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Part I

Introduction to Robotic Algorithms



1

Introduction

1.1 Robotics

Robotics is the science of perceiving and manipulating the physical world through computer-controlled
devices. The robot uses sensors to perceive its environment, it uses a computer to process and interpret the
information, and then uses actuators to manipulate the environment (which then affects what it senses!).
This creates a feedback loop between the robot and its environment as shown below.

Types of robots

There are two main categories of robots: manipulators and mobile robots.

• Manipulators such as robotic arms work in constrained environments such as factories. These environ-
ments are typically designed specifically for the robot (for instance, they may be clear of clutter and the
robot may know the exact location of objects in its surroundings). As manipulators are fixed to their
environment, they are typically able to measure absolute positions of their joints using encoders.
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• Mobile robots on the other hand, often operate in unconstrained environments such as on roads, in the
ocean, in the air, etc. Mobile robots may have access to their global position within the environment
(via GPS, for example), although many robots must operate using only relative measurements of their
position (for example, using encoders). For this reason, sensing in mobile robotics is critical for the
robot to be able to reason about the environment and itself within the environment.

Manipulator Mobile robot

Robotics applications

Mars Curiosity Rover.
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Spot from Boston Dynamics.

Amazon Warehouse.
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Problems in robotics

There are several fundamental problems in robotics that we will study in this course.

• Estimation

- Mapping: Use measurements to construct a map of the environment.
- Localization: Use measurements to estimate the robot’s position relative to an external reference

frame.
- Simultaneous localization and mapping (SLAM): The localization and mapping problems are

inherently interdependent. To construct a map using sensor data, the robot must know where it is
in the environment. But to know where it is, the robot must have a map. In some applications,
the robot may be given a map (such as a robotic manipulator knowing the positions of nearby
objects) or its location (such as using GPS). When these are both unknown, however, the robot
must simultaneously estimate its position while constructing the map.

• Control

- High-level planning: Any useful robot must take actions within its environment. In high-level
planning, the robot must decide its broad goals and construct a plan to achieve them. For instance,
a robot may plan to move to a desired location, pick up a certain object, clean a particular room,
etc.

- Low-level motor controls: Once the robot has identified its high-level plan, it must execute that
plan using its various motors and actuators. Low-level controls typically involve things like PID
motor control and obstacle avoidance.

The following example illustrates the localization, mapping, and SLAM problems for a mobile robot in the
Institute of Robotics and Mechatronics building at the German Aerospace Center.

Localization Mappling SLAM

Discussion questions.
• How do we model the robot’s motion?

• How do we model the robot’s sensors?

• How do we represent the map?

• Do we solve the problem iteratively while the robot is moving (online) or once all of the data has been
collected (offline)?

9
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1.2 Sensor fusion

Sensor fusion is combining measurements from multiple sensors such that they jointly give more information
than any sensor individually.

Uncertainty in robotics

Robots must make decisions in the face of uncertainty. Some causes of uncertainty are:

• sensors are limited in what they can perceive

• actuators produce unpredictable affects on the robot and environment

• robots use imperfect models of reality

• algorithms often use approximations to ease computations

• robots operate in unpredictable environments

For these reasons, it is imperative that robots take uncertainty into account when reasoning about themselves
and their environment. We will use probabilitistic models to describe the interactions between a robot and
its environment, and the robot will use these probabilistic models to decide which actions to take.

Smart cars, for instance, have numerous sensors to detect nearby vehicles and pedestrians, traffic signs,
hazardous conditions, etc. Information from these various sensors must be fused together to construct a
cohesive estimate of the surroundings so that the control algorithm can take appropriate actions, such as
breaking to avoid a collision.

The following simple example illustrates the main idea of sensor fusion: multiple measurements can be
combined to obtain a better estimate than either measurement by itself.

10
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Example (A first example). Suppose we use a sensor to measure a quantity.
• each measurement from the sensor is a random variable

• the measurements are unbiased, so their mean is the true value

• the measurements have variance σ2

Given two measurements z1 and z2, can we construct a better estimate?

ẑ = z1 + z2

2 with variance σ̂2 = σ2

2

The fused estimate has lower variance than any individual measurement!

Example (A second example). Now suppose we use two different sensors to measure the quantity.
• the measurement from the first sensor is z1 with variance σ2

1

• the measurement from the second sensor is z2 with variance σ2
2

Now what is a better estimate?

ẑ = σ̂2
(
z1

σ2
1

+ z2

σ2
2

)
with variance σ̂2 = 1

1/σ2
1 + 1/σ2

2

For example, if σ1 = 0.5 and σ2 = 0.2, then σ̂ = 0.19. Even measurements from a noisy sensor can
improve the estimate.

This method of fusing estimates is called inverse-variance weighting, and the derivation is provided in the
appendix.

1.3 Robot environment interaction

Both the robot and its environment (or world) are dynamical systems that evolve over time. The robot can
acquire information about its environment using sensors, and the robot can also influence the environment
through its actuators, both of which are uncertain.

Robot

State s

Environment

Map m

Action
a

Observation
z

Dynamical systems are characterized by their state, which is everything that is needed to describe how the
system will evolve over time given any input signals. As both the robot and its environment are dynamical
systems, they each have a state. We denote time by t, which typically takes positive integer values.

• Robot: The state of the robot at time t is denoted st. The robot state typically consists of the pose
of the robot (position and orientation) and its velocities (translational and rotational). For a robot

11
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in three-dimensional space, the pose consists of six variables, three for its position and three for its
orientation (pitch, roll, yaw). For a robot in two-dimensional space, the pose consists of three variables,
two for its position in the plane and one angle for its orientation, which we denote by

s = (x, y, θ)

• Environment: The state of the environment at time t is denoted mt, which we refer to as a map. The
environment state can be very high-dimensional, making it difficult to represent exactly. Instead, the
environment is often approximated by landmarks, which we denote by ℓ. A landmark may be a tree, a
wall, or a pixel within a larger surface. We denote the position of a landmark in the two-dimensional
plane as ℓ = (ℓx, ℓy). We often assume that the environment is static so that its state is constant
in time. For a given measurement, c represents the correspondence of the landmark. If the robot is
able to recognize the landmark and distinguish it from other landmarks (such as seeing a distinct QR
code), then the correspondences are known. Otherwise, the robot must reason about which landmark
it measured. There are two main types of maps.

- Feature-based maps are indexed by a feature index, where each element in the map is a feature
that contains the location and properties of the feature.

- Location-based maps are indexed by location, where each element in the map specifies the prop-
erties of the environment at that location.

• Sensor measurements: Perception is the process by which a robot uses its sensors to obtain information
about the environment. Such an interaction produces a measurement (or observation), which we denote
by z. For simplicity, we assume that a robot makes one measurement zt at each discrete time step t.

• Control actions: Robots interact with their environment by applying actions, which may change the
state of the robot and/or the environment. Examples of actions include robot motion and manipulation
of objects. We denote a control action by a. For simplicity, we assume that a robot takes one action at

at each discrete time step t.

Time. The robot state s, map of the environment m, sensor measurements z, and control actions s all
depend on time t. We denote a collection of these quantities between two times t1 and t2 by a subscript
t1 : t2. For instance, we denote the collection of all robot states between two times t1 and t2 as

st1:t2 = (st1 , st1+1, . . . , st2)

To simplify notation, we often omit the explicit dependence on time and instead use a prime to denote a
quantity at the next time step. For example, if the current robot state (at some generic time) is s and it
takes control action a, the state of the robot after applying this action is denoted by s′.

1.4 Approaches

In probabilistic robots, both the state of the robot and the map of the environment are not known with
certainty. Robot algorithms must take this certainty into account when fusing sensor measurements and
selecting control actions. There are two main approaches based on the information that is available.

• Model-based control. In model-based control, it is assumed that we have access to mathematical
models that describe the characteristics of the robot and its environment (or we construct a model from
the observations). This includes models for each sensor on the robot along with how its actions affect
its own state and that of its environment.

• Data-driven control. For large and complex systems, constructing a model may be prohibitively difficult.
In data-driven control, the robot reasons about the world directly from the information that it collects
through its sensors (without first constructing a model). This approach is also called reinforcement
learning to emphasize that the robot learns actions by receiving rewards that reinforce its decisions.

12
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In this class, we will focus on model-based control in which the models are stochastic to take into account
uncertainty in the world. When models are available, the robot can reason about what actions to take by
combining two separate algorithms: a filter and a controller.

Observations Filter Controller Actions
Belief

The filter uses the observations from sensors to construct the robot’s belief about the state of the world. The
belief (also known as its state of knowledge or information state) captures the robot’s knowledge of its own
state and/or that of its environment. The controller then chooses the action to take based on this belief.
This separates the robot’s reasoning into estimation and control.

The belief is the probability that the robot is in a particular state given all available information (such
as past sensor measurements, past control actions, and any prior information). The belief is a conditional
probability distribution over states conditioned on the available information. For a quantity x, we denote
its belief at time t by bt(x), which is an abbreviation for the conditional probability distribution

bt(x) = p(x | z1:t, a1:t)

1.5 Notation

For reference, the following table lists some of the notation that will be used throughout the course.

t time
s robot state
x coordinate of the robot state in the x-axis of the two-dimensional plane
y coordinate of the robot state in the y-axis of the two-dimensional plane
θ orientation of the robot measured counterclockwise from the x-axis
m map of the environment
ℓ landmark
ℓx coordinate of the landmark position in the x-axis of the two-dimensional plane
ℓy coordinate of the landmark position in the y-axis of the two-dimensional plane
c correspondence of a landmark
z sensor measurement
a control action

p(s′ | s, a) state transition probability
p(z | s) measurement probability
b(s) belief

g(s, a, ε) actuation model
h(s,m, δ) perception model

ε actuation noise
δ perception noise

13



2

Robot motion

Robot dynamics is the study of robot motions and the forces and torques that cause them. These forces and
torques are produced by actuators, and the resulting motion depends on the type of robot (and for mobile
robots in particular, what type of wheels they use). In this chapter, we study probabilistic models that
describe how a control action influences the motion of a robot.

2.1 Actuators

Actuators are electromechanical components that enable a robot to influence its own state and/or that of
its environment. While there are many types of actuators, perhaps the most common is a DC motor, which
uses a supplied voltage to apply a torque to a shaft.

14
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2.2 Robot locomotion

While actuators apply forces and torques to the robot, the resulting motion depends on the locomotion
mechanism of the robot. Several mechanisms for locomotion are shown below, which are (from left to right):
legged locomotion, unicycle, omniwheel, Mecanum (or Swedish) wheel, Ackermann drive.

The type of locomotion has important effects on the way in which the robot can move. For instance, a
unicycle may only move in the direction that the wheel is facing (assuming that it does not slip). This
results in a constraint on the possible velocities. Omniwheels and mecanum wheels, on the other hand, can
be used to obtain an instantaneous velocity in any direction.

2.3 Models

An actuation model is a mathematical relationship between the state of the robot at a future time, the
current state of the robot, and the control action. One form of actuation model is the probability that the
robot is in some state s′ given that it was in state s and took control action a,

p(s′ | s, a)

Another way to represent an actuation model is to specify the next state s′ as a function of the current state
s and control action a,

s′ = g(s, a, ε)

where ε is a random variable that represents the actuation noise. The first form represents the probability
of arriving in a given state s′, while the second form enables us to sample possible future states by sampling
the actuation noise ε and then evaluating the model g. Both forms will be useful representations of the robot
motion depending on the context.

The following figures show the probability distribution of the state of a planar mobile robot with state
s = (x, y, θ) after executing the control actions (shown in red). Darker locations indicate higher probabilities.
(Instead of the full robot state, the probability distribution is projected onto the two-dimensional space of
the robot position (x, y), since it is difficult to also visualize the robot orientation θ.)

15
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A consequence of imperfect actuation is that — without sensing — the state of the robot becomes more
uncertain over time. The figure below illustrates this. The robot starts in a known state, and the solid lines
indicate the deterministic trajectory for the given control actions. The small dots are samples of the robot
state at various points in time. As time progresses, the robot becomes more and more uncertain about its
state due to the accumulation of errors in the actuation model. The remedy to this problem is for the robot
to sense its environment, which reduces its uncertainty.

The two previous figures illustrate the two ways in which we will use actuation models. The first figure
shows the probability distribution over the future states of the robot given its known starting state and the
control actions. Alternatively, the second figure shows samples from this distribution over time. Depending
on the algorithm, we may need either the probability of a future state or a sample of the future state from
this probability distribution.
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2.4 Nonholonomic planar mobile robots

We now consider nonholonomic mobile robots in the plane. The motion of such robots is constrained due
to the configuration of the wheels. Examples of such robots are the unicycle, differential drive, and car-like
robots.

Deterministic model

To model the motion of a nonholonomic mobile robot, we start with a general model in which the robot
controls its instantaneous linear and rotational velocities, v and ω. The pose of the robot consists of its
position (x, y) and orientation θ in the plane (represented in some frame).

In terms of the instantaneous velocities, the state of the robot evolves in continuous time according to the
following dynamics ẋẏ

θ̇

 =

cos θ 0
sin θ 0

0 1

[v
ω

]
where a dot denotes the derivative with respect to time, for example, ẋ(t) = d

dtx(t). This is a nonlinear
differential equation that describes how the pose of the robot changes over time depending on the input
velocities.

The nonholonomic robots described in this section have constraints on their attainable instantaneous veloc-
ities. We can see this from the above equation, as there are three velocities (ẋ, ẏ, θ̇) and only two control
inputs (v, ω). To find the constraint on the velocities, we can solve the first equation for v and substitute
this into the second equation to obtain

ẋ sin θ − ẏ cos θ = 0
This constraint specifies that the robot must move in the direction of its heading, so its instantaneous linear
velocity can have no component orthogonal to its heading.

We now consider three specific types of nonholonomic mobile robots and describe how the instantaneous
velocities are related to the control actions (such as the angular speed of the wheels). The diagrams for the
three types of robots are shown below (from left to right: unicycle, differential drive, and car-like robots).
In each case, all wheels have radius r.
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• Unicycle dynamics
For a unicycle with control inputs u = (u1, u2) where u1 is the driving speed of the wheel and u2 is the
angular speed of the change in heading, the instantaneous velocities are related to the control inputs as[

u1
u2

]
=
[
v/r
ω

]
and

[
v
ω

]
=
[
ru1
u2

]
• Differential drive robot

For a differential drive robot with control inputs u = (ul, ur) the angular velocities of the left and right
wheels, the instantaneous velocities are related to the control inputs as[

ul

ur

]
= 1
r

[
v − ωd
v + ωd

]
and

[
v
ω

]
= r

2

[
ur + ul

(ur − ul)/d

]
where 2d the distance between the wheels.

• Car-like dynamics
For a car-like robot, the control inputs are u = (v, w) where v is the forward speed of the car and w is
the angular speed of the steering angle. Let ψ denote the steering angle of the car, and let ℓ denote the
length of the car between the front and back wheels. Then the motion of the car is described by

ẋ
ẏ

θ̇

ψ̇

 =


cos θ 0
sin θ 0

(tanψ)/ℓ 0
0 1

[vw
]

This is not of the standard form described above. However, suppose we can control the steering angle
ψ directly, instead of its rate w = ψ̇. This is a valid assumption if we can change the steering angle
quickly by a low-level controller. Then ψ is no longer a state variable, and the instantaneous angular
velocity ω is related to the heading by

ω = v

ℓ
tanψ and ψ = tan−1

(
ℓω

v

)
Under the assumption that we can control the steering direction directly, this has the same form as our
standard model.

As we have seen, we can represent various types of nonholonomic mobile robots in the standard form, where
we take the instantaneous linear and rotational velocities as control inputs. The difference between the
various robots, however, is that they have different constraints on the attainable instantaneous velocities.
The instantaneous velocity of a car, for instance, may not be backwards (unless it can reverse).

Suppose each of the control inputs ui is constrained to be in an interval [ui,min, ui,max]. Then the instanta-
neous velocities of the various robots are constrained by a polyhedron as shown below.

Suppose the robot has a sensor attached to a point P with coordinates (xr, yr) relative to the reference
frame of the robot as shown below. We will now derive the instantaneous velocities that move the sensor
with some given velocity, which is useful if we want to move the sensor to a desired location.
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The coordinates of the point relative to the frame of reference on the center of the robot is[
xP

yP

]
=
[
x
y

]
+R(ϕ)

[
xr

yr

]
Differentiating with respect to time yields[

ẋP

ẏP

]
=
[
ẋ
ẏ

]
+ ϕ̇

[
− sinϕ − cosϕ

cosϕ − sinϕ

] [
xr

yr

]
Substituting the robot dynamics for (ẋ, ẏ, ϕ̇) and solving for the instantaneous velocities yields[

v
ω

]
= 1
xr

[
xr cosϕ− yr sinϕ xr sinϕ+ yr cosϕ

− sinϕ cosϕ

] [
ẋP

ẏP

]
This yields the instantaneous velocities needed to control the velocity of a sensor located on a robot.

Discrete-time dynamics

Recall that the state of a nonholonomic mobile robot in the plane evolves in continuous time according to
the dynamics ẋẏ

θ̇

 =

v cos θ
v sin θ
ω


where v and ω are the instantaneous linear and rotational velocities. While this is a nonlinear differential
equation, in this case we can find a closed-form solution between any two times assuming that the control
actions are constant on that interval. This produces a discretized motion model in discrete time.

Let (x, y, θ) denote the robot state at some time t, and suppose the control actions v and ω are constant on
the time interval [t, t′] for some future time t′ > t. Denote the length of the time interval as ∆t = t′− t. The
orientation of the robot is then a linear function of time,

θ(τ) = θ +
∫ τ

t

ω ds = θ + ω (τ − t)

and the next orientation is
θ′ = θ + ω∆t
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Substituting this into the expression for the horizontal position and integrating yields

x′ = x+
∫ t′

t

v cos θ(τ) dτ

= x+ v

∫ t′

t

cos
(
θ + w (τ − t)

)
dτ

= x+ v

ω
sin(θ + ω (τ − t))

∣∣t′

τ=t

= x+ v

ω

(
sin(θ + ω∆t)− sin(θ)

)
Performing a similar computation for the vertical coordinate gives that

y′ = y − v

ω

(
cos(θ + ω∆t)− cos(θ)

)
To summarize, the state of the robot (x′, y′, θ′) after applying the (constant) control actions (v, ω) for some
time ∆t from the previous state (x, y, θ) is described by the velocity-based actuation model asx′

y′

θ′

 =

xy
θ

+


v
ω sin(θ + ω∆t)− v

ω sin(θ)
− v

ω cos(θ + ω∆t) + v
ω cos(θ)

ω∆t

 (ω ̸= 0)

These equations are not valid when the angular velocity is zero since it appears in the denominator of a
fraction. But in this case, the orientation of the robot is constant and the robot moves in the straight line
motion x′

y′

θ′

 =

xy
θ

+

v∆t cos θ
v∆t sin θ

0

 (ω = 0)

This can be found by taking the limit as ω∆t→ 0, or by simply considering the straight line motion.

