its characteristic polynomial is a polynomial
in λ of degree n, so it always has exactly n roots (that may be complex and/or repeated).

Example.

A =
[
3 4
2 1

]
The characteristic equation is

0 = det(λI −A) = det
(
λ

[
1 0
0 1

]
−
[
3 4
2 1

])
= det

[
λ− 3 −4
−2 λ− 1

]
= (λ− 3)(λ− 1)− (−4)(−2)
= λ2 − 4λ− 5
= (λ+ 1)(λ− 5)

Therefore, the eigenvalues are −1 and 5.
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Example (complex eigenvalues).

A =
[

0 1
−1 0

]
The characteristic equation is

0 = det(λI −A) = det
[
λ −1
1 λ

]
= λ2 + 1

Therefore, the eigenvalues are ±j. Since the eigenvalues are the roots of a polynomial, they may be
complex.

Computing eigenvectors

Given an n × n matrix A and a (possibly complex) scalar eigenvalue λ, we can find the n-dimensional
eigenvector x associated with the eigenvalue by solving the eigen equation

(λI −A)x = 0
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Example.

A =
[
3 4
2 1

]
=⇒ λ1 = 5, λ2 = −1

For the eigenvalue λ1, we can find the associated eigenvector x1 =
[
a
b

]
by solving the equation

[
0
0

]
=
[
5− 3 −4
−2 5− 1

] [
a
b

]
=
[

2 −4
−2 4

] [
a
b

]
which implies that

0 = 2a− 4b
0 = −2a+ 4b

The second equation is simply the negative of the first equation, so it provides no additional information.
The first equation implies that a = 2b, so the eigenvector is

x1 =
[
2b
b

]
for any b

For the second eigenvalue λ2, the corresponding eigenvector x2 =
[
a
b

]
is the solution to

[
0
0

]
=
[
−1− 3 −4
−2 −1− 1

] [
a
b

]
=
[
−4 −4
−2 −2

] [
a
b

]
The second equation is simply half the first equation, so again it provides no additional information.
The first equation implies that a = −b, so the second eigenvector is

x2 =
[
−b
b

]
for any b

The eigenvectors are not unique since they can be scaled. We usually just pick a convenient scaling.
For instance,

λ1 = 5, x1 =
[
2
1

]
and λ2 = −1, x2 =

[
1
−1

]

B.3 Matrix similarity

The mapping A 7→ T−1AT is called a similarity transformation, and two matrices A and B are similar if
there exists an invertible matrix T such that A = T−1AT , which is denoted A ∼ B.

The following result provides several useful properties of similar matrices.
Proposition (Similar matrices). If A ∼ B, then
a) Ak ∼ Bk for k = 0, 1, 2, . . .

b) eAt ∼ eBt

c) (sI −A)−1 ∼ (sI −B)−1

d) det(sI −A) = det(sI −B)

e) A and B have the same eigenvalues
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Proof. If A and B are similar, then there exists an invertible matrix T such that B = TAT−1.
a) Bk = (TAT−1)(TAT−1) · · · (TAT−1) = TAkT−1 ∼ Ak.

b) eBt =
∑∞
k=0

1
k!B

ktk =
∑∞
k=0

1
k!TA

kT−1tk = TeAtT−1 ∼ eAt

c) (sI −B)−1 = (sI − TAT−1)−1 =
(
T (sI −A)T−1)−1 = T (sI −A)−1T−1 ∼ (sI −A)−1

d) det(sI−B) = det
(
T (sI−A)T−1) = det(T ) det(sI−A) det(T−1) = det(sI−A) det(TT−1) = det(sI−A)

e) This follows from the fact that A and B have the same characteristic polynomials (item (d)).

B.4 Subspace

Definition (Subspace). A subspace S of a vector space V is a subset of V that is itself a vector space.
Equivalently, a subspace S is a subset of V that:
• contains zero: 0 ∈ S

• is closed under addition: if x, y ∈ S, then x+ y ∈ S

• is closed under scalar multiplication: if x ∈ S and a is a scalar, then ax ∈ S

There are four fundamental subspaces associated with a matrix A.

Definition (Fundamental subspaces). The four fundamental subspaces associated with an m × n real
matrix A are the following:

col(A) = {Ax | x ∈ Rn} (column space)

row(A) = {ATy | y ∈ Rm} (row space)

null(A) = {x ∈ Rn | Ax = 0} ((right) null space)

null(AT) = {y ∈ Rm | ATy = 0} (left null space)

The row space and null space are subspaces of Rn, while the column space and left null space are subspaces
of Rm. The interpretations of these subspaces are as follows. The column space is the set of all linear
combinations of the columns of the matrix, while the row space is the set of all linear combinations of its
rows. The right null space is the set of all vectors that are mapped to zero when multiplied by A on the
right, while the left null space is the set of all vectors that are mapped to zero when multiplied by A on the
left.

Another important subspace is the span of a set of vectors.

Definition (Span). The span of a set of vectors is the subspace of all linear combinations of the vectors:

span(x1, x2, . . . , xn) = {a1x1 + . . .+ anxn | a1, . . . , an scalars}.
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Example. Consider the matrix

A =

1 0 2 3
0 1 4 5
0 0 0 0

 .
The column space and left null space are

col(A) = span

1
0
0

 ,
0

1
0

 and null(AT) = span

0
0
1

 ,

and the row space and right null space are

row(A) = span




1
0
2
3

 ,


0
1
4
5


 and null(A) = span



−2
−4
1
0

 ,

−3
−5
0
1


 .

Definition (Subspace dimension). The dimension of a subspace S, denoted dim(S), is the number of
vectors in any basis for that subspace.

If the vectors are linearly independent, then the dimension of their span is the number of vectors.

Definition (Orthogonal complement). The orthogonal complement of a subspace S is the set of vectors
that are orthogonal to all vectors in the subspace:

S⊥ = {v | uTv = 0 for all u ∈ S}.

Fact. The orthogonal complement is an involution, meaning that the orthogonal complement of the
orthogonal complement is the original subspace:

(S⊥)⊥ = S.

Definition (Sum and direct sum of subspaces). The sum of two subspaces U and V is the subspace

U + V = {u+ v | u ∈ U and v ∈ V }.

Moreover, this is called the direct sum, denoted U ⊕ V , when the decomposition is unique.

Fact. The orthogonal complement of the four fundmantal subspaces are as follows:

row(A)⊥ = null(A),
col(A)⊥ = null(AT),

null(A)⊥ = row(A),
null(AT)⊥ = col(A).
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Fact. If V is an inner product space and U is a subspace of V , then V is the direct sum of U and its
orthogonal complement,

U ⊕ U⊥ = V.

In particular, for the four fundamental spaces associated with a matrix A ∈ Rm×n,

row(A)⊕ null(A) = Rn and col(A)⊕ null(AT) = Rm.

B.5 Diagonalization

Suppose (λk, xk) is a set of eigenpairs for k = 1, . . . , n, and define the matrices

X =
[
x1 x2 . . . xn

]
and Λ =


λ1

λ2
. . .

λn

 .
Then, the matrix form of the eigen equation is

AX = A
[
x1 x2 . . . xn

]
=
[
λ1x1 λ2xn . . . λnxn

]
=
[
x1 x2 . . . xn

]

λ1

λ2
. . .

λn


= XΛ.

If all eigenvectors are linearly independent, then the matrix X is invertible, in which case we can solve the
eigen equation for the matrix of eigenvalues as

X−1AX = Λ.

So applying a similarity transformation with the matrix of eigenvectors produces the diagonal matrix of
eigenvalues. In this case, we say that the matrix A is diagonalizable, and the matrix X diagonalizes A.

Definition (Diagonalizable). A matrix is diagonalizable if it is similar to a diagonal matrix.

As we saw above, if the eigenvectors are all linearly independent, then the matrix of eigenvectors is invertible
and diagonalizes the matrix. The following result describes when the eigenvectors are all linearly independent.

Fact. If all eigenvalues are distinct, then all eigenvectors are linearly independent.