Interpretation as circular motion

When moving with constant velocities, the robot moves in a circle. We now find the center of the circle
(xc, yc) and its radius R in terms of the robot state and instantaneous velocities.
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From the above diagram, we have that

∆x = R cos
(
θ − π

2
)

= R sin(θ)
∆y = R sin

(
θ − π

2
)

= −R cos(θ)

where we used some basic trigonometric identities. From the definition of angular velocity, we have that
v = Rω. Therefore, the center of the circle and its radius are given in terms of the instantaneous velocities
as [

xc

yc

]
=
[
x
y

]
+ v

ω

[
− sin θ

cos θ

]
and R = v

ω

Alternative parameterizations

We can use other parameterizations of the robot motion besides the instantaneous velocities v and ω.

• Circle radius and change in orientation. The circle radius R and change in orientation ∆θ = θ′− θ are
related to the instantaneous velocities as

R = v

ω
and ∆θ = ω∆t

Using this parameterization, the motion is described byx′

y′

θ′

 =

xy
θ

+

 R sin(θ + ∆θ)−R sin(θ)
−R cos(θ + ∆θ) +R cos(θ)

∆θ


This parameterization is convenient in that it does not depend on the time interval ∆t.

• Wheel encoders for differential drive robot. Consider a differential drive robot equipped with wheel
encoders that measure the amount that each wheel rotates. We can use this along with the radius of
the wheel to find the distances traveled by the left and right wheels, dl and dr. Since each wheel travels
along the arc of a circle, its distance traveled is the product of the change in orientation with its distance
from the center of the circle. Assuming that the wheels are located a distance 2d apart, the distance
traveled by each wheel is

dl = ∆θ (R− d) and dr = ∆θ (R+ d)

Solving these equations for the change in orientation and the radius of the circle gives

∆θ = dr − dl

2d and R = d · dr + dl

dr − dl

The circle radius and change in orientation can then be related to the instantaneous velocities as above.

Backward dynamics

We next construct a backward model for the dynamics of a planar mobile robot. A backward model constructs
the control inputs required to achieve a desired motion.

Suppose the robot is in state (x, y, θ). Our goal is to find the instantaneous velocities (v, ω) to drive the robot
to a final position (x′, y′). Due to the constraint on the robot motion, the final orientation is fixed based on
this information. To achieve a desired final orientation as well, we could first move to the desired position
and then rotate (for unicycle and differential drive robots, but car-like robots cannot rotate in place).

21



ECE 411: Sensor Fusion for Robotics 2 - Robot motion

Suppose the wheel velocities remain constant during the transition, and denote the differences in each
coordinate between the initial and final positions as

∆x = x′ − x and ∆y = y′ − y

First consider the case in which the robot moves in a straight line from the initial point (x, y) in a direction
θ to the final point (x′, y′) as shown below.

In this case, both wheels travel the same distance

dl = dr =
√

(∆x)2 + (∆y)2

and the final orientation is the same as the original orientation, θ′ = θ. From the wheel distances, we can use
the alternative parameterizations above to obtain the circle radius R and the instantaneous linear velocity
v (the instantaneous angular velocity is ω = 0).

Now suppose that the points do not lie on a straight line. We can then solve the forward model for the
radius R and change in orientation ∆θ to obtain

R = 1
2

∆x2 + ∆y2

∆y cos θ −∆x sin θ and ∆θ = 2 arctan
(

∆y −∆x tan(θ/2)
∆x+ ∆y tan(θ/2)

)
− θ

We can then use the alternative parameterizations above to obtain the wheel distances (dl, dr) and the
instantaneous velocities (v, ω).

Probabilistic model

The previous model is deterministic in that the future pose of the robot is completely determined by its cur-
rent state and control inputs (or instantaneous velocities). We now show how to extend this to a probabilistic
model that takes uncertainty in control actions into account.

A simple way to construct a probabilistic model for a planar mobile robot is perturb the control inputs by
random noise:

û = u+ ε

where u is the desired control input, û is the perturbed input, and ε is the actuation noise. Since there are
typically multiple control inputs, the actuation noise is in general a vector. For a differential drive robot, for
instance, we could take the instantaneous linear velocities of the left and right wheels, (vl, vr) as the control
inputs, in which case the perturbed inputs would be[

v̂l

v̂r

]
=
[
vl

vr

]
+
[
εl

εr

]
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Alternatively, we could perturb the instantaneous velocities directly:[
v̂
ω̂

]
=
[
v
ω

]
+
[
εv

εω

]
With this noise model, however, the motion of the robot is constrained to the circle about the instantaneous
center of curvature with radius R = v̂/ω̂. While the realistic motion of the robot has a nonzero probability
of being in any three-dimensional state after apply the control action, the robot would be constrained to the
two-dimensional subspace lying on this circle. To remedy this, we also perturb the final orientation by an
angle εθ so that

θ′ = θ + ∆θ + εθ

We now use this probabilistic model to sample future states and to determine the probability of being in a
given future state given the current state and the control actions.

Sampling states

We can use the forward model to sample future states (x′, y′, θ′) of the robot given its current state (x, y, θ)
and the (constant) control actions u applied over a time period of ∆t as follows:

a) sample the actuation noise ε = (εu, εθ), which perturbs both the control actions u (such as the instanta-
neous velocities, circle radius and change in orientation, wheel distances, etc.) and the final orientation
θ′

b) construct the perturbed control actions û and final rotation ϕ̂

û = u+ εu

c) apply the perturbed control actions û to the forward model to obtain the next state (x′, y′, θ′)

d) perturb the final orientation
θ′ ← θ′ + εθ

This produces a robot state (x′, y′, θ′) that is sampled from the motion model according to the distribution
of the actuation noise.

The above figure shows multiple samples of the foward probabilistic actuation model for a differential drive
robot using various distributions for the actuation noise. In each case, the actuation noise has zero mean, so
the points are centered about the future state obtained from the deterministic model (shown in blue). The
shape of the samples depends on the distribution of the actuation noise.
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Probability of states

Instead of sampling the robot state, we can also compute the probability p(s′ | s, a) of the future robot state
s′ given the current robot state s and control action a.

To find the probability that the robot is in some state (x′, y′, θ′) given that it is in state (x, y, θ) and applies
the control actions u, we can do the following:

a) use the backward model to find the control inputs û that move the robot from state (x, y, θ) to position
(x′, y′), and find the corresponding change in orientation ∆θ

b) compute the actuation noise, which is the difference between the commanded inputs and the inputs
required to move the robot between the two states

εu = û− u

c) compute the final rotation required for the robot to have final orientation θ′

εθ = θ′ − θ −∆θ

d) use the probability distribution of the actuation noise to compute the probability of the next state given
the current state and control action

p(s′ | s, u) = p(ε | s′, s, u) = p(εu | s′, s, u) p(εθ | s′, s, u)

where the last equality assumes that the noise in the control inputs and the final rotation are independent

This produces the probability that the robot is in state (x′, y′, θ′) given that it is in state (x, y, θ) and takes
control actions a.

The figure below illustrates the probability distribution of the future robot state given an initial state and
control actions (indicated by the circular trajectory) for several different actuation noise distributions. The
final robot state after applying this control action is a random variable whose probability distribution is
shown in gray. Darker colors indiciate a higher probability of being in that state. In each case, the actuation
noise has zero mean, so the points are centered about the future state obtained from the deterministic model.
The shape of the distribution depends on the distribution of the actuation noise.

2.5 Odometry

Odometers provide relative pose information as a robot moves. Odometry information may come from wheel
encoders that measure the change in angle of each wheel, or from other sensors such as a camera viewing
the same object in the environment from multiple poses.
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Remark. When using odometry, it is important to remember that odometry information is not actually
a control action! Odometry information is obtained by measuring relative pose information. We treat
odometry information as control actions since it relates the state at two different times; treating odometry
as measurements would require increasing the dimension of the state to include velocity information (or
state information at two subsequent times). Treating odometry as control actions keeps the state small,
which is important for practical implementation of some algorithms whose complexity scales with the state
dimension. Since odometry is not a control action, it cannot be used to control the system, but we can still
use odometry for estimation, such as in localization and mapping problems.

There are various ways to describe relative pose information for planar mobile robots. One such method
describes the robot motion in terms of three consecutive actions: a rotation, a translation, and then a second
rotation. These three actions are sufficient to describe the motion of a robot between any two poses in the
plane.

Suppose a robot is in state (x, y, θ) and measures the relative odometry information u = (ϕ1, d, ϕ2) to its
next state (x′, y′, θ′). This means that the robot moved to its next state by rotating by angle ϕ1, translating
forward by distance d, and then rotating by angle ϕ2.

Forward model

Given that the robot was in state (x, y, θ) and measured the odometry (ϕ1, d, ϕ2), the next state of the robot
is x′

y′

θ′

 =

xy
θ

+

d cos(θ + ϕ1)
d sin(θ + ϕ1)
ϕ1 + ϕ2


This model is deterministic in that it exactly specifies the next state of the robot given its current state and
odometry. Realistic robotics, however, are uncertain. To more accurately represent the motion of the robot,
we can use a probabilistic model. A simple model is to perturb the odometry measurements before applying
the deterministic model. For instance, a probabilistic odometry-based model for a planar mobile robot isx′

y′

θ′

 =

xy
θ

+

d̂ cos(θ + ϕ̂1)
d̂ sin(θ + ϕ̂1)
ϕ̂1 + ϕ̂2

 where

ϕ̂1
d̂

ϕ̂2

 =

ϕ1
d
ϕ2

+

εϕ1

εd

εϕ2


The parameters (εϕ1 , εd, εϕ2) are random variables that represent the odometry noise. We first perturb the
odometry information by the noise, and then apply this noisy odometry information to obtain the next state
of the robot.

We can use this forward probabilistic model to sample future robot states. To do so, just sample the noise
parameters (according to some distribution), and then compute the next robot state as above.
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The above figure shows multiple samples of the foward probabilistic odometry-based actuation model using
various distributions for the odometry noise. In each case, the odometry noise has zero mean, so the points
are centered about the future state obtained from the deterministic model. The shape of the samples depends
on the distribution of the odometry noise.

Backward model

Given two poses, we can also find the odometry information that the robot would measure during the
motion. Solving the forward model for the relative position and heading (∆x,∆y,∆θ) along with the
original orientation θ, the corresponding odometry information isϕ1

d
ϕ2

 =

 atan2(∆y,∆x)− θ√
∆x2 + ∆y2

∆θ − atan2(∆y,∆x)


We can use the backward model to find the probability that the robot is in a given state s′ given that it was
in state s and measured odometry (ϕ1, d, ϕ2). To do so, use the backward model to compute the odometry
(ϕ̂1, d̂, ϕ̂2) that describe the relative pose information, then compute the odometry error asεϕ1

εd

εϕ2

 =

ϕ̂1
d̂

ϕ̂2

−
ϕ1
d
ϕ2

 ,
and then use the distribution of the odometry error to compute its probability.
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Residual

We now construct the residual (or error) between the measured odometry and two given poses for a planar
mobile robot. Suppose the robot measures the odometry (zx, zy, zθ) from pose (xi, yi, θi) to pose (xj , yj , θj).
The odometry describes pose j relative to pose i as shown below.

Let Zij , Xi, and Xj denote the homogeneous transformation matrices corresponding to the poses. Then
the homogeneous transformation matrix X−1

i Xj maps homogeneous coordinates relative to pose j to those
relative to pose i, which represents how node i sees node j. The transformation matrix Zij from the odometry
also maps homogeneous coordinates relative to pose j to those relative to pose i. Both X−1

i Xj and Zij

represent the same transformation, but one is constructed from the two poses while the other is measured
by the odometry. The error of the measurement is then the difference between these transformations. This
is described by the homogeneous transformation Z−1

ij (X−1
i Xj), which maps coordinates relative to pose j to

pose i and then back to pose j through the odometry measurement. This transformation is given explicitly
by

Z−1
ij (X−1

i Xj) =

cos(εθ) − sin(εθ) (xj − xi) cos(θi + zθ) + (yj − yi) sin(θi + zθ)− zx cos zθ − zy sin zθ

sin(εθ) cos(εθ) (xi − xj) sin(θi + zθ)− (yi − yj) cos(θi + zθ) + zx sin zθ − zy cos zθ

0 0 1


where εθ = θj−θi−zθ. To measure the distance between the transformation and the identity, we use the pose
corresponding to this homogeneous transformation. If the measurement were exact, then the transformation
matrix would be the identity, in which case the pose would be (0, 0, 0). The residual associated with an
odometry-based edge is then

rij =

 (xj − xi) cos(θi + zθ) + (yj − yi) sin(θi + zθ)− zx cos zθ − zy sin zθ

−(xj − xi) sin(θi + zθ) + (yj − yi) cos(θi + zθ) + zx sin zθ − zy cos zθ

θj − θi − zθ


Caution! The angle θj−θi−zθ should be mapped to the interval [−π, π] to prevent it from wrapping around.

The Jacobian of the residual with respect to the first pose xi is

∂rij

∂xi
=

− cosϕ − sinϕ (xi − xj) sinϕ− (yi − yj) cosϕ
sinϕ − cosϕ (xi − xj) cosϕ+ (yi − yj) sinϕ
0 0 −1


where ϕ = θi + zθ, and the Jacobian of the residual with respect to the second pose xj is

∂rij

∂xj
=

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1


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3

Perception

Perception is the method by which a robot gains information about itself and the surrounding environment.
Robots perceive their environment using sensors, which are devices that provide measurements related to
quantities of interest. In this chapter, we study probabilistic models that describe how a sensor perceives
the state of the robot and the environment.

3.1 Sensors

We can characterize sensors based on a variety of criteria.

• Type of information

- proprioceptive: measure information internal to the robot
- exteroceptive: measure information about the environment

• Energy source

- active: emit energy into the environment and measure the reaction
- passive: measure ambient environmental energy

• Type of measurement

- range, bearing, speed, acceleration, temperature, color, image, sound, angle, magnetic field, air
pressure, force

Example (List of sensors). camera, optical encoder, sonar, laser, potentiometer, compass, contact sensor,
GPS, gyroscope, accelerometer, thermometer, magnetometer, barometer, strain gauge

3.2 Models

A sensor model is a mathematical relationship between the quantity of interest, the state of the robot or
its environment, and the corresponding measurement. Given a robot with state s and a map m of the
environment, a perception model describes the probability that the sensor perceives a measurement z,

p(z | s,m)
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Another way of representing a perception model is of the form

z = h(s,m, δ)

where δ is a random variable that represents the perception noise.

Measurement noise

The measurement noise represents the uncertainty in the measured value from the sensor. As it is a random
variable, it has a probability distribution δ ∼ p(δ). Note that the measurement noise may be a scalar or a
vector. We typically make the following assumptions on the measurement noise.
• We often assume that the sensor is unbiased, meaning that the measurement noise has zero mean.

E(δ) = 0

• The variance of the measurement noise represents the amount of uncertainty in the measurement, with
a larger variance corresponding to more uncertainty. We often assume that the individual measurements
are uncorrelated, in which case the covariance matrix is diagonal.

cov(δ) =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . .

...
0 0 . . . σ2

K


• We often assume that the measurements are uncorrelated across time, which means that their is no

(linear) relationship between them.

cov(δt1 , δt2) = 0 for t1 ̸= t2

• For vector-valued measurements, we sometimes assume that the individual measurements are condi-
tionally independent given the state of the robot and environment. For a vector of measurements
z = (z1, z2, . . . , zK),

p(z | s,m) =
K∏

k=1
p(zk | x,m)

3.3 Range finder

A range finder is a sensor that measures the distance (in a particular direction) to nearby objects. Range
finders are active sensors that emit a signal into the environment and measure the time for the signal to
return to the sensor. Range finders can be classified based on the type of signal that they emit; for instance,
a laser emits light while an ultrasonic sensor emits sound. The measurements are affected by the type of
signal emitted; for instance, light travels in a beam while sound travels in a cone.

Beam model

Consider a range finder in which the emitted signal is modeled as a beam (such as a laser). Range finders
typically have a maximum detectable distance, which we denote zmax. Given the state s and map m, we
model the measurement perceived by a range finder as a random variable z that takes values in the real
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interval [0, zmax]. We construct the probability of a measurement as a weighted sum of four densities, each
of which corresponds to a particular type of error:

p(z | s,m) =
∑

i∈{hit,short,max,rand}

wi pi(z | s,m)

The weight wi describes how much the corresponding error impacts the measurement relative to the other
sources of error. For this to be a valid density, the weights must all sum to one,

whit + wshort + wmax + wrand = 1

Several of these densities depend on the true distance to the nearest object in the direction of the sensor,
which we denote z⋆. The computation of the true distance depends on the type of map.
• In a location-based map, the true distance is found by ray casting. Here, a ray is drawn starting from

the sensor in the direction of its orientation, and the ray is extended until it hits the first object. The
distance of this ray from the sensor to the first object is the true distance z⋆. When the domain of
the map is discrete, Bresenham’s algorithm can be used to compute the points on the grid that the ray
passes through.

• In a feature-based map, the true distance is typically taken as the the closest feature within the cone of
the measurement.

We now describe each of the four densities that compose the probability of a measurement. These densities
depend on the maximum range zmax of the sensor and the range to the nearest object z⋆.

• Correct range with local measurement noise. The first density represents the correct range with local
measurement noise, which is represented by additive Gaussian noise. But simply adding Gaussian noise
to the true distance z⋆ is not realistic, since the sensor values are limited to the range [0, zmax]. So we
instead use a Gaussian random variable that is clipped to be in this interval,

phit(z | s,m) =
{
ηN (z; z⋆, σ

2
hit) if z ∈ [0, zmax]

0 otherwise

where N (x;µ, σ2) is the normal distribution with mean µ and variance σ2. Since the Guassian is clipped,
we need the normalizing constant η so that this is a valid probability distribution. The value of the
normalizing constant is

η =
(∫ zmax

0
N (z; z⋆, σ

2
hit) dz

)−1

• Unexpected objects. Objects that are not represented in the map can cause the distance measured by
the sensor to be smaller than the true distance. For example, a person could move in front of the sensor.
We could include such objects in the map, but then the map would be dynamic. To keep things simple,
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we model such objects as sensor noise. Since objects closer to the sensor always obscure objects further
away, the probability of perceiving an unexpected object decreases with distance from the sensor. We
therefore model unexpected objects using an exponential distribution, which is parameterized by the
exponent λshort. Once again, we clip the density by the maximum range of the sensor,

pshort(z | s,m) =


λshort

1− e−λshortz⋆
e−λshortz if z ∈ [0, zmax]

0 otherwise

The normalizing constant is chosen such that this is a valid probability distribution.

• Failures. Failures occur when the emitted signal does not return to the sensor in a reasonable amount
of time. Such failures can be due to reflection of the signal, or the signal being absorbed by the object
(such as a black object for a laser). In case of failure, the sensor typically returns its maximum value,
zmax. Therefore, we model failures using the (discrete) probability distribution

pmax(z | s,m) =
{

1 if z = zmax

0 otherwise

• Random measurements. The last type of error that we model are random measurements. Such
measurements could be do to cross-talk between multiple sensors or phantom readings due to signals
bouncing off walls. We model random measurements as a uniform distribution,

prand(z | s,m) =
{

1
zmax

if z ∈ [0, zmax]
0 otherwise
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Example (Beam model). We now illustrate the beam model of a range finder using a discrete location-
based map of the environment. The map of the environment is shown on the left, where dark regions
correspond to obstacles. The sensor is located at the position (−50,−50) with an orientation of 10
degrees. Given the maximum distance of the sensor zmax = 150, we use Bresenham’s algorithm to find
the grid points between the sensor location and its extension by a distance of zmax in the direction of
the sensor. The closest grid point containing an obstacle determines the true distance z⋆, which is the
length of the blue line from the sensor to the nearest object.

The maximum and true distances are then used to compute the four error densities with the following
parameters:

σhit = 2 λshort = 0.05 whit = 0.25 wshort = 0.25 wmax = 0.25 wrand = 0.25

The probability that the sensor measures a given distance z using the beam model is shown on the
right. There is a normal distribution about the true distance z⋆ that represents local measurement
noise, an exponential distribution that represents unexpected objects, a discrete distribution at the
maximum distance that represents sensor failures, and a uniform distribution that represents random
measurements.

If the angle of the sensor is changed to 55 degrees, then the beam hits the circular object at a closer
distance. This shifts the mean of the Gaussian distribution to the left since smaller measurements now
have higher probability.

To illustrate how the parameters of the beam model affect the probability distribution, consider the
following parameters:

σhit = 2 λshort = 0.2 whit = 0.5 wshort = 0.3 wmax = 0.1 wrand = 0.1

The weights indicate that errors are more likely due to local measurement noise, and random measure-
ments and failures are unlikely so they are weighted less. The probability of measuring z is now larger
at the true distance z⋆, smaller at the maximum distance zmax, and the exponential decay is much faster
due to a larger value of λshort.
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There are two main limitations of the beam model:
• Lack of smoothness. For the beam model, the probability that the sensor receives a measurement z can

be highly discontinuous in the robot pose x and the map m. For instance, suppose that the beam of the
sensor narrowly passes by an object. The beam model uses ray casting, which would simply continue
until the beam directly reaches an obstacle. But an object near the beam may also reflect the signal
causing the sensor to detect that (shorter) distance. Such nonsmooth models can be more difficult to
use for estimation in that gradient-based algorithms can get stuck in local optima.

• Complexity. The beam model requires ray casting to find z⋆, which is a computationally expensive
operation. This complexity can be mitigated by pre-computing the range to nearby objects at each
pose, but this requires large look-up tables.

Likelihood field

The likelihood field is another sensor model for a range finder that overcomes some of the limitations of the
beam model. Similar to the beam model, the likelihood field model of a range finder is composed of three
simpler models.

p(z | s,m) =
∑

i∈{field,max,rand}

wi pi(z | s,m)

The maximum distance readings due to sensor failures and the random mesurements are identical to those
from the beam model. Instead of the models for the correct range with local measurement noise and
unexpected objects, however, the likelihood field models measurement noise using Gaussians related to the
distance to the nearest object. For any given measurement z, let d denote the distance from the measured
point to the nearest obstacle in the map. The probability that the sensor receives the measurement z is then
modeled as a Gaussian,

pfield(z | s,m) = N (d, 0, σ2
field)

where the parameter σfield is the variance of the noise.
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Example (Likelihood field). Consider the map of the environment shown on the left, where dark regions
indicate obstacles. The sensor is located near the bottom of the map and takes a range measurement
along the vertical dashed line. The right plot shows the likelihood field, which is the probability of
receiving a measurement at any point. For each (x, y), the probability is calculated by finding the
distance to the nearest object in the map and evaluating the density of a Gaussian random variable
with zero mean and variance σ2

field at that distance.

The probability that a sensor receives a measurement z given the robot state x and map m is shown
below. Even though the beam does not directly hit any objects, it does pass near the objects, denoted
o1, o2, and o3. Each of these objects results in an increased probability, depending on how close the
beam passes to the object.

The likelihood field model has several advantages over the beam model. First, the likelihood field is smooth
in the robot state x and map m. Small deviations in either of these lead to small deviations in the perception
model. As with the beam model, we can pre-compute the likelihood field to increase the efficiency of the algo-
rithm. While the beam model requires storing the distance to the closest object for every three-dimensional
state (x, y, θ), the likelihood field model only needs to store the likelihood for each two-dimensional position
(x, y).

While the likelihood field model has advantages, some disadvantages are that it does not explicitly model
short sensor measurements, it treats sensors as if they can see through obstacles (since ray casting was
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replaced by finding the nearest neighbor, which may be behind another obstacle), and it does not take any
uncertainty in the map into account which makes it unsuitable for unexplored areas.

3.4 Feature-based models

In contrast to using raw sensor measurements, another way to construct a perception model is to extract
features from the measurements. A feature is a function of the measurement, which we denote f(z). Examples
of features include lines, corners, objects, distinct patterns, hallways, intersections, etc. We refer to features
that represent physical objects (such as the corner of a building or a tree) as landmarks. The landmark is
completely described by its location, which we denote in global coordinates as ℓ = (ℓx, ℓy). The map is then
the collection of all landmarks,

m = {ℓ1, ℓ2, ℓ3, . . .}

Range–bearing sensor

Consider a robot at state (x, y, θ) that uses a sensor to measure the range r and bearing ϕ to a known
landmark ℓ. A simple probabilistic model for the range and bearing measurements is given by

z =
[
r

ϕ

]
=
[ √

(ℓx − x)2 + (ℓy − y)2

atan2(ℓy − y, ℓx − x)− θ

]
+
[
εr

εϕ

]
where the parameters (εr, εϕ) represent perception noise. This models the sensor measurements as the true
values perturbed by additive noise.

Probability of a measurement

We now use the range–bearing model to find the probability that the sensor perceives a given measurement.
Given the robot state (x, y, θ) and the landmark position (ℓx, ℓy), the probability that the sensor perceives
a measurement z = (r, ϕ) is

p(z | s,m) = p(ε | z, s,m)
where the noise of the measurement is[

εr

εϕ

]
=
[
r

ϕ

]
−

[ √
(ℓx − x)2 + (ℓy − y)2

atan2(ℓy − y, ℓx − x)− θ

]
Typically, the noise parameters are independent, in which case their joint distribution is the product of the
two individual distributions,

p(ε | z, s,m) = p(εr | z, s,m) p(εϕ | z, s,m)

Note that this model requires the robot to know which landmark it observed, meaning it has known corre-
spondence between the measurements and the landmarks.

Probability and sampling robot states

To find the probability that the robot is in a state s given the measurement z and map m, we can use Bayes
rule to obtain

p(s | z,m) = p(z | s,m) p(s | m)
p(z | m)
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Suppose that, given the map, the robot has the same probability of being in any state (which is often not
the case!). Then the conditional probability p(s | m) is constant. In this case, the probability of being in
some state s is the same as the probability of perceiving some measurement z,

p(s | z,m) ∝ p(z | s,m) = p(ε | z, s,m)

where the perception noise is given above in terms of the measurement z, state s, and map m.

It is also sometimes useful to sample robot states that correspond to a given measurement. To sample robot
states, we can solve the perception model for the robot position[

x
y

]
=
[
ℓx

ℓy

]
+ (r − εr)

[
− cos(θ + ϕ− εϕ)

sin(θ + ϕ− εϕ)

]
Since there is a position (x, y) that corresponds to the measurement (r, ϕ) for any orientation θ, we sample θ
uniformly in the interval [0, 2π) and then compute the corresponding position (x, y) to sample robot states.
The following figure shows the positions (x, y) of sampled states (shown in orange) given a measurement of
the landmark (shown in blue) for several noise distributions.

We can also compute the probability of a state given a measurement. Once again, since any orienation θ
can correspond to a given position (x, y) and measurement (r, ϕ), the probability of a state (x, y, θ) given a
measurement (r, ϕ) is

p(s | z,m) = p(εr | x, y, ℓx, ℓy) where εr = r −
√

(ℓx − x)2 + (ℓy − y)2

The following figure shows the probability that the robot is at position (x, y) given a measurement (r, ϕ) of
the landmark for several noise distributions.
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Perception-based residual

We now construct the residuals and their Jacobians for several perception models for feature-based maps.

Two distance sensors

Suppose the robot is at pose (x, y, θ) and perceives the measurement (zx, zy) of the relative distances in both
the x and y directions to a landmark with global coordinates (ℓx, ℓy). Assume that each measurement is
corrupted by additive noise (δx, δy). In homogeneous coordinates, the perception model iszx

zy

1


︸ ︷︷ ︸
sensor

measurement in
robot coordinates

=

cos θ − sin θ x
sin θ cos θ y

0 0 1

−1

︸ ︷︷ ︸
transformation from
global frame to robot

frame

ℓx

ℓy

1


︸ ︷︷ ︸

landmark position
in global

coordinates

+

δx

δy

1


︸ ︷︷ ︸

perception noise

Using the expression for the inverse of a homogeneous transformation, the sensor measurement is[
zx

zy

]
= R(θ)T

[
ℓx − x
ℓy − y

]
+
[
δx

δy

]
where R(θ) is the rotation matrix for the angle θ. The residual for this measurement is the perception noise
(δx, δy), which is the following function of the robot pose, landmark location, and measurement:

r =
[
δx

δy

]
=
[
zx

zy

]
−R(θ)T

[
ℓx − x
ℓy − y

]
The residual is affine (linear plus constant) in the robot position (x, y), so this would lead to a linear least
squares problem if we know the orientation θ of the robot and the position (ℓx, ℓy) of the landmark. But
if we do not know these quantities, then the residual is nonlinear in the robot pose and landmark location
(x, y, θ, ℓx, ℓy), so this requires solving a nonlinear least squares problem.

The Jacobian of the residual with respect to the robot pose is

∂r

∂x
=
[

cos θ sin θ (ℓx − x) sin θ − (ℓy − y) cos θ
− sin θ cos θ (ℓy − y) sin θ + (ℓx − x) cos θ

]
and the Jacobian of the residual with respect to the landmark position is

∂r

∂ℓ
=
[
− cos θ − sin θ

sin θ − cos θ

]

Range–bearing sensor

Suppose the robot is at pose (x, y, θ) and perceives the measurement (zr, zϕ) of the relative range and bearing
to a landmark with global coordinates (ℓx, ℓy). Assume that each measurement is corrupted by additive noise
(δx, δy). The perception model for this measurement is then[

zr

zϕ

]
=
[ √

(ℓx − x)2 + (ℓy − y)2

atan2(ℓy − y, ℓx − x)− θ

]
+
[
δr

δϕ

]
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The residual for this measurement is the perception noise, which is the following function of the robot pose,
landmark location, and measurement:

r =
[
zr

zϕ

]
−
[ √

(ℓx − x)2 + (ℓy − y)2

atan2(ℓy − y, ℓx − x)− θ

]
The residual is nonlinear in the robot pose and landmark location (x, y, θ, ℓx, ℓy), so this requires solving a
nonlinear least squares problem.

The Jacobian of the residual with respect to the robot pose is

∂r

∂x
=


ℓx − x√

(ℓx − x)2 + (ℓy − y)2
ℓy − y√

(ℓx − x)2 + (ℓy − y)2
0

−(ℓy − y)√
(ℓx − x)2 + (ℓy − y)2

ℓx − x√
(ℓx − x)2 + (ℓy − y)2

1


and the Jacobian of the residual with respect to the landmark location is

∂r

∂ℓ
= 1√

(ℓx − x)2 + (ℓy − y)2

[
−(ℓx − x) −(ℓy − y)

(ℓy − y) −(ℓx − x)

]
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Bayes Filter

The Bayes filter is a general algorithm for recursively updating an estimate for the state of a dynamical
system given the control actions and measurements. The state of the algorithm is the belief, which is the
probability that the system is in a particular state given all known information. In the Bayes filter, this
belief is updated whenever the system applies a control action or receives a measurement. The Bayes filter
can only be implemented exactly in several particular cases. When it cannot be implemented exactly, the
belief is often approximated in various ways, each of which leads to a particular instance of the Bayes filter.
Some particular instances (or approximations) of the Bayes filter are the Kalman filter and its extended
version, the unscented Kalman filter, the particle filter, the histogram filter, and many more. This chapter
introduces the generic Bayes filter, while the next chapter describes many of its specific instances.

4.1 Belief

In robotics, the belief reflects the robot’s internal knowledge of its own state and that of the environment at
any given time. Robots are not typically able to directly measure their pose. Even with a global positioning
system (GPS), measurements are still noisy. To take this uncertainty into account, we model the belief
of the robot’s state and the map of the environment as the probability of each quantity given all previous
information available. We denote the belief at time t as bt. The quantity to be estimated depends on the
particular problem.
• Localization. In localization, the robot constructs its belief about its state, which is the conditional

probability distribution
bt(st) = p(st | z1:t, a1:t)

where st is the state of the robot at time t, and z1:t and a1:t are the sets of all measurements and control
actions up to time t, respectively.

• Mapping. To construct a map, the robot would estimate the belief of the map,

bt(mt) = p(mt | z1:t, a1:t)

• SLAM. To simultaneously construct a map and localize itself within the map (the SLAM problem), the
robot would estimate the joint belief of both states,

bt(st,mt) = p(st,mt | z1:t, a1:t)

Since the following discussion applies to each of these scenarios, we will study the Bayes filter to estimate
the belief of a generic state s that may refer to the robot state, the map, or both.
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Notation. To simplify the notation, we often drop the subscripts denoting time. Let s denote the state
(at some generic time), and let i denote all information available at that time (which includes all previous
measurements and control actions as well as any prior knowledge about the state). Then belief is then

b(s) = p(s | i)

Now suppose that we gain some new information, such as observing a measurement or applying a control
action. Let i′ denote all available information after gaining this new information (which includes all previous
information i). The posterior belief after incorporating the new information is then denoted

b′(s) = p(s | i′)

To summarize, b(s) denotes the prior belief before obtaining the new information, and b′(s) denotes the
posterior belief after fusing the new information.

4.2 Bayes rule

The Bayes filter is based on Bayes rule which states that any conditional probability is equivalent to

p(x | y) = p(y | x) p(x)
p(y) = likelihood · prior

evidence

This follows directly from the definition of conditional probability since

p(x, y) = p(x | y) p(y) = p(y | x) p(x)

Typically, the random variable x is the quantity that we are trying to estimate, and the random variable y is
the available information. Bayes rule describes the probability that the quantity of interest has some value
x given the available information y using three terms:
• Likelihood. The likelihood p(y | x) is the probability of measuring y given x. Since the measurement y is

known, we can think of this as a function of the unknown x, although it is not a probability distribution
in x.

• Prior. The prior p(x) describes the probability of an estimate before fusing the information.

• Evidence. The evidence p(y) is the probability of the measurement independent of the unknown x. As
a function of x, the evidence is constant so we typically absorb it into a normalizing constant:

p(x | y) = η p(y | x) p(x) where η = 1
p(y)

If we have other background knowledge (such as previous measurements), then we can condition all proba-
bilities in Bayes rule by this extra information:

p(x | y, z) = p(y | x, z) p(x | z)
p(y | z)
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Example (COVID testing). At the height of the COVID-19 pandemic, roughly 2% of the population was
infected with the virus. Suppose the probability that a test is positive given that the person is healthy
(a false positive) is 0.01, and the probability that the test is positive given that the person has the virus
is 0.95. From the law of total probability, the probability of a positive test is

p(positive) = p(positive | virus) p(virus) + p(positive | healthy) p(healthy)
= (0.95)(0.02) + (0.01)(0.98)
= 0.03

We can then use Bayes rule to find the probability of having the virus given a positive test as

p(virus | positive) = p(positive | virus) p(virus)
p(positive) = (0.95) (0.02)

(0.03) = 0.66

In other words, the probability of not having the virus given a positive test is 0.34.

4.3 Description

The Bayes filter iteratively updates the belief as the robot applies control actions and receives measurements.
We describe the perception and actuation updates separately.

Perception update

Given the current belief b(s), the belief after observing a measurement z is

b′(s) = η p(z | s) b(s)

where η is a normalizing constant. The measurement probability p(z | s) describes the probability of
measuring z given state s. The normalizing constant η is chosen such that the belief is a probability
distribution (and therefore has total probability one).

Proof. Let s denote the state before observing the measurement, and let i denote all information that is
available before observing the measurement — such as all past control actions and measurements — so that
the belief is b(s) = p(s | i). Now suppose that we observe the measurement z. Using Bayes rule and the
fact that the system is in the same state before and after the measurement, the belief after observing the
measurement is

b′(s) = p(s | z, i) = p(z | s, i) p(s | i)
p(z | i)

Since the state s completely describes the system (by definition), knowing both the state and the past
information is the same as knowing only the state, so p(z | s, i) = p(z | s). Making these simplifications in
the above equation produces the perception update of the Bayes filter, where the constant is η = p(z | i).

Actuation update

Given the current belief b(s), the belief after applying a control action a is

b′(s′) =
∫
p(s′ | s, a) b(s) ds or

∑
s

p(s′ | s, a) b(s)
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where the integral is used if the state s is continuous and the sum if it is discrete. The transition probability
p(s′ | s, a) describes the probability that the robot is in state s′ given that it was in state s and applied the
control action a.

Proof. As in the perception update, let s denote the state before applying the control action and let i denote
all of the information that is available before applying the control action so that the belief is b(s) = p(s | i).
Now suppose that we apply the control action a, and let s′ denote the state after applying the control action.
Using the law of total probability, the belief after applying the control action (assuming that the state is
continuous) is

b′(s′) = p(s′ | a, i) =
∫
p(s′ | s, a, i) p(s | a, i) ds

Since i denotes all information available before applying the control action, knowing the previous state, the
control action, and all previous information is equivalent to knowing only the previous state and the control
action, so p(s′ | s, a, i) = p(s′ | s, a). Also, knowing the control action tells us nothing about the state before
the action was applied, so p(s | a, i) = p(s | i) = b(s). Making these simplifications in the above equation
produces the actuation update of the Bayes filter.

Initialization

The Bayes filter iteratively updates the belief, which is a probability distribution. To implement the filter,
the belief must be initialized as some probability distribution. There are several typical cases:
• Full information. If we know the initial state exactly, then the initial belief is a point mass at this state.

• No information. If we know nothing about the initial state, then the initial belief is a uniform distribution
over the states.

If we know some information about the initial state, then this information can be encoded in an appropriate
probability distribution (such as a Gaussian).

Markov assumption

The Bayes filter assumes that the state s completely describes the system in that past and future states are
independent conditioned on the current state. This is known as the Markov assumption. There are several
reasons why this assumption may not be valid:
• The robot and/or environment may have unmodeled dynamics. Possible sources of unmodeled dynamics

are moving people in the environment, and only using the pose (without velocity information) as the
state of the robot.

• The probabilistic models p(s′ | s, a) and p(z | s) may be inaccurate.

• The belief may be approximated which leads to approximation errors.
While the Markov assumption does not always hold, the Bayes filter is typically quite robust to such viola-
tions.

Examples

Qualitative example. The following example illustrates the basic concepts of the Bayes filter. Here, a robot
uses a Bayes filter to localize its position in a one-dimensional environment with three doors. The robot has
a sensor (such as a camera) that is able to detect a door, and the robot knows the locations of the doors.
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Initially, the robot does not know anything about its location, so the prior belief is uniformly distributed
across the environment.