This implies that a matrix is diagonalizable when all of its eigenvalues are distinct. But in general, some
eigenvalues may be repeated. The characteristic polynomial then has the form

det(λI −A) = (λ− λ1)n1(λ− λ2)n2 · · · (λ− λd)nd

where n1 + . . .+ nd = n (the size of A) and d is the number of distinct eigenvalues.
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Definition (Eigenspace). The eigenspace associated with a complex number λ is the subspace

Eλ = null(λI −A).

There are several cases for the eigenspace depending on the value of λ.
• If λ is not an eigenvalues, then λI −A is invertible, so the eigenspace is the trivial subspace Eλ = {0}.

• If λ is an eigenvalue, then the eigenspace is the subspace of all the associated eigenvectors.

Definition (Eigenvalue multiplicity). Each complex number λ has two associated multiplicities:
• The algebraic multiplicity of λ is the number of times it is repeated as a root of the characteristic

polynomial (denoted nk).

• The geometric multiplicity of λ is the dimension of its corresponding eigenspace, dim(Eλ), which
is the number of linearly independent eigenvectors with eigenvalue λ.

Fact. The eigenspace satisfies the following:
a) 1 ≤ dim(Eλk

) ≤ nk
b) If xi ∈ Eλi

are eigenvectors in distinct eigenspaces, then {xi} are linearly independent.

Fact. A matrix is diagonalizable if and only if the algebraic multiplicity of each eigenvalue is equal to
its geometric multiplicity:

nk = dim(Eλk
) for all k.

Intuitively, this means that each eigenspace must have “enough” linearly independent eigenvectors.

Example. The matrix

A =
[
1 2
2 1

]
has eigenvalues at 3 and −1 with corresponding eigenspaces

E3 = span
([

1
1

])
and E−1 = span

([
1
−1

])
.

Each eigenspace has dimension one (which is the same as the multiplicity of each eigenvalue), so the
matrix is diagonalizable. To diagonalize the matrix, perform a similarity transformation with the matrix
of eigenvectors:

T =
[
1 1
1 −1

]
with inverse T−1 = 1

2

[
1 1
1 −1

]
.

The diagonal form is then

T−1AT =
[
3 0
0 −1

]
,

which is a diagonal matrix containing all of the eigenvalues on the diagonal.
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Example. The matrix A =
[
0 1
0 0

]
has two eigenvalues at zero, but the corresponding eigenspace is

E0 = span
([

1
0

])
which has dimension one, so the matrix is not diagonalizable.

B.6 Jordan form

While not every matrix is diagonalizable, any square matrix is similar to a matrix in Jordan form, which is
a generalization of a diagonal matrix. The Jordan form of a matrix is a decomposition of the matrix into
simple blocks, which is often useful to understand properties of the matrix. If the matrix is diagonalizable,
then the Jordan form is equivalent to the eigendecomposition of the matrix.

A Jordan matrix is a block-diagonal matrix of the form

J =


Jk1(λ1)

Jk2(λ2)
. . .

Jkd
(λd)


with k1 + k2 + . . .+ kd = n, where each diagonal block Jki(λi) is a Jordan block of the form

Jki
(λi) =



λi 1
λi 1

λi
. . .

. . . 1
λi

 ,

which is a ki × ki matrix where all unspecified entries are zero. Each Jordan block has the form Jki
(λi) =

λiI+N , where N is a matrix of zeros except for ones on the superdiagonal; such a matrix is called nilpotent.
Intuitively, a Jordan matrix is “almost” diagonal.

The Jordan form of a square matrix A is
A = T−1JT

where T is an invertible matrix and J is a Jordan matrix.