The robot then detects a door, and the probability of detecting a door is represented by three normal
distributions centered about each door. After fusing this information using the perception update of the
Bayes filter, the belief is now the same as the sensor model.

The robot then moves to the right. Because actuation diffuses the robot’s information about its location,
the belief after applying the actuation update in the Bayes filter is still three normal distributions but with
larger variance.

After observing another measurement, however, the robot is now much more certain that it is at the second
door since this is where the sensor model best matches the prior belief.
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And finally, the robot continues moving to the right, in which case its belief continues to spread out due to
the noise in the actuation.

Quantitative example. We now illustrate the Bayes filter on a concrete example. Consider a robot that
uses a sensor (such as a camera) to estimate whether a door is open or closed. The robot is also equipped
with a manipulator that it can use to open or close the door.

The state s in this case is a binary variable that indicates whether the door is open or closed. To implement
the Bayes filter, we need probabilistic models for the robot’s perception and actuation.

• Perception model. Suppose the camera system is used in multiple experiments to detect whether the
door is open or closed, and it is found that its measurement z of the state of the door satisfies the
following probabilities:

p(z = open | s = open) = 0.6 p(z = open | s = closed) = 0.2
p(z = closed | s = open) = 0.4 p(z = closed | s = closed) = 0.8
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These probabilities indicate that the sensor more accurately identifies a closed door than an open door.

• Actuation model. The robot can also use its manipulator to push the door open (or do nothing), although
the action is not always successful. After applying the manipulator in multiple experiments to push the
door open, it is found that the control action a satisfies the following probabilities:

p(s′ = open | s = open, a = push) = 1 p(s′ = open | s = closed, a = push) = 0.8
p(s′ = closed | s = open, a = push) = 0 p(s′ = closed | s = closed, a = push) = 0.2

Let s0 denote the initial state of the door. Suppose that the robot initially knows nothing about the state,
so its initial belief has equal probability of being open and closed.

b(s0 = open) = 0.5 and b(s0 = closed) = 0.5

Now suppose the robot senses that the door is open, and let s1 denote the state of the door after observing
this measurement. Using the perception update of the Bayes filter, the belief of the two scenarios is

b(s1 = open) = η p(z = open | s0 = open) b(s0 = open) = η (0.6)(0.5) = 0.3η
b(s1 = closed) = η p(z = open | s0 = closed) b(s0 = closed) = η (0.2)(0.5) = 0.1η

Since the belief must sum to one, the normalizing coefficient is η = 1/(0.3 + 0.1) = 2.5. The belief after
taking into account the measurement is then

b(s1 = open) = 0.75 and b(s1 = closed) = 0.25

Now suppose the robot uses its manipulator to apply the control action a = push, and let s2 denote the
state of the door after applying the control action. Using the actuation update of the Bayes filter, the belief
after applying the control action is

b(s2 = open) = p(s2 = open | s1 = open, a = push) b(s1 = open)
+ p(s2 = open | s1 = closed, a = push) b(s1 = closed) = (1)(0.75) + (0.8)(0.25) = 0.95

and

b(s2 = closed) = p(s2 = closed | s1 = open, a = push) b(s1 = open)
+ p(s2 = closed | s1 = closed, a = push) b(s1 = closed) = (0)(0.75) + (0.2)(0.25) = 0.05

Therefore, the belief after taking into account the control action is

b(s2 = open) = 0.95 and b(s2 = closed) = 0.05

At this point, the robot believes with 95% probability that the door is open. Even with such high certainty,
however, the robot should weigh the probability that it is correct with the cost of being incorrect. Acting on
an a belief that does not accurately reflect the robot and its environment may result in the robot crashing
or causing harm to humans.
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5

Bayesian Filters

The Bayes filter describes how the belief of the state changes over time due to measurements and control
actions. The Bayes filter takes various forms depending on whether the state is continuous or discrete, the
actuation and perception noise is Gaussian or non-Gaussian, the actuation and perception models are linear
or nonlinear, etc.

In the following diagram, specific cases of the Bayes filter are shown in boxes and decisions based on the
scenario are shown in diamonds with the choices for each decision shown in blue.

State

Binary

Binary Filter
Histogram Filter

Belief

Discretize

Particle Filter

Linear

Parameterization

Kalman Filter (KF) Information Filter (IF)

Linearization
Assumed Density

Filter (ADF)

Unscented Kalman Filter (UKF)

Parameterization

Extended Kalman Filter (EKF) Extended Information Filter (EIF)

Discrete Continuous

Yes

No

Parametric (Gaussian)Non-parametric

State

Belief

Moments Canonical

Yes

No

Moment matching

Unscented transform

Taylor series

Moments Canonical

The Bayes filter can only be implemented exactly in several scenarios. The difficulty is in representing the
belief, which assigns a probability to every state. One case in which the Bayes filter can be implemented
exactly are when the state is discrete and finite (the discrete and binary filter), since the belief is then
represented by a finite set of numbers. The other case is when the state is continuous, the actuation and
perception models are both linear, the noise is Gaussian, and the initial belief is Gaussian. In this scenario,
the belief remains Gaussian and can therefore be parameterized by its mean and covariance (Kalman filter)
or by its information vector and information matrix (information filter). All other cases are approximations
of the Bayes filter, with different approximations resulting in different filters.

In this chapter, we describe each of these specific instances of the Bayes filter.

47



ECE 411: Sensor Fusion for Robotics 5 - Bayesian Filters

5.1 Discrete filter

Suppose the statespace is discrete (that is, the state s is a discrete random variable) with a finite number
of values. Label the states as s1, s2, . . . , sn and the corresponding belief probabilities as p1, p2, . . . , pn, that
is, b(si) = pi. Then the Bayes filter can be implemented directly from its general form. In particular, the
discrete Bayes filter computes the updated belief probabilities p′

1, p
′
2, . . . , p

′
n after observing a measurement

z as
p′

i = η p(z | si) pi

where the coefficient η is chosen such that the belief after the measurement sums to one, p′
1 +p′

2 +. . .+p′
n = 1.

Similarly, the belief after applying a control action a is

p′
i =

n∑
j=1

p(si | sj , a) pj

When the statespace is discrete and finite, the belief is represented by the n scalars p1, p2, . . . , pn. This is
one of the few cases in which we can implement the Bayes filter exactly.

5.2 Histogram filter

When the statespace is continuous (that is, the state is a continuous random variable), the actuation update
of the Bayes filter requires computing an integral which cannot typically be computed in closed form. Instead,
one approach is to discretize the statespace and then use the discrete filter. When the discrete filter is applied
to the discretization of a continuous statespace, it is called the histogram filter.

To apply the histogram filter, we approximate the domain of the continuous state s with finitely many
non-intersecting regions that collectively cover the entire space:

dom(s) = s1 ∪ s2 ∪ · · · ∪ sn where si ∩ sj is empty for all i ̸= j

Here, n is the number of regions used to represent the statespace. A straightforward decomposition of a
continuous statespace is a multi-dimensional grid, where each region si is a cell in the grid. We can trade-off
accuracy with computational efficiency through the granularity of the grid.

For each region index i, let pi denote the belief that the continuous state s is in the region si. The histogram
filter approximates the belief of the continuous state with a piecewise uniform distribution that is constant
over each region,

b(s) ≈ pi

|si|
for s ∈ si

where |si| denotes the volume of the region. The belief of the histogram filter is then represented by the
discrete probabilities p1, p2, . . . , pn (the scaling by the volume of the region makes it so that these values
sum to one).
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Implementing the Bayes filter requires the actuation and perception models. When the state is continuous,
these models are typically given in terms of the continuous state and are therefore probability densities. To
implement the histogram filter, we instead need probability mass functions over the discretized state. One
way is to define the discrete probability mass functions as the continuous probability densities evaluated at
a representative point in the region,

p(z | si) ≈ p(z | ŝi) and p(si | sj , a) ≈ η |si| p(ŝi | ŝj , a)

(The probabilistic justification of these formulas is described in Section 4.1.3 of Probabilistic Robotics. We
omit the derivation here as it is quite lengthy and not particularly insightful.) For instance, we could take
ŝi to be the average state in the region,

ŝi = 1
|si|

∫
si

sds

The histogram filter is then the discrete filter applied to the discretization of the statespace using these
discrete actuation and perception models as approximations of the continuous ones. In particular, the
perception and actuation updates of the histogram filter are

p′
i = η p(z | ŝi) pi and p′

i = η

n∑
j=1
|si| p(ŝi | ŝj , a) pj

where the normalizer η is chosen such that the belief sums to one in each case (the normalizers are typically
different for each update).

Decomposition techniques

There are various ways to decompose a continuous statespace into a discrete set of points. Decompositions
may be static or dynamic, depending on whether the discretization changes over time. Static decompositions
are the easiest to implement but are often wasteful (or less accurate) than dynamic ones since they do not
adapt to the specific shape of the belief. One dynamic decomposition technique is the famly of density trees.

An alternative to using a dynamic decomposition is to use selective updating. Instead of updating the belief
at every point in the discretization, we can save computational resources by only updating points that change
significantly from the prior belief.

Decompositions may also be topological or metric. Topological decompositions discretize the statespace by
significant places (or features) in the environment, such as doors, trees, etc. Metric decompositions, on the
other hand, discretize the statespace based on distance, such as every 10cm. Metric decompositions often
have higher resolution than topological decompositions, although this need not be the case.

5.3 Binary filter with static state

The binary filter can be used to estimate a binary state (one with only two possible values) that does not
change over time. A robot may use a binary filter to estimate whether or not a door is open or closed
using multiple measurements, where the state of the door is static. While this could be implemented using a
discrete filter, we will see that the binary filter has a particularly simple form. Later, we will use the binary
filter to estimate an occupancy grid map of the environment.

For a binary state, we denote the two values as s and ¬s. Since the belief is a probability distribution, we
have that b(¬s) = 1− b(s). The state is also static in this case, so there are no control actions and the belief
only depends on the past measurements.
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The binary filter represents the belief as a log odds ratio. The odds of a binary state is the ratio of the
probability of this event divided by the probability of the other event,

odds of s = p(s)
p(¬s) = p(s)

1− p(s)

The log odds of the belief and its inverse are then

ℓ(s) = log b(s)
1− b(s) and b(s) = 1− 1

1 + exp{ℓ(s)}

While discrete probabilities must be in the closed interval [0, 1], the log odds can be any real number.

Given a measurement z, the binary filter updates the log odds of the belief as

ℓ′(s) = ℓ(s) + log p(s | z)
1− p(s | z) − log p(s)

1− p(s)

The binary filter uses the inverse sensor model p(s | z) instead of the usual forward model p(z | s). Since
the state is binary, it is typically easier to find this inverse model. For instance, suppose that the state s
describes whether or a door is open or closed, and the measurement z consists of a camera image of the door.
It is much easier to find a function that describes the probability of the door being open or closed given the
image than to assign a probability over all images.

Proof. Recall that the perception update for the Bayes filter is

p(s | z, i) = p(z | s) p(s | i)
p(z | i)

where i is all information that is available before observing the measurement z. Applying Bayes rule to the
perception model gives

p(z | s) = p(s | z) p(z)
p(s)

Substituting this into the filter update and doing similarly for the opposite event gives

p(s | z, i) = p(s | z) p(z) p(s | i)
p(s) p(z | i) and p(¬s | z, i) = p(¬s | z) p(z) p(¬s | i)

p(¬s) p(z | i)

Using the Markov assumption, the odds of the belief is then

p(s | z, i)
p(¬s | z, i) = p(s | z)

1− p(s | z) ·
p(s | i)

1− p(s | i) ·
1− p(s)
p(s)

Taking the logarithm of the odds of the belief yields the binary filter.

5.4 Linear–Gaussian filters

In this section, we study the Bayes filter in the case where the models are linear and both the noise and
the initial belief are Gaussian. Together, these assumptions enable us to efficiently compute the exact Bayes
filter for a continuous statespace. There are two forms of the Bayes filter in the linear–Gaussian case: the
Kalman filter uses the moments parameterization of a Gaussian random variable (mean and covariance)
while the information filter represents the belief in information form (information vector and information
matrix). When the models are nonlinear, we can approximate the Bayes filter by linearizing the models
about the mean of the current belief and updating the belief using this linearization; this results in the
extended Kalman filter and extended information filter.
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Suppose the actuation and perception are described by the linear models

s′ = As+Ba+ ε ε∼ N (0, Q)
z = Cs+ δ δ∼ N (0, R)

where the actuation noise ε and perception noise δ are Gaussian random variables with zero mean and
covariance Q and R, respectively. We also assume that the initial belief is a Gaussian random variable with
mean µ and covariance Σ,

s0 ∼ N (µ,Σ)

Under these assumptions, the belief is a Gaussian random variable and is therefore parameterized by its
mean and covariance.

Instead of describing the models in terms of the noise parameters, we can also express them in terms of their
probability densities. The actuation and perception models are the Gaussian random variables

p(s′ | s, a) = N (s′;As+Ba,Q)
p(z | s) = N (z;Cs,R)

Notation. We use N (x;µ,Σ) to denote the density of a Gaussian random variable with mean µ and co-
varaince Σ as a function of x,

N (x;µ,Σ) = det(2πΣ)−1/2 exp
(
− 1

2 (x− µ)TΣ−1(x− µ)
)

and we use x ∼ N (µ,Σ) to denote that x is a Gaussian random variable with mean µ and covariance Σ.

Kalman filter

The Kalman filter is the linear–Gaussian filter where the belief is represented in moment form by its mean
and covariance. At each time, the belief is a Gaussian random variable with mean µ and covariance Σ,

b(s) = N (s;µ,Σ)

While this is a continuous probability distribution, it is parameterized by the finite-dimensional variables µ
and Σ. To describe how the belief propagates over time, we will describe how the mean and covariance are
updated based on control actions and measurements.

Before describing the Kalman filter updates, we list a few useful properties of Gaussian random variables.

Proposition. If x ∼ N (µ,Σ), then Ax+ b ∼ N (Aµ+ b, AΣAT).

Proposition. If
[
x
y

]
∼ N

([
µx

µy

]
,

[
Σx Σxy

Σyx Σy

])
, then x | y ∼ N (µx + ΣxyΣ−1

y (y − µy),Σx −ΣxyΣ−1
y Σyx).

Proposition. If x ∼ N (µx,Σx) and y ∼ N (µy,Σy) are independent, then x+ y ∼ N (µx + µy,Σx + Σy).

Actuation update

Suppose the belief is a Gaussian random variable with mean µ and covariance Σ. After applying a control
action a in which the covariance of the actuation noise is Q, the belief is still a Gaussian random variable
with mean and covariance

µ′ = Aµ+Ba and Σ′ = AΣAT +Q
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The updated mean just applies the deterministic actuation model with zero noise to the previous mean. The
updated covariance only depends on the matrix A and covariance Q and is typically larger than the previous
covariance since actuation makes us less certain about the state. The posterior belief is the Gaussian random
variable

b′(s′) = N (s′;Aµ+Ba,AΣAT +Q)

Proof. Using the formula for an affine transformation applied to a Gaussian random variable, the distribu-
tion of the next state without noise is

As+Ba ∼ N (Aµ+Ba,AΣAT)

The actual state update also has additive noise. But the noise is assumed to be independent across time and
independent of the initial state, so we can use the result about the distribution of the sum of two independent
Gaussian random variables to obtain the posterior belief.

Perception update

Now suppose that the belief is a Gaussian random variable with mean µ and covariance Σ and we observe
a measurement z in which the covariance of the perception noise is R. After the measurement, the belief is
still a Gaussian random variable with mean and covariance

µ′ = µ+K (z − Cµ) and Σ′ = (I −KC)Σ

where the matrix K, called the Kalman gain, is given by

K = ΣCT(CΣCT +R)−1

In other words, the posterior belief is

b′(s) = N (s;µ+K (z − Cµ), (I −KC)Σ)

Since the measurement is correlated with the true state, the posterior belief has less uncertainty than the
prior belief before applying the perception update.

Proof. Let b denote the random variable corresponding to the prior belief, which is the random variable for
the state before the measurement conditioned on all previous information. Since the measurement noise is
independent of the previous actuation noise, perception noise, and initial state (by assumption), the belief
and perception noise have the joint distribution[

b
ε

]
∼ N

([
µ
0

]
,

[
Σ 0
0 R

])
The belief and measurement are linear functions of the belief and perception noise,[

b
z

]
=
[
I 0
C I

] [
b
ε

]
Using the result stating that an affine transformation applied to a Gaussian random variable is also Gaussian,
we have that the joint distribution of the belief and the measurement is[

b
z

]
∼ N

([
µ
Cµ

]
,

[
Σ ΣCT

CΣ CΣCT +R

])
The belief after the measurement is the previous belief conditioned on the measurement, b′ = b | z. Using
the result about the conditional expectation of two jointly Gaussian random variables, the belief after the
measurement update is

b′ ∼ N
(
µ+ ΣCT(CΣCT +R)−1(z − Cµ),Σ− ΣCT(CΣCT +R)−1CΣ

)
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Rewriting this in terms of the Kalman gain gives the update to the mean and covariance.

Information filter

Instead of representing the belief by its moments (mean and covariance), we can represent it in information
form using its information matrix and information vector. This is called the canonical parameterization. The
information filter is equivalent to the Kalman filter; it just uses a different parameterization of the Gaussian
belief. However, the Kalman and information filters have different computational complexities that make
each filter faster in certain scenarios.

Canonical parameterization

Before describing the information filter, we first describe the canonical parameterization of a Gaussian
random variable. Recall that a Gaussian random variable has the probability density function

p(x) = det(2πΣ)− 1
2 exp

(
− 1

2 (x− µ)TΣ−1(x− µ)
)

Expanding this out, we have

p(x) = det(2πΣ)− 1
2 exp

(
− 1

2µ
TΣ−1µ

)︸ ︷︷ ︸
constant

exp
(
− 1

2x
TΣ−1x+ xTΣ−1µ

)
This motivates the canonical parameterization of a Gaussian random variable, which is

p(x) = η exp
(
− 1

2x
TΩx+ xTξ

)
where Ω = Σ−1 is the information matrix and ξ = Σ−1µ is the information vector. This is an equivalent
parameterization of a Gaussian, and we can recover the mean and covariance from the information matrix
and information vector as µ = Ω−1ξ and Σ = Ω−1.

We now describe the actuation and perception updates of the information filter, which describe how the
information matrix and information vector are updated based on actions and observations.

Actuation update

Suppose the belief is a Gaussian random variable with information matrix Ω and information vector ξ. After
applying a control action u in which the covariance of the actuation noise is R, the belief is still a Gaussian
random variable with information matrix and vector

Ω′ = (AΩ−1AT +Q)−1 and ξ′ = Ω′ (AΩ−1ξ +Bu)

The actuation update requires inverting two n × n matrices, where n is the dimension of the statespace.
While this operation is quite expensive, it can be performed more efficiently in some cases.

Proof. Since we have already found the updates for the Kalman filter, we can construct the updates for the
information filter by simplying applying the transformation between the two parameterizations. Recall that
the actuation update for the Kalman filter is

µ′ = Aµ+Bu and Σ′ = AΣAT +Q

The information filter update follows directly from the transformation Ω = Σ−1 and ξ = Σ−1µ, or equiva-
lently, µ = Ω−1ξ and Σ = Ω−1.
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Perception update

Now suppose we observe a measurement z in which the covariance of the perception noise is R. After the
measurement, the belief is still a Gaussian random variable with information matrix and vector

Ω′ = Ω + CTR−1C and ξ′ = ξ + CTR−1z

In information form, the update to the belief due to a measurement is additive. A consequence of this is
that measurements affecting only some states require updates to only the corresponding components of the
information form.

Proof. From the Bayes filter, the perception update for the information filter is b′(s) = η p(z | x) b(s). The
perception model and prior belief are both Gaussian random variables, and multiplying two exponentials
sums their exponents, so the density of their product is the exponential

b′(s) = η exp
(
− 1

2 (z − Cs)TR−1(z − Cs)− 1
2 (s− µ)TΣ−1(s− µ)

)
Converting the parameterization of the prior belief to canonical form gives

b′(s) = η exp
(
− 1

2s
TCTR−1Cs+ sTCTR−1z − 1

2s
TΩs+ sTξ

)
Reordering terms in the exponent, we have that

b′(s) = η exp
(
− 1

2s
T(Ω + CTR−1C)s+ sT(ξ + CTR−1z)

)
This is a Gaussian random variable in information form, so we can read off the information matrix and
information vector, which gives the perception update of the information filter.

Comparison

Kalman filter Information filter

Action
µ′ = Aµ+Ba

Σ′ = AΣAT +Q

Ω′ = (AΩ−1AT +Q)−1

ξ′ = Ω′ (AΩ−1ξ +Bu)

Measurement
µ′ = µ+K (z − Cµ)
Σ′ = (I −KC)Σ

Ω′ = Ω + CTR−1C

ξ′ = ξ + CTR−1z

Kalman gain: K = ΣCT(CΣCT +R)−1

• No information. In information form, we can represent having no information as Ω = 0 and ξ = 0.
We can use this to initialize the filter when we have no prior knowledge of the state. In the moments
parameterization, however, we cannot represent having no information since this corresponds to infinite
covariance.

• Computational complexity. The computations required to implement the actuation and perception
updates of the Kalman and information filters can be vastly different. Let n, m, and p denote the
dimensions of the state, action, and measurements spaces, respectively. For the Kalman filter, the
actuation update only requires matrix multiplication, while the measurement update requires inverting
a matrix of size p× p to compute the Kalman gain. For the information filter, the measurement update
only requires matrix multiplication (R−1 may be precomputed), while the actuation update requires
inverting two matrices of size n×n. Therefore, the most computationally efficient filter depends on the
relative sizes of the state, action, and measurements spaces, as well as the relative frequency of actions
and measurements.
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Extended versions

The linear–Gaussian filters are exact instances of the Bayes filter when the models are linear, and the noise
and initial belief are Gaussian random variables. These assumptions imply that the belief is always Gaussian,
since linear functions of Gaussian are also Gaussian. Robots, however, are nonlinear systems. One way to
approximate the Bayes filter for nonlinear systems is to linearize the models about the mean of the current
belief and apply a linear–Gaussian filter to this linearization.

Taylor series expansion

Recall that the Taylor series expansion of a scalar function f : R→ R about a point x̃ ∈ R is

f(x) =
∞∑

n=0

f (n)(x̃)
n! (x− x̃)n = f(x̃) + f ′(x̃)

1! (x− x̃) + f ′′(x̃)
2! (x− x̃)2 + f ′′′(x̃)

3! (x− x̃)3 + . . .

For multi-dimensional functions f : Rn → R, the first-order Taylor series expansion about a point x̃ ∈ Rn is

f(x) ≈ f(x̃) + ∂f(x̃)
∂x

(x− x̃)

where the Jacobian of the function f is the matrix-valued function

∂f

∂x
=



∂f1

∂x1

∂f1

∂x2
. . .

∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
. . .

∂f2

∂xn

...
...

. . .
...

∂fn

∂x1

∂fn

∂x2
. . .

∂fn

∂xn



Example.

f(x1, x2) =
[

−4x2
4x1 − x2

1 − 0.5x2

]
∂f

∂x
(x1, x2) =

[
0 −4

4− 2x1 −0.5

]

Linearization of the models

Suppose the actuation and perception are described by the nonlinear models

s′ = g(s, a) + ε

z = h(s) + δ

where the actuation and perception noise are Gaussian random variables as before. The issue with applying
the Bayes filter directly to this system is that, even if the initial belief is Gaussian, it will not be Gaussian
after the nonlinear actuation or perception updates. We can then no longer represent the belief by its mean
and covariance (or in information form), but must instead represent this (arbitrarily complex) probability
distribution.
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The extended linear–Gaussian filters approximate the nonlinear models with their linear approximations

g(s, a) ≈ g(µ, a) +G (s− µ)
h(s) ≈ h(µ) +H (s− µ)

where the matrices G and H are the Jacobians of the models with respect to the state evaluated at the
current mean of the state and the control action,

G = ∂g

∂x
(µ, a) and H = ∂h

∂x
(µ)

The extended filters are identical to the standard versions except that they use these Jacobians in place of
the linear model matrices. Since the Jacobians are functions of the state and the control action, they must
be evaluated at the current iterates for each update.

For the extended Kalman filter, the actuation update is

µ′ = g(µ, a) and Σ′ = GΣGT +Q where G = ∂g

∂x
(µ, a)

and the perception update is

µ′ = µ+K (z − h(µ)) and Σ′ = (I −KH)Σ where K = ΣHT(HΣHT +R)−1 and H = ∂h

∂x
(µ)

When using the extended linear–Gaussian filters, it is important to remember that the belief is being rep-
resented by a Gaussian random variable even though the true belief is not Gaussian. Gaussians represent
random variables that have a single mean and some amount of deviation that decays with the distance from
the mean. Gaussians are not good approximations of random variables with multiple modes, such as the
belief that a robot is in front of one of two doors with high certainty but low probability of being in between.
It is therefore important to observe enough measurements relative to the number of control actions to keep
the uncertainty in the belief small.

Model Jacobians

Odometry-based actuation model

Consider the odometry-based actuation modelx′

y′

θ′

 =

xy
θ

+

at cos(θ + ar1)
at sin(θ + ar1)
ar1 + ar2

+

δx

δy

δθ


where (x, y, θ) is the robot pose before applying the control action, (x′, y′, θ′) is the pose after the control
action, and (δx, δy, δθ) is the actuation noise. The control action is (ar1 , at, ar2), which describes a transfor-
mation between the two robot poses in which the robot first rotates by ar1 , then translates in the direction
of its heading by at, and then rotates again by ar2 .

The Jacobian of the odometry-based actuation model is

G =



∂g1

∂x

∂g1

∂y

∂g1

∂θ

∂g2

∂x

∂g2

∂y

∂g2

∂θ

∂g3

∂x

∂g3

∂y

∂g3

∂θ


=

1 0 −at sin(θ + ar1)
0 1 at cos(θ + ar1)
0 0 1



In general, the Jacobian is a function of the pose (x, y, θ), but in this case it depends only on the orientation θ.
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Range-bearing perception model

Consider a robot at state (x, y, θ) that uses a sensor to measure the range zr and bearing zϕ to a landmark
at known position (ℓx, ℓy). A simple probabilistic model for the range and bearing measurements is given by[

zr

zϕ

]
=
[ √

(ℓx − x)2 + (ℓy − y)2

atan2(ℓy − y, ℓx − x)− θ

]
+
[
εr

εϕ

]

where the parameters (εr, εϕ) represent perception noise. This models the sensor measurements as the true
values perturbed by additive noise.

The Jacobian of the range-bearing perception model is

H =


∂h1

∂x

∂h1

∂y

∂h1

∂θ

∂h2

∂x

∂h2

∂y

∂h2

∂θ

 =


−ℓx − x

r
−ℓy − y

r
0

ℓy − y
r2 −ℓx − x

r2 −1


where r =

√
(ℓx − x)2 + (ℓy − y)2 is the distance from the robot position (x, y) to the landmark position

(ℓx, ℓy). In general, the Jacobian is a function of the pose (x, y, θ), but in this case it depends only on the
position (x, y). Here, we used the partial derivatives

∂

∂x
atan2(y, x) = −y

x2 + y2 and ∂

∂y
atan2(y, x) = x

x2 + y2

Extensions

• Unknown correspondences. If we do not know the correspondence of a measurement, we can choose
the correspondence that is most consistent with the measurement according to the model,

c = arg max
c

p(z | s,m, c)

• Multi-hypothesis tracking. One of the main limitations of the extended Kalman filter is that it models
the belief as a Gaussian random variable, which has only a single mean. This makes the EKF unsuited
for situations in which there are multiple distinct poses that the robot could be in, such as when there is
ambiguity due to symmetry in the environment. One extension to the EKF that addresses this problem
is to approximate the belief as a mixture of Gaussians,

b(s) = 1∑
i ai

∑
i

ai det(2πΣi)−1/2 exp
(
− 1

2 (s− µi)TΣ−1
i (s− µi)

)
Here, the belief is a convex combination of a set of Gaussian random variables with means µi and
covariances Σi, and ai is the weight of the ith Gaussian. The belief still has a finite parameterization
(although it requires more memory than a single Gaussian) and is able to represent multiple distinct
hypotheses of the state.
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5.5 Unscented Kalman filter

Like the extended Kalman filter, the unscented Kalman filter (UKF) linearizes the models to represent the
belief as a Gaussian random variable. Instead of using a Taylor series approximation, however, the UKF uses
the unscented transform, which is a different way of linearizing the models to obtain a Gaussian posterior.
The unscented transform is in general a better linearization than the series expansion, so the UKF performs
(slightly) better than the EKF. Also, computation of the unscented transform does not require the Jacobians
of the models and is therefore a derivative-free filter.
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Unscented transform

The unscented transform estimates the distribution of a nonlinear function of a Gaussian random variable.
Instead of linearizing the function about the mean as in the EKF, the UKF propagates a set of points through
the nonlinear function and then sets the mean and covariance as a weighted sum of the empirical mean and
covariance.

Let x be a Gaussian random variable with mean µ and covariance Σ, and suppose we want to approximate
f(x) by a Gaussian random variable where f is some nonlinear function. The UKF selects a set of sigma
points Xi and constructs the mean and covariance from the images f(Xi). In particular, the mean and
covariance of f(x) are approximated as

µ′ =
∑

i

wm
i f(Xi) and Σ′ =

∑
i

wc
i

(
f(Xi)− µ′)(f(Xi)− µ′)T

where the weights wm
i and wc

i each sum to one. There are various ways to select the sigma points and the
weights. We now discuss one common method.

Parameters

The unscented transform uses the following parameters: κ ≥ 0 and α ∈ (0, 1] influence how far the sigma
points are from the mean, λ = α2(n+ κ)− n, and β = 2 is the optimal choice for Gaussians.

Sigma points

For an n-dimensional Gaussian random variable, one way to choose the sigma points is

Xi =


µ if i = 0
µ+

(√
(n+ λ) Σ

)
i

if i = 1, . . . , n
µ−

(√
(n+ λ) Σ

)
i−n

if i = n+ 1, . . . , 2n

Here, the subscript i denotes the ith column of the matrix and the square root is the matrix square root.
Since the covariance matrix has dimensions n× n, there are 2n+ 1 sigma points.

Weights

Each sigma point has two weights associated with it, one for computing the mean and the other for the
covariance. One way to choose the weights is

wm
0 = λ

n+ λ
and wc

0 = λ

n+ λ
+ (1− α2 + β) and wm

i = wc
i = 1

2 (n+ λ) for i = 1, . . . , 2n

Actuation and perception updates

The unscented Kalman filter is similar to the extended Kalman filter except that it uses the unscented
transform to approximate the mean and covariance after applying the nonlinear models.
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Actuation update

Suppose that the belief is a Gaussian random variable with mean µ and covariance Σ. After applying a
control action a with actuation noise covariance Q, the updated belief of the UKF is also Gaussian with
mean and covariance

µ′ =
∑

i

wm
i g(Xi, a) and Σ′ =

∑
i

wc
i

(
g(Xi, a)− µ′)(g(Xi, a)− µ′)T +Q

where Xi are the sigma points and wm
i and wc

i are the weights of the unscented transform.

Perception update

Similarly, suppose we observe a measurement z with perception noise covariance R. Propagate the sigma
points through the perception model to obtain Zi = h(Xi), and denote the empirical mean of the measure-
ment as

ẑ =
∑

i

wm
i Zi

Define the empirical covariance between the state x and measurement z as

Σx,z =
∑

i

wc
i (Xi − µ)(Zi − ẑ)T

and define the empirical covariance of the measurement as

S =
∑

i

wc
i (Zi − ẑ)(Zi − ẑ)T +R

The empirical Kalman gain is then K = Σx,zS
−1, and the updated belief of the UKF is a Gaussian random

variable with mean and covariance

µ′ = µ+K (z − ẑ) and Σ′ = Σ−KSKT

5.6 Particle filter

In contrast to the linear–Gaussian filters and the UKF that parameterize the belief as a Gaussian random
variable, the particle filter is a nonparametric filter that approximates the belief by a set of particles, where
each particle is a concrete instantiation of the state. Since the particle filter does not assume that the belief
is Gaussian, it is capable of representing complex belief distributions.

The histogram filter also approximates the belief by a finite set of numbers, but the particle filter differs in
the way the in which these parameters are generated and how they populate the statespace. The particle
filter approximates the belief by a set of random samples drawn from the posterior.

In the particle filter, the belief is approximated by a set of samples of the posterior, called particles. We
denote the particles by

s = {s1, s2, . . . , sn}

where n is the number of particles. Each particle is a sample of the belief, so it represents a hypothesis of
the state. The particle filter approximates the belief by a set of impulses located at each of the particles,

b(s) ≈
n∑

i=1
δ(s− si)
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where δ is the Dirac delta function. The infinite-dimensional belief is approximated by a finite number
of impulses. Using more particles results in a better approximation of the belief at the cost of higher
computational complexity.

Approximating continuous probability distributions by their samples

The particle filter approximates a continuous probability distribution (the belief) by a set of particles that
are sampled from the probability distribution. The following figure illustrates this idea. The figure shows two
probability distributions along with a set of samples from the distribution. A key benefit of using samples
is that this parameterization is able to approximate any probability distribution in the limit as the number
of samples tends to infinity.

For the particle filter, the samples are used to approximate the belief which evolves over time. To implement
the Bayes filter, we need to know how to update the particles when the robot applies an action and makes
a measurement:

b′(s) = η p(z | s) b(s) and b′(s′) =
∫
p(s′ | s, a) b(s) ds

Given a set of particles sampled from the prior belief b(s), how do we obtain samples of the posterior belief
b′(s) for both actuation and perception updates? We do not know the prior belief distribution b(s) (we
only know a set of its samples), so we cannot sample from the posterior distribution directly. The actuation
update is quite simple, while the perception update is significantly more complicated.
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Actuation update

Let s = {s1, s2, . . . , sn} denote the set of particles that represent the prior belief at some point in time. After
applying an action a, the posterior belief is described by a new set of particles s′ = {s′

1, s
′
2, . . . , s

′
n}, where

each updated particle is sampled from the actuation model conditioned on the sample of the prior belief and
the action,

s′
i ∼ p(s′ | si, a)

Applying the update requires sampling from the actuation model.

Importance sampling

To implement the perception update of the Bayes filter, we need to sample from the posterior belief given
samples of the prior belief. One way to sample from one probability distribution given samples from another
distribution is importance sampling. Importance sampling generates samples from a probability distribution
given samples of another distribution.
• The target distribution is the distribution that we want to sample and has density f .

• The proposal distribution is the distribution that we are able to sample and has density g.
In importance sampling, we first sample from the proposal distribution and then resample in a particular
way so that the samples are drawn from the target distribution. Let the set {x1, . . . , xn} be samples drawn
from the proposal distribution g(x). We associate with each sample an importance weight

wi = f(xi)
g(xi)

To be well-defined, this requires that g(x) > 0 whenever f(x) > 0. The weight describes the importance of
each sample. Important samples occur when the proposal density is small and the target density is large,
meaning that they rarely occur in the set of samples of the proposal distribution but they should often occur in
the samples of the target distribution. To generate a set of samples {y1, . . . , yn} from the target distribution,
each sample yi from the target distribution is obtained by drawing the samples {x1, . . . , xn} of the proposal
distribution with replacement with probability proportional to the importance weight {w1, . . . , wn}.

The above figure illustrates importance sampling. Here, the samples from the proposal distribution were
used to generate the samples from the target distribution. The figure below shows the target and proposal
distributions along with the importance weight.
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Perception update

We now use importance sampling to update the particles after a measurement. Here, the proposal distribution
is the prior belief and the target distribution is the posterior belief.

Let s denote the current belief, and suppose we observe a measurement z. Let g(s) = b(s) denote the proposal
distribution and f(s) = b′(s) denote the target distribution. According to the Bayes filter, the posterior belief
is b′(s) = η p(z | s) b(s). Therefore, the importance weights are proportional to the perception model,

w(s) = f(s)
g(s) ∝ p(z | s)

The importance weight wi for each particle i is then proportional to the perception model p(z | si), and the
weights are normalized to sum to one,

wi ∝ p(z | si) and w1 + w2 + . . .+ wn = 1

There are several ways to resample the particles based on the importance weights. Each sampling method
results in some variance of the samples from that of the desired distribution.

• Independent sampling. Draw with replacement particle s′
i with probability wi from the prior samples

s = {s1, . . . , sn} to obtain the posterior samples s′ = {s′
1, . . . , s

′
n}. Since the particles are drawn with

replacement, some of them will be duplicated in the posterior while others will never get sampled. This
pruning process promotes survival of particles that most likely represent the true state.

• Low-variance sampling. Choose a random number r ∈ [0, 1/n], where n is the number of particles.
Then for each index i = 1, . . . , n, select the particle i′ such that

i′ = arg min
i′

{
i′∑

k=1
wk ≥ r + i− 1

n

}

The diagram below illustrates the selection process. The particles are lined up with size equal to their
weight. Then each number r + (i− 1)/n for i = 1, . . . , n points to a single particle that is selected.
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This is a principled approach to achieve low variance sampling that has multiple benefits.

- While the previous approach samples particles independently of each other, low-variance sampling
selects evenly-spaced particles which covers the space of samples in a more systematic fashion.

- Any particle with imporance weight wi at least 1/n is always sampled using this approach, so
particles with large weights are guaranteed to survive. Moreover, if all particles have the same
weight 1/n, then the updated particles are identical to the original set.

- Low-variance sampling has a lower computational complexity than independent sampling, since it
only needs to sample a single random number and then loop through the particles once.

Low-variance sampling can be implemented using the following pseudocode.

Algorithm Low-variance sampling
1: s′ = {} ▷ Initialize the posterior as the empty set
2: r = rand(0, 1/n) ▷ Randomly sample the offset
3: i′ = 1
4: c = w1 ▷ c =

∑i′

k=1 wk

5: for i = 1, . . . , n do
6: U = r + (i− 1)/n
7: while U > c do ▷ Increment i′ until c ≤ U
8: i′ = i′ + 1
9: c = c+ wi′

10: add particle si′ to the posterior s′

11: return s′

Comments

• Particle deprivation. Even when using a large number of particles, there may be no particles near
the true state. While this may be due to not using enough particles, it may also be the case that the
resampling procedure wiped out all particles near the true state. One solution to this is to add random
samples back into the set of particles to improve particle diversity.