Example (Jordan form). Some examples of Jordan forms are as follows:[
−1 −9
1 5

]
︸ ︷︷ ︸

A

=
[

3 5
−1 −2

]
︸ ︷︷ ︸

T−1

[
2 1
0 2

]
︸ ︷︷ ︸

J

[
2 5
−1 −3

]
︸ ︷︷ ︸

T
6 −4 −1 −11 −1

−7 3 1 11 1
−5 1 −2 6 1
7 −4 −1 −12 −1
5 −2 0 −7 −2


︸ ︷︷ ︸

A

=


0 −1 −1 1 1
3 1 2 −1 −1

−2 0 −1 1 −1
−1 −1 −1 1 1
1 0 −2 0 1


︸ ︷︷ ︸

T −1


−1 0 0 0 0
0 −1 1 0 0
0 0 −1 0 0
0 0 0 −2 1
0 0 0 0 −2


︸ ︷︷ ︸

J


1 0 0 −1 0

−9 4 1 12 2
−2 1 0 3 0
−5 3 1 8 1
−5 2 0 7 1


︸ ︷︷ ︸

T
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Fact. The Jordan form of a matrix can be used to determine the multiplicities of its eigenvalues:
a) The algebraic multiplicity of an eigenvalue is the sum of the sizes of all Jordan blocks corresponding

to that eigenvalue.

b) The geometric multiplicity of an eigenvalue is the number of Jordan blocks corresponding to that
eigenvalue.

Therefore, a matrix is diagonalizable if and only if all of its Jordan blocks have dimension one.

B.7 Matrix exponential

Recall that the series expansion for the exponential of a scalar x is

ex =
∞∑
n=0

1
n!x

n = 1 + x+ 1
2x

2 + 1
6x

3 + . . .

In the same way, we define the matrix exponential of a square matrix X in terms of its series expansion,

eX =
∞∑
n=0

1
n!X

n = I +X + 1
2X

2 + 1
6X

3 + . . .

Remark. The matrix exponential is defined by its series expansion, which is not the same as taking the
exponential of each component of the matrix!

Example (diagonal matrix). Consider the diagonal matrix

A =

λ1 0 0
0 λ2 0
0 0 λ3

 .
The powers of this matrix are as follows:

Ak =

λk1 0 0
0 λk2 0
0 0 λk3

 .
Therefore, the matrix exponential is the diagonal matrix whose elements are the (standard) exponentials
of each diagonal element:

eAt =

eλ1t 0 0
0 eλ2t 0
0 0 eλ3t

 .
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Example (nilpotent matrix). Consider the matrix that is all zero except with ones on the superdiagonal:

N =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


The powers of this matrix are as follows:

N2 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , N3 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , and Nn = 0 for all n ≥ 4.

This type of matrix is called nilpotent since it is zero when raised to a high enough power (in this case,
four). Since only a finite number of powers are nonzero, the series expansion is finite.

eNt = I +Nt+ 1
2N

2t2 + 1
6N

3t3 =


1 t 1

2 t
2 1

6 t
3

0 1 t 1
2 t

2

0 0 1 t
0 0 0 1



Properties

The following properties hold for any square matrices A and B, and any scalars t, t1, and t2.

• eAt is the unique matrix satisfying d
dt
(
eAt
)

= AeAt

• eA(t1+t2) = eAt1eAt2

• (
eAt
)−1 = e−At, so the matrix exponential is always invertible

• AeAt = eAtA, so the matrix exponential commutes with the matrix in the exponent

• (
eAt
)T = eA

Tt, so transposing the matrix exponential transposes the matrix in the exponent

• e(A+B)t = eAteBt for all t if and only if A and B commute (that is, AB = BA); this always holds if A
and B are scalars

Laplace transform of the matrix exponential. Recall that the Laplace transform of a scalar exponential
eat is 1

s−a . The Laplace transform of a matrix exponential generalizes as follows:

L(eAt) = (sI −A)−1
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Proof.

L
(
eAt
)

= L
( ∞∑
n=0

1
n!A

ntn

)
(definition of matrix exponential)

=
∞∑
n=0

1
n!A

nL(tn) (linearity of Laplace transform)

=
∞∑
n=0

1
n!A

n n!
sn+1

= s−1
∞∑
n=0

Ans−n

= s−1
∞∑
n=0

(s−1A)n

= s−1(I − s−1A)−1 (geometric series)
= (sI −A)−1

Note that the Laplace transform is only defined in its region of convergence, which are the values of s for
which the geometric series converges.

Computation

To compute the matrix exponential, first transform the matrix to Jordan form

A = T−1JT

where T is invertible and J = diag(J1, J2, . . . , Jm) is a Jordan matrix in which each Ji a Jordan block:

Ji =



λi 1 0 . . . 0 0
0 λi 1 . . . 0 0

0 0 λi
. . . 0 0

...
...