• Sampling bias. If n = 1, the perception update has no effect! Also, non-normalized weights are drawn
from n-dimensional space, but normalization reduces the dimension by one.

• Number of particles. There is no general method to determine the number of particles, n. The amount
needed highly depends on the particular application and the structure of the true belief. For instance,
we would need many particles to accurately represent a uniform belief, while we could use a smaller
number of particles to represent a belief that is highly localized to a small region of the statespace.
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Localization

Bayes filters can be used to localize a robot in a known environment. In this case, the state of the filter
is the pose of the robot. The only modification to the Bayes filter is that the actuation and perception
models are also conditioned on the map (which we assume is known). This is a low-dimensional estimation
problem since the pose of the robot is typically only a few variables (three in two-dimensional space and six
in three-dimensional space).

6.1 Properties

• local vs global (position tracking, kidnapped robot problem)

• static vs dynamic environments

• passive vs active

• single-robot vs multi-robot

6.2 Markov localization

Bayes filter applied to localization.
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6.3 EKF localization

Known correspondences

Unknown correspondences

6.4 Multi-hypothesis tracking

6.5 UKF localization

6.6 Grid localization

Given a map of the environment, grid localization uses the histogram filter to estimate the pose of a mobile
robot within the map based on the applied control actions and the observed measurements.

The grid localization algorithm is identical to the histogram filter except that the perception and actuation
models are also conditioned on the map. Explicitly, the perception and actuation updates are

p′
i = η p(z | ŝi,m) pi and p′

i = η

n∑
j=1
|si| p(ŝi | ŝj , a,m) pj

where the normalizer η is chosen such that the belief sums to one in each case (the normalizers are typically
different for each update).

Grid types

The grid of the statespace may be topological or metric. Metric grids discretize the statespace based on
distance, while topological grids discretize the statespace based on significant features in the environment.

The following figure shows the familiar scenario in which a robot localizes its position in a one-dimensional
hallway. Here, the topological grid has only three points corresponding to each of the three doors. The belief
at each point is represented by the size of the circle.
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In contrast to the topological grid, the following figure illustrates the same scenario with a metric grid.
Here, the grid consists of evenly-spaced points along the hallway. The metric grid uses many more points
to represent the belief than the topological grid, although it does not require any significant features in the
environment.
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Computational complexity

For metric grids, the resolution of the grid trades-off accuracy with computational complexity. The following
figure shows the average estimation error and the average localization time as a function of the grid size for
two types of sensors. In general, the estimation error increases and the computational time decreases as the
resolution increases.

The following methods improve the computational complexity so that a smaller grid resolution may be used.
• Model pre-caching. Some sensor models require computationally intensive operations to compute, such

as ray casting or the computation of likelihood fields for distance sensors. Pre-caching the expensive
computations can enable use of a smaller resolution.

• Sensor subsampling. Instead of updating the belief every time a measurement is made, we could ignore
some measurements and only update the belief on a subset of the measurements. We can subsample in
space and/or time.

• Delayed motion updates. Instead of updating the belief every time a control action is applied, we could
integrate the motion model and only update the belief after the location has changed by a significant
amount. This reduces the accuracy since new measurements are fused into the belief using slightly
outdated information, but it also reduces the computational complexity.

• Selective updating. Instead of updating the belief at all points in the grid, we may selectively update
only a subset of grid cells. For instance, we may only update grid cells whose belief changes by more
than some threshold.

Examples

Room

The following figure illustrates grid localization in a room environment. The robot knows the map and
localizes itself within the map using two laser range-finders with the beam model. The environment is a
metric grid with spatial resolution of 15 centimeters and angular resolution of 5 degrees. The robot initially
has no knowledge of its location, so the prior belief is uniformly distributed over the domain.

The plots on the left show the measured distances from the laser range-finder at an array of angles, where
maximum distance readings are not shown. The plots on the right show the belief of the robot in grayscale
after observing the measurement, with objects shown in black and the arrow pointing to the true robot
position. After three scans, the robot is highly certain about its location within the map.
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Office

The next example illustrates mobile robot localization in an office environment using a sonar sensor. Since
the environment is symmetric, the robot must enter a room before it is able to know its pose with certainty.
At reference pose 1, the robot is highly uncertain about its location due to the symmetric nature of the
environment. At reference pose 2, it has traveled far enough that it knows that it is in a hallway instead
of a room. At reference pose 3, it has narrowed its location down to two points that are symmetric with
respect to each other. It is only after the robot enters a room that it is able to eliminate one of the poses to
correctly localize itself within the map.
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Association for the Advancement of Artificial Intelligence (AAAI) competition

The next example illustrates mobile robot localization in a highly-symmetric environment using sonar sensors.
The map of the environment is shown below.

The data set, which consists of odometry and sonar range scans, is shown in (a). The odometry indicates
that the robot moves forward and then turns to the left. The walls of the environment are smooth, which
causes many of the sonar measurements to be corrupted. The belief is updated using the beam model for
the sonar sensors. When the robot is at position A after three sonar scans, the belief is almost uniformly
distributed throughout the environment. After traveling further to position B, the belief is concentrated
around several positions. By the time the robot is at position C, it has correctly localized itself within the
environment.
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Using sensor data to localize itself within the environment, the robot is much more certain about its position
than if it had only relied on odometry data. The figure on the left shows the trajectory of the robot obtained
from only the odometry information, while the figure on the right shows the corrected trajectory using the
measurement data.

6.7 Monte-Carlo localization

Monte-Carlo localization uses a particle filter to localize the pose of a robot within a known map. Each
particle in the particle filter is a hypothesis of the pose of the robot. The proposal distribution is the
actuation model,

xi
t+1 ∼ p(xt+1 | xt, ut)

and the correction uses the perception model,

wi
t = target

proposal ∝ p(zt | xt,m)
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Mapping

Bayes filters can be used to construct a map given measurements of the environment at known poses of
the robot. This is called mapping with known poses. The state of the Bayes filter is the map of the
environment. The only modification to the Bayes filter is that the actuation and perception models are also
conditioned on the (known) pose of the robot. This is a high-dimensional estimation problem since the map
of the environment typically requires many variables to describe, such as the probability of each space being
occupied or the locations of each landmark.

In this chapter, we make the unrealistic assumption that the pose of the robot is known. One application
of such algorithms is in post-processing map estimates after running a SLAM algorithm. Many SLAM
techniques do not generate maps fit for path planning and navigation. After obtaining an approximate
trajectory from a SLAM algorithm, however, we can assume that the trajectory is correct and use it with
the algorithms in this chapter to generate a more accurate map of the environment.

7.1 Problem setup

The posterior probability distribution for the problem of mapping with known poses is the conditional
probability of the map given the entire history of robot poses and corresponding measurements,

p(m | s1:t, z1:t)

The control actions a1:t are not needed since we are assuming that we have access to the robot poses s1:t.

Estimating a map using a mobile robot is challenging for several reasons.
• Size. The space of all possible maps is huge. Maps are often defined over a continuous space, so there

are an infinite number of maps. Even in discretized spaces, a small resolution is required to obtain a
good map which results in a large number of variables.

• Noise. The more noise in the robot’s sensors and actuators, the more difficult it is to construct a map.

• Correspondences. When different places look alike, it is difficult for the robot to establish the correct
correspondence between the measurement and the location in the map. Using incorrect correspon-
dences can lead to catastrophic failure, so it is important for the algorithm to be robust to incorrect
correspondences.

The graphical model for the problem of mapping with known poses is shown below. The known variables are
the robot poses and the measurements shown in gray circles. The unknown quantity to be estimated is the
map of the environment shown in a white circle. The arrows show the direction of causality: the measurement
zt is influenced by the known pose st of the robot and the unknown map m of the environment.
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7.2 Occupancy grid mapping

In occupancy grid mapping, the map of the environment is approximated by a discretization over the space
of locations into a finite set of grid cells. The map is represented by

m = {m1,m2, . . . ,mK}

where mi represents the grid cell with index i and K is the number of grid cells. Each grid cell has an
associated binary value that specifies whether or not the cell is occupied. We let p(mi) denote the probability
that the grid cell with index i is occupied, with 1− p(mi) the probability that it is free.

The space of all occupancy grid maps is huge. For a map with K grid cells, there are 2K possible maps.
(For reference, 2K overflows IEEE double precision when K = 1024.) It is therefore not computationally
tractable to compute the full posterior. Instead, occupancy grid mapping make the following assumption.

Assumption. The occupancy of each grid cell is independent from the occupancy of all other grid cells.

Under this (restrictive) assumption, the posterior factors as the product of its marginal distributions,

p(m | s1:t, z1:t) =
K∏

i=1
p(mi | s1:t, z1:t)

where p(mi | s1:t, z1:t) is the probability that grid cell i is occupied given the robot poses and measurements.
The problem of estimating the posterior over the entire map now reduces to the problem of estimating
the posterior for each individual grid cell independently. The occupancy value of each grid cell is a binary
random variable that (we assume) does not change over time. Therefore, we can estimate this quantity using
a binary filter with a static state.

The binary filter represents the posterior in log-odds form. For the occupancy grid mapping problem, the
log odds of the posterior for the grid cell with index i at time t is the real number ℓt,i given by

ℓt,i = log p(mi | s1:t, z1:t)
1− p(mi | s1:t, z1:t)

Given a measurement zt, the binary filter updates the posterior for each grid cell i in the perceptual field of
zt by

ℓt+1,i = ℓt,i + log p(mi | st, zt)
1− p(mi | st, zt)

− ℓ0,i
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where ℓ0,i is the prior probability of occupancy for grid cell i represented as a log odds ratio,

ℓ0,i = log p(mi = occupied)
p(mi = free) = log p(mi)

1− p(mi)

The posterior can be recovered from its log-odd representation as

p(mi | s1:t, z1:t) = 1− 1
1 + exp(ℓt,i)

Implementation of the occupancy grid mapping algorithm requires the inverse sensor model p(mi | st, zt),
which is the probability that grid cell i is occupied given the measurement zt taken from pose st.

Inverse range finder model

We now discuss an inverse sensor model for a range finder. This model first constructs the sensor cone,
which are all grid cells in the range of the sensor. All grid cells within the sensor cone whose range is close
to the measured range are assumed to be occupied and are assigned an occupancy value ℓocc. All other grid
cells in the sensor cone are assumped to be unoccupied and are assigned an occupancy value ℓfree. All grid
cells outside of the sensor cone are not updated since they do not influence the measurement.

Two examples of the inverse range finder model are shown below. The robot is located at the white circle at
the bottom of the figure and is oriented pointing up. The map is discretized into grid cells as shown. The
black lines indicate the sides of the sensor cone. Black indicates cells that are assumed to be occupied given
the range measurement, white cells are assumed to be free, and gray cells are not updated since they fall
outside of the sensor cone.

A particular instance of the inverse range finder model designed for ultrasonic sensors is as follows. Suppose
the robot is at the pose st = (x, y, θ) and observes the measurement zt = (zr, zϕ). Let zmax denote the
maximum distance of the sensor, α denote the width of an obstacle, and β the angle of the sensor cone. Let
(xi, yi) denote the center of mass of the grid cell with index i. The distance and angle from the robot to the
grid cell is then

ri =
√

(xi − x)2 + (yi − y)2 and ϕi = atan2(yi − y, xi − x)− θ
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Then the probability that a grid cell is occupied given the robot pose and measurement is

p(mi | st, zt) =


ℓocc if zr < zmax and |ϕi − zϕ| ≤ β

2 and |ri − zr| ≤ α
2

ℓfree if zr < zmax and |ϕi − zϕ| ≤ β
2 and zr < ri − α

2
ℓ0,i otherwise

The model returns the prior ℓ0,i whenever the measurement is outside of the sensor cone or the maximum
distance is returned by the sensor. Inside of the sensor cone, the log odds probability ℓocc is used if the
distance between the measured distance and the center-of-mass of the cell is less than half the width of an
object, and the log odds probability ℓfree is used for all other grid cells.

This inverse sensor model uses a cone to describe the spread of the measurement. This model is designed
for ultrasonic sensors, since sound disperses as it travels. A similar model could be constructed for a laser
range finder using a beam instead of a cone to more accurately model the characteristics of light.

This model also only uses the sensor measurement to update the map. An alternative source of information
is the pose of the robot itself. If we know the dimensions of the robot and that the robot is at a certain pose,
then there is very low probability that the space occupied by the robot is also occupied by another object.
Such information can easily be included in the inverse sensor model.

Examples

We now illustrate occupancy grid mapping through several examples. The first example constructs an
occupancy map using an ultrasonic sensor. The figure below shows the prior map obtained after running the
algorithm for a while on the top left. The middle images show local maps generated using the inverse sensor
model described above. The information from these maps is fused together with the prior map to produce
the posterior map shown on the bottom right.
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After running the algorithm for a while, the robot has the more complete occupancy map shown below.

The next example shows the occupancy map obtained from a robot with a laser range finder along with the
corresponding blueprint of the building. While each cell in the occupancy map has an associated probability
of occupancy, the map is almost entirely black (occupied) or white (free) indicating that the robot knows
the map with high certainty. Comparing the occupancy map to the blueprint, the map shows all major
structural elements along with dynamic elements (such as people) that were present during the mapping.
Notice that there are some small discrepancies between the blueprint and the map!
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As pointed out in the beginning of this chapter, one of the main motivations for occupancy grid maps are
to post-process maps obtained from a SLAM algorithm. The following example illustrates the importance
of this post processing. The image on the left shows the raw sensor data after using a SLAM algorithm to
correct the pose information. Dots indicate the detection of an obstacle, such as a person walking in front
of the robot. The image on the right is the occupancy map constructed from the sensor data with the poses
obtained from the SLAM algorithm. By fusing the measurements, the occupancy map is dark near walls
(indicating occupied) and white inside the hallways (indicating free) without the presence of all the dynamic
obstacles. Having such a noise-free map is important during path planning, since a control algorithm using
the raw sensor data would try to avoid all of the many obstacles in the map.

Maximum a posteriori estimation

The occupancy grid mapping algorithm assumes that the occupancy of each grid cell is independent from
that of all other grid cells so that the posterior factors as the product of its marginal distributions over all
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grid cells,

p(m | s1:t, z1:t) =
K∏

i=1
p(mi | s1:t, z1:t)

A possible issue with this assumption is shown in the figure below. Here, the robot is facing a wall and
receives two noise-free sonar range measurements. Because of our assumption, the occupancy map is updated
with a high probability of occupancy along the entire arc of its measured range. The occupancy of these grid
cells cannot be coupled since we assumed that they are independent. Figures (c) and (d) show the updates
due to the two sensor readings, and the results are combined in (e). The overlapping region, however, results
in an inconsistency in the map: the occupancy map suggests that several points extending from the wall may
be occupied, even though such a map is not consistent with the two measurements. A more accurate map
that is consistent with both measurements is shown in (f). This map assumes there is an object somewhere
in the measurement cone, but not necessarily across the entire cone. Because of our assumption that grid
cells are independent, we lose the ability to consider such dependencies when constructing the map.

The standard occupancy grid mapping algorithm sums up positive and negative evidence for occupancy,
which partially resolves this problem. However, the produced occupancy map depends on the relative
frequencies of the two types of measurements which is undesirable.
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Instead of taking the occupancy map as the full posterior, we can reduce the negative effects of our indepen-
dence assumption by choosing the map that has the highest probability. In maximum a priori occupancy
grid mapping, we choose the map as the mode of the posterior.

Definition (MAP estimate). The maximum a posteriori (MAP) estimate of the map given the measure-
ments and poses is the mode of the posterior,

maximize
m

log p(m | s1:t, z1:t)

We choose to maximize the log of the posterior for convenience, as this has the same optimizer as maximizing
the posterior itself (since the logarithm is an increasing function). While we do not directly have access to
the posterior distribution, we can find the MAP estimate as follows.

Theorem. Suppose the prior occupancy p(mi) of each grid cell i is the same, and let

ℓ0 = log p(mi)
1− p(mi)

denote this probability in log-odds form. Then, the MAP estimate is the solution to the optimization
problem

maximize
m

∑
t

log p(zt | st,m) + ℓ0
∑

i

mi

whose variables are the occupancy values mi of each grid cell i.

The MAP estimate is the solution to an optimization problem that depends on the (forward) measurement
model p(z | s,m) and the prior occupancy of a grid cell in log-odds form ℓ0.

Proof. From Bayes rule, the posterior is

p(m | s1:t, z1:t) = p(z1:t | s1:t,m) p(m | s1:t)
p(z1:t | s1:t)

Since the states s1:t do not affect the map and the denominator is constant with respect to the map, the log
of the posterior factors into a map prior and a measurement likelihood,

log p(m | s1:t, z1:t) = log(z1:t | s1:t,m) + log p(m) + constant

Since the measurements are independent when conditioned on the pose and the map (by assumption), the
log-likelihood of the measurements decomposes into the summation

log(z1:t | s1:t,m) =
∑

t

log p(zt | st,m)

This yields the first term in the MAP optimization problem. To obtain the second term, we assume that
the prior occupancy of grid cells are independent from each other. Then, since the occupancy of each grid
cell is a binary random variable, the prior of any map is the product

p(m) =
K∏

i=1
p(mi)mi(1− p(mi))1−mi

where p(m) is the prior for the occupancy of the entire map, mi ∈ {0, 1} is the occupancy of grid cell i, and
p(mi) is the prior probability of occupancy of grid cell i. Assuming that the prior probability of occupancy
of each grid cell is the same (that is, p(mi) is constant with respect to i), we can split the second term into

82



ECE 411: Sensor Fusion for Robotics 7 - Mapping

one that is constant with respect to i, which we can then replace with our generic constant η to obtain

p(m) = η

K∏
i=1

p(mi)mi(1− p(mi))−mi

The logarithm of the prior is then

log p(m) = ℓ0

K∑
i=1

mi + constant

The constant term is constant with respect to the map m and therefore does not affect the MAP estimate,
so we can omit it from the optimization problem without changing the optimal map. Substituting these
expressions for the log of the posterior produces the given expression.

Algorithm

Finding the maximum a posteriori occupancy grid map requires solving a nonconvex optimization problem,
which is difficult in general. A simple heuristic approach is as follows. We initialize the map with no obstacles
by setting mi = 0 for all i. We then repeatedly iterate over the grid cells and “flip” the occupancy of the
grid cell if it increases the posterior. For grid cell i, we set

mi = arg max
k∈{0,1}

k ℓ0 +
∑

t

log p(zt | st,m with mi = k)

Each grid cell in the resulting map is either occupied (mi = 1) or unoccupied (mi = 0). At each iteration
of this algorithm, the value of the posterior cannot get smaller, but could possibly get bigger (if flipping the
occupancy of grid cell i increases the posterior). While this algorithm is not guaranteed to find the maximum
a posteriori estimate of the map, it typically works well in practice.

In contrast to the standard occupancy grid mapping algorithm, the MAP occupancy grid mapping algorithm
uses the forward measurement model p(z | s,m).