...
. . .

. . .
...

0 0 0 . . . λi 1
0 0 0 . . . 0 λi


Each Jordan block has the form Ji = λiI +N , where N is nilpotent. The powers of the matrix are then

An =
(
T−1JT

)n =
(
T−1JT

)(
T−1JT

)
. . .
(
T−1JT

)︸ ︷︷ ︸
n times

= T−1JnT

So we can raise the matrix A to a power simply by raising its Jordan matrix to the power. The matrix
exponential is then

eAt =
∞∑
n=0

tn

n!A
n =

∞∑
n=0

tn

n!T
−1JnT = T−1

( ∞∑
n=0

tn

n!J
n

)
T = T−1eJtT

The matrix exponential of a block matrix is the block matrix exponentials:

exp
([
A1 0
0 A2

])
=
[
eA1 0
0 eA2

]

177



ECE 306: Signals and Systems B - Linear Algebra

And the matrix exponential of a single Jordan block is simple:

eJt =



eλt t eλt 1
2 t

2eλt . . . 1
(k−1)! t

k−1eλt

0 eλt t eλt . . . 1
(k−2)! t

k−2eλt

0 0 eλt . . . 1
(k−3)! t

k−3eλt

...
...

...
. . .

...

0 0 0 . . . eλt



B.8 Quadratic forms

A quadratic form is a homogeneous quadratic function. Given a symmetric matrix A, the corresponding
quadratic form is

f(x) = xTAx.

Minimizing quadratic forms

Ellipses
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C

Polynomials

A polynomial is a function of the form

p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n

The scalars a1, a2, . . . , an are the coefficients of the polynomial, and the number n is the degree of the
polynomial (assuming that the coefficient an is nonzero).

C.1 Roots

The roots of a polynomial are the solutions to the equation p(x) = 0. There are several fundamental results
from algebra concerning the roots of a polynomial.

• Fundamental thereom of algebra: every polynomial of degree n has exactly n complex roots (counting
multiplicities)

• Complex conjugate root theorem: for polynomials with real coefficients, complex roots always appear
in conjugate pairs

C.2 Quadratic polyomials

Quadratic polynomials have the form
p(x) = ax2 + bx+ c

There are several ways to find the roots of quadratic polynomials.

• Factor: If we can factor the polynomial as (x− p1)(x− p2), then the roots must be p1 and p2 since they
make each individual factor zero. For example, the quadratic

x2 − 3x+ 2 = (x− 1)(x− 2)

has roots 1 and 2. However, not all polynomials factor!

• Quadratic formula: For quadratic polynomials, we can always use the quadratic formula to find the
roots. It says that the roots are

x = −b±
√
b2 − 4ac

2a
The ± gives two roots, and the structure of the roots is characterized by the discriminant b2 − 4ac.
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- if b2 − 4ac > 0, then the roots are real and distinct
- if b2 − 4ac = 0, then the roots are real and repeated
- if b2 − 4ac < 0, then the roots are complex conjugates
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D

Geometric series

k∑
m=0

am = 1− ak+1

1− a us(k) a ̸= 1

∞∑
m=0

am = 1
1− a |a| < 1

k∑
m=0

mam = a

(1− a)2

(
1− ak − (1− a) k ak

)
us(k) a ̸= 1

∞∑
m=0

mam = a

(1− a)2 |a| < 1

k∑
m=0

m = k (k + 1)
2 us(k)

k∑
m=0

m2 = k (k + 1)(2k + 1)
6 us(k)

Proof. To illustrate how to construct these formulas, we will show how to derive the first formula. First
note that the summation is empty if k < 0, in which case the value of the summation is zero due to the unit
step. Now suppose k ≥ 0 and let Sk denote the value of the summation up to k,

Sk =
k∑

m=0
am = 1 + a+ a2 + . . .+ ak

Multiplying by a yields
aSk = a+ a2 + a3 + . . .+ ak+1

We now subtract the second equation from the first one. All of the middle terms cancel and we are left with

Sk − aSk = 1− ak+1

Solving for Sk (assuming a ̸= 1) yields the expression in the formula.
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