Example

An example of maximum a posteriori occupancy grid mapping is shown below, where a robot travels in a
hallway past a door. Figure (a) shows the noise-free range measurements, some of which detect the open
door while others reflect off the wall. The results of standard occupancy grid mapping are shown in (b),
which fails to detect the open door. The maximum a posteriori map is shown in (c), which clearly shows the
walls with the open door in the top wall. This map is clearly better for robot navigation, as it allows the
robot to travel through the open door. The map in (d) shows the residual uncertainty, which is the amount
by which flipping the occupancy of the grid cell decreases the log-likelihood. This map clearly indicates the
uncertainty of objects behind obstacles.
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Limitations

The proposed algorithm for computing the maximum a posteriori occupancy grid map has several limitations.
• The MAP estimate only returns the mode of the posterior, which provides no information as to the

certainty in the map. We can approximate the uncertainty by computing the sensitivity of the log-
likelihood with respect to each individual grid cell.

• The MAP estimate is computed using all of the pose and measurement information, and cannot be
updated incrementally as in the Bayes filter. One way to improve convergence of the algorithm is to
initialize the map with the result of the standard occupancy grid mapping algorithm.

• Flipping a single grid cell does not affect all measurements. A more computationally efficient algorithm
takes this into account to avoid redundant computations.
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Simultaneous Localization and Mapping

The localization and mapping problems in robotics are inherently interdependent. To construct a map using
sensor data, the robot must know where it is in the environment. But to know where it is, the robot must
have a map. In some applications, the robot may be given a map (such as a robotic manipulator knowing the
positions of nearby objects) or its location (such as using GPS). When these are both unknown, however, the
robot must simultaneously estimate its position while constructing the map. In this chapter, we introduce
simultaneous localization and mapping (SLAM), one of the fundamental problems in robotics.

8.1 Overview

There are two main types of SLAM problems depending on what the robot seeks to estimate. The online
SLAM problem is to estimate the posterior probability distribution of the current robot pose and map given
the measurements and control actions:

p(xt,m | z1:t, u1:t)
Algorithms for online SLAM are often incremental in that they process measurements and control actions
as they occur and then discard the measurements after they are used to update the estimate. Alternatively,
the full SLAM problem is to estimate the posterior probability distribution of the entire trajectory of robot
poses and map given the measurements and control actions:

p(x1:t,m | z1:t, u1:t)

Since p(x) =
∫
p(x, y) dy, the online SLAM posterior can be obtained from the full SLAM posterior by
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integrating out the past states,

p(xt,m | z1:t, u1:t) =
∫
· · ·
∫ ∫

p(x1:t,m | z1:t, u1:t) dx1 dx2 . . . dxt−1

We can view the information in the SLAM problem as a graph, where the nodes in the graph are variables
(poses, measurements, control actions, or the map) and edges indicate causal relationships between the
variables. This graphical model for the online and full SLAM problems is shown above. White circles
indicate unknown variables (robot poses and the map), while shaded circles indicate observed variables
(measurements and control actions). The dark regions indicate the unknown variables that are estimated in
each problem. The edges indicate that the robot pose is influenced by the control actions and previous pose,
while the measurements are influenced by the robot pose and the map.

8.2 Properties

Beyond that of localization and mapping separately, simultaneous localization and mapping is difficult for
several reasons.
• Cycles. Cycles occur when the robot returns to a location where it has already been. Depending on

the length of the trajectory, the actuation noise may be very large making it difficult to realize that the
two places are in fact the same.

8.3 Algorithms

The basic idea behind SLAM algorithms is for the robot to simultaneously estimate its belief of the robot
state and the map of the environment using a Bayes filter:

bt(st,mt) = p(st,mt | z1:t, a1:t)

Some straighforward SLAM algorithms that use this approach are the following.

EKF SLAM

SLAM via the extended Kalman filter.

Known correspondences

Unknown correspondences

Sparse extended information filter

SLAM via the sparse extended information filter

Fast SLAM

SLAM via the particle filter
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Grid-based fast SLAM

Graph SLAM

Graph-based SLAM is an algorithm for the full simultaneous localization and mapping problem. A graph
is a mathematical object that consists of nodes and edges. In graph-based SLAM, the nodes of the graph
correspond to poses of the robot and features in the map. The robot creates an edge in the graph between
two poses if they are adjacent in time (so that the robot has odometry measurements relating the two poses),
or if the robot observes the same part of the environment from both poses. The poses of the robot and the
landmark locations are then obtained by solving a nonlinear weighted least squares problem.

Problem setup

Suppose we are given a set of measurements z1:t and a set of control variables a1:t, where the notation z1:t
denotes the set of variables {z1, z2, . . . , zt} and similarly for a1:t. The ultimate goal for the full SLAM problem
would be to compute the posterior p(s0:t,m | z1:t, a1:t). This is a high-dimensional probability distribution,
and it is typically too difficult to obtain the entire posterior. Instead, we will find the robot poses and map
that are most consistent with the data. In particular, we will find the robot poses and map with the highest
probability given the control actions and measurements. This is known as the maximum a posteriori (MAP)
estimate since it maximizes the posterior after taking into account the available information. To find the
MAP estimate, we first factor the full SLAM posterior as the product of a prior and the actuation and
perception models at each time.

Theorem (Full SLAM posterior). The full SLAM posterior is the product of the prior with the actuation
and perception models at each time,

p(s0:t,m | z1:t, a1:t) = η p(s0,m)
t−1∏
τ=0

p(sτ+1 | sτ , aτ ) p(zτ | sτ ,m)

where the parameter η is a normalizing constant.

Proof. Using Bayes rule, the posterior factors as

p(s0:t,m | z1:t, a1:t) = η p(zt | s0:t,m, z1:t−1, a1:t) p(s0:t,m | z1:t−1, a1:t)

By definition of the state, the first probability simplifies to the measurement model

p(zt | s0:t,m, z1:t−1, a1:t) = p(zt | st,m)

Similarly, we can factor the second probability as

p(s0:t,m | z1:t−1, a1:t) = η p(st | s0:t−1,m, z1:t−1, a1:t) p(s0:t−1,m | z1:t−1, a1:t)
= η p(st | st−1, at) p(s0:t−1,m | z1:t−1, a1:t−1)

Substituting these back into the expression for the full SLAM posterior yields the recursive update

p(s0:t,m | z1:t, a1:t) = η p(zt | st,m) p(st | st−1, at) p(s0:t−1,m | z1:t−1, a1:t−1)

The final expression is then found by iterating over time t.

Instead of maximizing the posterior in this form, it will be more convenient to represent it in information
form, which is the negative logarithm of the posterior. In information form, the full SLAM posterior is the
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summation

I(s0:t,m | z1:t, a1:t) = I(s0,m) +
t−1∑
τ=0

I(sτ+1 | sτ , aτ ) +
t−1∑
τ=0

I(zτ | sτ ,m) + constant

Assumption (Gaussian noise). We now assume that the prior, actuation model, and perception model are all
normally distributed with known distribution.
• The initial robot pose and map are independent random variables, so the prior p(s0,m) factors as

p(s0) p(m). We assume that we have no prior knowledge of the map, so p(m) is constant. We also
assume that the prior robot pose is normally distributed with zero mean and information matrix Ω0,
which we typically take as a large multiple of the identity matrix. This corresponds to a high certainty
that the robot starts at the origin of the global coordinate system1.

• The actuation model p(st+1 | st, at) is normally distributed with mean g(st, at) and covariance matrixRt.

• The perception model p(zt | st,m) is normally distributed with mean h(st,m) and covariance matrix Qt.

Recall that the information form of a Gaussian random variable is a quadratic function centered about the
mean with curvature given by the information matrix. Therefore, under these assumptions, the posterior in
information form is

I(s0:t,m | z1:t, a1:t) = ∥s0∥2
Ω0

+
t−1∑
τ=0
∥sτ+1 − g(sτ , aτ )∥2

R−1
τ

+
t−1∑
τ=0
∥zτ − h(sτ ,m)∥2

Q−1
τ

+ constant

Since the negative logarithm is a monotonically decreasing function for nonnegative numbers (which prob-
abilities are), the poses and map that maximize the posterior are those that minimize the information of
the posterior. We can also ignore the constant in the optimization since it does not change the solution.
Therefore, the robot poses and map that are most consistent with the control actions and measurements
under the Gaussian assumption on the noise are the solution to the optimization problem

minimize
s0:t, m

∥s0∥2
Ω0︸ ︷︷ ︸

anchor

+
∑

τ

∥sτ+1 − g(sτ , aτ )∥2
R−1

τ︸ ︷︷ ︸
actuation residual

+
∑

τ

∥zτ − h(sτ ,m)∥2
Q−1

τ︸ ︷︷ ︸
perception residual

This is a least squares problem in which the cost is the sum of three terms: the anchor, the actuation
residual, and the perception residual. The prior anchors the solution to make it unique (without the prior,
we could shift all of the robot poses and the map by any amount to obtain another solution with the same
least squares error).

Information graph

We can visualize the SLAM information using a graph, where nodes in the graph are robot poses (triangles)
and landmark locations (stars). Edges in the graph indicate available information that relates two nodes.
Edges between robot poses (solid lines) represent information from the actuation model, while edges between
a robot pose and landmark (dashed lines) represent information from the perception model. Associated with
each edge is a residual and an information matrix of the associated noise. The graph SLAM algorithm seeks
to find the robot poses and landmark locations that are most consistent with the available information by
solving a weighted least squares problem, where the weights are the information matrices of the actuation
and perception noise.

1We could instead enforce that the initial robot pose is exactly the origin, but this would lead to a constrained optimization
problem, which is in general more difficult to solve.
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Linearization. Denote the set of all robot poses and all landmarks in the map for the full SLAM problem
(which is typically a very high-dimensional vector!) as

x = (s0, s1, . . . , st, ℓ1, ℓ2, . . . , ℓN )

Let r(x) denote the residual of the least squares problem, which consists of all the actuation and perception
residuals along with the anchor constraint. If the actuation and perception models are nonlinear (as they
typically are), then the posterior is not Gaussian, or equivalently, the posterior in information form is not
quadratic. By linearizing the residual about a point xk, however, the posterior in information form is
approximately quadratic,

I(s0:t,m | z1:t, a1:t) ≈ 1
2x

TΩ(xk)x− xTξ(xk) + constant

where Ω(xk) and ξ(xk) are the information matrix and information vector linearized about the point xk.
Since the information form of the posterior is the sum of many terms, the information matrix and information
vector of the posterior linearized about a point x have the additive structure

Ω(x) =
∑
i,j

Ωij(x) and ξ(x) =
∑
i,j

ξij(x)

where i and j are any two nodes in the graph that are connected by an edge. These nodes may both be poses
for an actuation-based edge, or they may be a pose and a landmark for an observation-based edge. This
illustrates that information is an additive quantity, so the total information is the sum of all the individual
information resulting from the prior and the actuation and perception models at each time.

The matrix Ωij(x) and vector ξij(x) are the information matrix and information vector of the linearized
posterior for the edge connecting nodes i and j. From studying the least squares problem, we know that
these are given in terms of the residual rij(x), its Jacobian Jij(x), and the weight matrix Wij as

Ωij(x) = Jij(x)TWijJij(x) and ξij(x) = Jij(x)TWijrij(x)

Later in this chapter, we will see how to compute the residual and its Jacobian for various types of actuation
and perception models. In each case, the weight matrix is the information matrix of the noise.

Sparsity of the information matrix. The information matrix and information vector due to a single edge
have a particular structure. In particular, they are sparse, meaning that only a few of the elements are
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nonzero. Understanding this structure will guide us in how to update the full information matrix and vector
from those for a single edge.

Since the residual between two nodes i and j only involves those nodes, the Jacobian is zero with respect to
all other nodes in the graph. For instance, if the nodes are both robot poses, then the Jacobian has the form

Jij =
[
0 . . . 0 ∂rij

∂si
0 . . . 0 ∂rij

∂sj
0 . . . 0

]
where the first term corresponds to the position of si in the global decision vector x, and similarly for the
second term. Likewise, if node i is a pose and node j is a landmark, then the Jacobian is

Jij =
[
0 . . . 0 ∂rij

∂si
0 . . . 0 ∂rij

∂ℓj
0 . . . 0

]
Due to this structure of the Jacobian, the information matrix and information vector for an edge connecting
nodes i and j are only nonzero in the corresponding elements. In particular, the information is all zero
except for the rows and columns corresponding to the ith and jth nodes,

Ωij =


(∂rij

∂si

)T
Wij

∂rij

∂si

(∂rij

∂si

)T
Wij

∂rij

∂sj(∂rij

∂sj

)T
Wij

∂rij

∂si

(∂rij

∂sj

)T
Wij

∂rij

∂sj

 and ξij =


(∂rij

∂si

)T
Wijrij(∂rij

∂sj

)T
Wijrij


The structure of information is illustrated in the following figure. The top shows the information vector,
and the bottom shows the information matrix. Each term in the sum represents the local information
corresponding to a single edge, where red blocks indicate information between the two edges while blue
indicates zero values with no information. Since information is additive, these individual pieces of information
get summed to produce the total information vector and matrix. The information vector is in general full,
since there is some information about every robot pose and landmark location. The information matrix,
however, is sparse. This is due to the fact that the robot does not have information connecting every two
nodes. Actuation connects consecutive poses, but not poses that are far away from each other. Likewise,
the robot does not typically measure every landmark while at every pose. Also, the bottom right block of
the information matrix is always diagonal, because measurements only connect landmark locations to robot
poses, not landmarks to other landmarks.
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The following illustrates how the information matrix evolves over time as more edges are added to the graph.
The first figure shows an edge connecting the robot pose x1 with landmark m1 and the resulting sparse
information matrix. The only nonzero entries in the information matrix corresponding to this constraint are
the entries between the pose x1 and landmark m1.

As the robot moves in the environment and observes measurements, it gains information that fills in the
information matrix. If the robot moves to a new pose x2, for instance, then there is now an actuation-
based edge from pose x1 to pose x2, which results in terms connecting the two poses that are added to the
information matrix.

After applying several control actions and making several measurements, the information matrix gets filled
with the available information connecting the robot poses and landmark locations.

91



Part IV

Planning and Control



9

Planning and control

A robot must ultimately decide what actions to take. So far, we have studied robot perception, which is
the problem of estimating certain quantities — such as the robot pose and map of the environment — from
sensor measurements. We now consider how to use this information to choose appropriate actions.

9.1 Motivation

Planning and control must take into account uncertainty. Consider the following scenarios:

• A a robotic manipulator grasps and assembles parts arriving in random configuration on a conveyer belt.
The configuration of a part is unknown at the time it arrives, yet the optimal manipulation strategy
requires knowledge of the configuration. How can a robot manipulate such pieces? Will it be necessary
to sense? If so, are all sensing strategies equally good? Are there manipulation strategies that result in
a well-defined configuration without sensing?
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• An underwater vehicle shall travel from Canada to the Barents Sea. Shall it take the shortest route
through the North Pole, running risk of loosing orientation under the ice? Or sould it take the longer
route through open waters, where it can regularly localize using GPS, the satellite-based global posi-
tioning system? To what extent do such decisions depend on the accuracy of the submarine’s inertial
sensors?

• A team of robots explores an unknown planet, seeking to acquire a joint map. Shall the robots seek each
other to determine their relative location to each other? Or shall they instead avoid each other so that
they can cover more unknown terrain in shorter amounts of time? How does the optimal exploration
strategy change when the relative starting locations of the robots are unknown?
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9.2 Example

To illustrate the effects of uncertainty on motion planning, consider the following simple scenario in which
a robot wants to move from a starting location to a goal location. If control actions are deterministic, then
the robot does not need to sense its environment but can simply move straight through the narrow corridor
to the goal location.

The previous trajectory indicated only how to get from the starting position to the goal position. We can
also construct a plan that indicates how to get from any starting position to the goal position. This is
illustrated as follows, where the blue arrows indicate the direction the robot should move from that position.

Both of the previous scenarios assumed that the robot knows its full state exactly and can apply deterministic
control actions. In a slightly more realistic scenario, now suppose that control actions are non-deterministic,
so there is some uncertainty about how a given control action will change the state of the robot. In this case,
it is not enough to have a single desired trajectory from start to goal since the non-deterministic control
actions may move the robot off the desired trajectory. We now need to specify what the robot should do no
matter what state it is in. The optimal plan is indicated below, where it is now safer for the robot to take
the longer path through the wider corridor to the goal location.
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We now relax the assumption that the robot knows its exact position. Suppose the robot only knows its
starting location but not orientation, and it has no sensor to detect that it has arrived at the goal location.
The robot must now rely on sensor measurements to estimate its location within the map. Due to the
symmetry of the environment, there is a large amount of uncertainty in the robot’s precise location until it
sees either of the ends of the environment from which it can determine its location. The following control
policy may be used to move the robot from any state to the nearest corner so that it can localize itself in
the map.

Once the robot knows its pose within the map, it can then apply a different control policy to navigate to the
goal location. The following figure illustrates two possible trajectories, depending on which corner it used
for localization.

Some key aspects from this example:
• The robot must actively gather information, and to do so it may have to take a suboptimal route

(compared to a robot that has full information).

• The optimal plan depends on the amount of uncertainty in both actuation and perception.
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9.3 Separation and controller structure

Robots must decide how to choose actions in the face of uncertainty. A control policy specifies what action
the robot should take given its current information. The general structure of a control policy is as follows.

Information
Control
policy

Action

Here, the control policy depends on all known information, so the robot plans in information space. As the
robot gains information, the policy must determine how to use this new information as well as all of the
previous information to choose an action. Needing to store all known information can be computationally
challenging for robots with a finite amount of memory. Instead, we could split the control policy into two
components: estimation and control. This structure is shown below, were a Bayes filter is used to estimate
the belief, and the control policy chooses actions based on this belief.

Information
Bayes
filter

Control
policy

Action
Belief

Here, the robot plans under uncertainty by generating plans in belief space. The belief space is the space of
all possible beliefs that the robot may have. A control policy then maps any belief to an appropriate control
action. In this way, the control policy chooses the best action based on the robot’s current belief.

As we have seen, the belief is often a high-dimensional probability distribution (in fact, infinite dimensional
for continuous state spaces). To simplify the design of the control policy, another possible controller structure
is to choose actions based only on the most likely state. This structure is shown below, where the maximum
likelihood estimator chooses the state with the highest probability in the belief.

Information
Bayes
filter

Maximum likelihood
estimator

Control
policy

Action
Belief State

As we impose more structure on the control policy, designing the controller becomes more simple, but
the performance that the controller achieves may diminish. For instance, choosing actions based on the
most-likely state enables the use of simple control policies that map states to control actions, but is highly
suboptimal in many scenarios. For instance, such a controller will never choose to explore the environment
to gain more information. To illustrate this idea, let’s go back to the previous example. In that case, there
are only two different beliefs: either the robot has localized itself and therefore knows the goal location, or it
has no clue. This leads to the two distinct control policies shown, one for each belief. While there are only
two beliefs in this simple example, more realistic scenarios often have a large number of beliefs.

The belief space typically has high dimensionality. This is because there are typically many more beliefs
than states. For the simplest case in which the state space is discrete and finite, the belief space is usually
continuous with finitely many dimensions. As we have seen before in estimation, working with continuous
spaces is often problematic. It is even worse when the state space is continuous, since the belief is then
usually continuous with infinitely many dimensions!
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Discrete Control

We first consider the simplest scenario in planning and control in which the state space is discrete, the robot
knows the state exactly, and the control actions are deterministic. This formulation is also known as graph
search, which is a mathematical framework that models decision making over graphs.

10.1 Problem setup

The components of the discrete control problem are as follows:
• A discrete state space S, where each element s of S is a state.

• For each state s, an action space A(s) of possible actions a available from state s.

• A state transition function f that constructs the next state s′ given that the robot was in state s and
applied action a according to the state transition equation s′ = f(s, a).

• A stage cost ℓ(s, a) associated with applying action a from state s.

• An initial state sI .

• A set of goal states SG.
Since everything is deterministic, we only need to find a single trajectory from the initial state to the goal set
(as opposed to a function that specifies what action to take from any state). In the terminology of control,
we are finding an open-loop controller. Our goal is summarized as follows.

Choose a sequence of control actions that minimize the cumulative cost over the trajectory from the
initial state to a goal state.

More precisely, we seek to find a sequence of actions a0, a1, . . . , aK−1 and states s0, s1, . . . , sK that move the
system from the initial state to a goal state with minimum cumulative cost:

minimize
K−1∑
k=0

ℓ(sk, ak)

subject to sk+1 = f(sk, ak) for k = 0, 1, . . . ,K − 1
ak ∈ A(sk) for k = 0, 1, . . . ,K − 1
s0 = sI

sK ∈ SG
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Example (Grid world). A canonical example of discrete control is a robot moving in a grid world as
shown below. Here, the domain is discretized into a grid in which dark cells are occupied (walls) and
white cells are open (free space). The state space is the set of all white cells, the set of possible actions
from a given state are the set of adjacent white cells, the state transition function is f(s, a) = s+ a in
which the state s and action a are interpreted as two-dimensional integer vectors, and the stage cost is
one to move to an adjacent cell and zero to remain stationary. For a particular initial and goal state,
the objective is to find the shortest path through the maze.

Example (Rubik’s cube). A Rubik’s cube is an array of 3× 3× 3 smaller cubes, where each face of the
smaller cubes one one of six colors. The state space consists of all configurations of the cube, and an
action consists of rotating a 3 × 3 slice by a quarter turn (so there are 12 possible actions from any
state). The stage cost is one per move. Given an initial configuration, the goal is to find the shortest
sequence of actions that returns in to the configuration in which each face is a single color (the goal
state).
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State transition graph

The discrete control problem can be posed in the context of searching over a graph. A graph is a mathematical
object that consists of nodes (or vertices) and edges. Each edge connects two nodes together. A graph is
undirected if all edges go both directions, that is, if there is an edge from node v to w, then there is also an
edge from w to v. Otherwise, the graph is directed and edges point from one node to the other, which is
drawn as an arrow. A weighted graph also associates a weight to each edge.

The state transition graph is a weighted directed graph whose nodes are states. There is a directed edge
from state s to s′ if and only if there exists an action a ∈ A(s) such that s′ = f(s, a), in which case we say
that s′ is a neighbor of s. The weight of the edge is the cost ℓ(s, a) of applying action a from state s. Each
state has a set of neighboring states. The initial and goal sets are designated as special nodes in the graph.

Edge costs for occupancy grid map. Suppose we are given an occupancy grid map, where each grid cell
has an associated proabability of occupancy. One way to define the weight for an edge connecting nodes
s and s′ is the distance between the nodes (which is constant for an evenly-spaced grid) plus a constant
multiple of the occupancy probability. For instance, the weight associated with an edge from s to s′ by
taking action a could be

ℓ(s, a) =
{
∥s− s′∥+ η p(s′) if p(s′) ≤ 0.5
∞ otherwise

where p(s′) is the probability that grid cell s′ is occupied and η > 0 is a positive constant. This will prohibit
the trajectory from passing through grid cells that are most-likely occupied, and will penalize moving through
grid cells with higher probability of occupancy.
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Properties

An algorithm is a systematic search procedure that is used to find a solution to the discrete control problem.
Algorithms can have various properties.

• Systematic. An algorithm is systematic if, for a finite graph, every vertex in the graph is eventually
searched, so the algorithm will correctly determine whether or not the goal set is reachable in a finite
amount of time. For countably infinite graphs, we cannot search all states in a finite amount of time.
Instead, an algorithm is systematic if it detects a feasible path in finite time if one exists (and otherwise
may run forever). This requires that the algorithm explores every reachable vertex in the limit as time
goes to infinity. To be systematic, the algorithm should keep track of which states have been explored
to avoid revisiting the same states over and over again.

The difference between a systematic and non-systematic search is illustrated above. On the left, the
algorithm only searches in a single direction, which may prevent the algorithm from finding the goal
state even when it is close by. On the right, the search expands in wavefronts to ensure eventually
finding a goal state.

• Optimal. An algorithm is optimal if it finds a sequence of control actions to transfer the system from
the initial state to a goal state with minimal cumulative cost, which is the sum of the stage costs over
the trajectory.

Cumulative costs

Many algorithms use two cumulative costs to guide the search for a trajectory from the initial to goal states.
Each of the following cumulative costs is a function that maps states to real numbers.

• Cost-to-come. For each state s, the cost-to-come C(s) is the sum of the stage costs over a trajectory
from the initial state to s. In general, this depends on the trajectory taken from the initial state to s.
When this is the optimal route (in that it has the minimal cost-to-come), we denote it as C∗(s).

• Cost-to-go. For each state s, the cost-to-go G(s) is the sum of the stage costs over a trajectory from
state s to a goal state. In general, this depends on the trajectory taken from state s to a goal state.
When this is the optimal route (in that it has the minimal cost-to-go), we denote it as G∗(s).
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Example (Traveling in Ohio). To illustrate the problem setup, consider traveling between major cities
in Ohio. In this scenario nodes in the graph are cities, and edges connecting two cities indicate the
distance in miles to drive between the cities. The edges are undirected since we can always travel either
direction between two cities. We could have used other costs as well, such as the amount of time that
it takes to travel between two cities or the amount of emissions produced by the travel.

Suppose that the initial node is Oxford. The cost-to-come to Cleveland if we first travel to Columbus
and then through Akron is the sum of the costs along the route:

C(Cleveland) = 118 + 126 + 39 = 283

The optimal cost-to-come, however, is obtained by taking the route through Dayton, in which case the
optimal cost-to-come is

C∗(Cleveland) = 42 + 212 = 254

Now suppose that Toledo is the goal node. The cost-to-go from Cincinnati traveling through Oxford
and then Dayton is

G(Toledo) = 40 + 42 + 149 = 231

The optimal cost-to-go is obtained by traveling straight from Cincinnati to Dayton,

G∗(Toledo) = 54 + 149 = 203
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10.2 General forward search

One way to explore the state space is to start from the initial state and work outward until a goal state is
found. This technique is called forward search, and there are many instances of this general idea. At each
point in time, there are three kinds of states:

• Unvisited: States that have not yet been explored.

• Alive: States that have been visited and have unvisited neighbors.

• Dead: States that have been visited and for which every neighbor has also been visited. Such states
have been completely explored and cannot contribute any more information to the search.

These sets of states form a partition of the state space in that every state is always in exactly one category.

S = unvisited ⊕ alive ⊕ dead

Initially, all states are unvisited. To search for a path from the initial state to the set of goal states, the
first step is to explore the initial state, in which case it becomes alive. The set of alive states is stored in a
priority queue, Q. These are the set of states that we still need to explore. We then loop until all states are
dead (in which case the queue is empty) and select the first state from the queue according to its priority
function. If this state is in the goal set, then we have succeeded in finding a path from the initial state to a
goal state so we return success. Otherwise, we add all unvisited neighbors of the current state to the queue
and mark them as visited. This general algorithm is described below.

Algorithm General forward search
1: Insert sI to Q and mark sI as visited ▷ States in Q are alive
2: while Q is not empty do
3: Let s be the first state in Q ▷ Explore state s
4: if s ∈ SG then
5: return SUCCESS
6: for all a ∈ A(s) do
7: s′ ← f(s, a)
8: Set state s with action a as the parent of s′ ▷ Needed to reconstruct the path
9: if s′ is unvisited then

10: Insert s′ to Q and mark s′ as visited
11: else
12: Resolve duplicate s′

13: return FAILURE

States that have never been added to the queue are unvisited, states that are in the queue are alive, and
after states are removed from the queue they are visited but not alive and therefore dead.

The frontier is the set of states that we have seen but have not yet explored, which are the alive states
(those that are in the queue). For each particular implementation, it will be insighful to see how the frontier
expands as the algorithm searches the state space.

In general, it can be quite costly to check whether or not a state has been visited since this requires looping
over both alive and dead states.

If the algorithm terminates with success, then we can obtain the sequence of control actions that transfer the
system from the initial state to the goal set as follows. Start with the goal state that caused the algorithm
to terminate. In line 8 of the algorithm, we marked its parent as another state s and action a, meaning that
we need to apply action a from state s to move to the goal state. Now lookup the parent of state s to find
its parent and the corresponding action. Continuing to do so, we obtain the sequence of states and actions
that lead from the initial state to a goal state.
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Line 12 resolves duplicate states s′ that have already been visited. For instance, when a state is reached
multiple times, the algorithm may update the cost function used to sort the priority queue.

10.3 Particular forward search algorithms

While the previous section described the general structure of forward search, we now describe several specific
implementations of this general procedure. Each algorithm is obtained by defining a particular priority
function for the queue.

Breadth-first search

Breath-first search (BFS) uses a First-In-First-Out (FIFO) queue. The priority function for this queue
prioritizes states based on when they arrived at the queue, with the first state to arrive having the highest
priority. This causes the frontier to expand uniformly away from the initial state, which is why the algorithm
is called breadth-first search. Since the frontier expands outward from the initial state, we do not need to
do anything to resolve duplicate states.

Properties

• The first feasible trajectory to the goal found by breadth-first search uses the smallest number of steps.
This is because all plans that have k steps are exhausted before investigating plans with k + 1 steps.
This trajectory may not be optimal, however, since the smallest number of state transitions does not
necessarily have the smallest cost (it is optimal if all edge weights are equal).

• Since the frontier expands uniformly from the initial state, breadth-first search is systematic.

• The asymptotic running time of BFS is O(|V | + |E|), where |V | is the number of vertices (or states)
and |E| is the number of edges (or state transitions).

104



ECE 411: Sensor Fusion for Robotics 10 - Discrete Control

Example (BFS on traveling Ohio). To illustrate breadth-first search, consider applying it to the traveling
Ohio example. Suppose that we start in Oxford and want to travel to Akron. The algorithm keeps
track of states that are visited and alive. We assume that nodes are added to the queue in alphabetical
order. The explored node and sets of visited and alive nodes at each iteration are as follows.

Explored Visited Alive
Oxford Oxford

Oxford Oxford, Cincinnati, Columbus, Dayton Cincinnati, Columbus, Dayton
Cincinnati Oxford, Cincinnati, Columbus, Dayton Columbus, Dayton
Columbus Oxford, Cincinnati, Columbus, Dayton, Akron Dayton, Akron
Dayton Oxford, Cincinnati, Columbus, Dayton, Akron, Cleveland, Toledo Akron, Cleveland, Toledo
Akron Oxford, Cincinnati, Columbus, Dayton, Akron, Cleveland, Toledo Cleveland, Toledo

At this point, Akron has been expanded, so we have found a path from Oxford to Akron and the
algorithm terminates.

Depth-first search

Depth-first search (DFS) uses a Last-In-First-Out (LIFO) queue — or stack — in which the last state to
enter the queue is the first to be expanded. This results in an aggressive exploration of the state space that
dives quickly into the graph, in contrast to the uniform expansion of BFS. As before, there is nothing extra
to do to resolve duplicate states.

Properties

• Depth-first search is suboptimal in that the first feasible trajectory to the goal set may not use the
smallest number of steps or have the smallest cost.

• Depth-first search is systematic for finite state spaces but not for countably infinite state spaces since
it may expand a single direction and never search large portions of the state space, even in the limit as
the number of iterations tends to infinity.

• The asymptotic running time of depth-first search is also O(|V |+ |E|).
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Example (DFS on traveling Ohio). To illustrate depth-first search, consider applying it to the traveling
Ohio example. Suppose that we start in Oxford and want to travel to Akron. The algorithm keeps
track of states that are visited and alive. We assume that nodes are added to the queue in alphabetical
order. The expanded node and sets of visited and alive nodes at each iteration are as follows.

Expanded Visited Alive
Oxford Oxford

Oxford Oxford, Cinci, Columbus, Dayton Cinci, Columbus, Dayton
Dayton Oxford, Cinci, Columbus, Dayton, Cleveland, Toledo Cinci, Columbus, Cleveland, Toledo
Toledo Oxford, Cinci, Columbus, Dayton, Cleveland, Toledo Cinci, Columbus, Cleveland
Cleveland Oxford, Cinci, Columbus, Dayton, Cleveland, Toledo, Akron Cinci, Columbus, Akron
Akron Oxford, Cinci, Columbus, Dayton, Cleveland, Toledo, Akron Cinci, Columbus

At this point, Akron has been expanded, so we have found a path from Oxford to Akron and the
algorithm terminates.

Greedy best-first search

Instead of using a first-in-first-out or last-in-first-out queue, greedy best-first search uses a heuristic as the
priority function used to select the next state to explore. A heuristic is an approximate measure of how close
a state is to the goal, which is used to guide the algorithm in the right direction. Ideally, the heuristic would
be the true distance from the state to the goal (the cost-to-go), but we do not know this ahead of time since
it is what we are trying to compute! Instead, a heuristic should approximate the optimal cost-to-go while
being easy to compute. Some examples of heuristics in a two-dimensional environment are the Euclidean
and Manhattan distances.

Greedy best-first search is a forward search algorithm in which the priority function used to sort the queue
is the heuristic.
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Properties

• Greedy best-first search is suboptimal in that the first feasible trajectory to the goal set will not neces-
sarily use the smallest number of steps.

• Greedy best-first search is not systematic, since it may leave large portions of the state space unexplored
in infinite state spaces.

• The asymptotic running time of greedy best-first search is also O(|V |+ |E|).

Dijkstra’s algorithm

Dijkstra’s algorithm uses the best available cost-to-come as the priority function for the queue. The cost-to-
come is computed incrementally during the execution of the algorithm and is the best known cost-to-come
given the nodes that have been explored. The cost-to-come is updated when a better cost-to-come is found.
Initially, C(sI) = 0 since there is no cost to move from the initial state to itself, and all other states have an
infinite cost-to-come. When the algorithm explores a state s′ from a previous state s with action a, we have
found a path to s′ through s. We do not know, however, that we arrived at s′ in the optimal way (there
may be a better route that we have not yet explored). If the newly explored state s′ already exists in the
queue, then this new path may be more efficient than the previous path, or it may not. When resolving
duplicate states, if the cost-to-come using the new path through node s to s′ is less than the previously
stored cost-to-come for node s′, then the algorithm updates the cost-to-come and also updates the parent of
node s′ as state s with action a. In particular, the cost-to-come is updated as the minimum of the current
cost-to-come (which is infinite if a path has not yet been found to the state) and the cost-to-come through
state s (which is the cost-to-come to state s plus the cost of transitioning from state s to state s′ by applying
action a),

C(s′) ← min{C(s′), C(s) + ℓ(s, a)}

Once a state s is removed from the queue, it is then dead and therefore cannot be reached at a lower cost.
At this point, its value C(s) is the optimal cost-to-come, C∗(s).

Properties

• Dijkstra’s algorithm is optimal in that it always find the trajectory from the initial state to the set of
goal states with minimal cumulative cost.

• Dijkstra’s algorithm is systematic.

• When the priority queue is implemented using a Fibonacci heap, the asymptotic running time of Dijk-
stra’s algorithm is O(|V | log |V |+ |E|).

• If all edge costs are equal, then Dijkstra’s algorithm is equivalent to breadth-first search.

In addition to finding the optimal trajectory to the goal set, Dijkstra’s algorithm finds the optimal trajectory
from the initial node to all other nodes.

A∗

While Dijkstra’s algorithm is optimal, it may be slow since it places no priority on searching for the goal (it
simply terminates when the goal is found). The algorithm A∗ (pronounced “A-star”) combines the benefits
of Dijkstra’s algorithm and greedy best-first search by using a heuristic to guide its search toward the goal
while remaining optimal.
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A∗ is exactly like Dijkstra’s algorithm, except that the priority function used to sort the queue is the cost-
to-come plus a heuristic for the cost-to-go,

C(s) + h(s)
If the heuristic h(s) underestimates the optimal cost-to-go G∗(s) (which is unknown), then A∗ is optimal.
We can typically find a heuristic by relaxing some of the problem constraints, as this leads to a lowerbound
on the optimal cost-to-go. For navigating in a two-dimensional space, for instance, simple heuristics are the
Euclidean and Manhattan distances, which ignore the constraints caused by obstacles.

It is useful to consider the two extreme cases:
• If the heuristic is the optimal cost-to-go, then A∗ will directly take the optimal path to the goal. This is

the best scenario, but it is unrealistic since we do not know the optimal cost-to-go (or else the problem
would be solved).

• If the heuristic is zero, then A∗ is equivalent to Dijkstra’s algorithm, which is still optimal but makes
no preference in searching towards the goal and is therefore slow.

Properties

• A∗ is both optimal and systematic if the heuristic underestimates the optimal cost-to-go, meaning that
0 ≤ h(s) ≤ G∗(s) for all states s.

• When the priority queue is implemented using a Fibonacci heap, the worst-case asymptotic running
time of A⋆ is O(|V | log |V |+ |E|).

The following table summarizes the forward search algorithms and their properties.

Algorithm optimal systematic complexity priority function
Breadth-first search no1 yes O(|V |+ |E|) arrival time (first-in-first-out)
Depth-first search no no O(|V |+ |E|) arrival time (last-in-first-out)
Greedy best-first search no no O(|V |+ |E|) h(s)
Dijkstra’s algorithm yes yes O(|V | log |V |+ |E|) C(s)
A∗ search yes2 yes2 O(|V | log |V |+ |E|) C(s) + h(s)
1 BFS is optimal in terms of the number of state transitions (steps), but not necessarily the cost
2 A∗ is both optimal and systematic if the heuristic underestimates the optimal cost-to-go

10.4 Value iteration

Value iteration iteratively computes the cost-to-go — also known as the value function — from each state
over trajectories of increasing length. The previous algorithms only expanded a single state at each iteration
and iteratively expanded the search space. In contrast, value iteration updates the cost-to-go for all states
at each iteration.

Let G∗
k denote the optimal cost-to-go over trajectories of length k. Our goal is then to compute G∗

∞, the
optimal cost-to-go over trajectories of any length. Value iteration iteratively computes G∗

k. The cost-to-go
is suboptimal until the number of iterations k is equal to the length of the optimal trajectory (if it exists).
At this point the cost-to-go cannot be improved from any state and is therefore stationary, meaning that
G∗

k+1 = G∗
k. If this occurs, then the algorithm has found the optimal cost-to-go.

To start, let’s consider the (very) simple case of planning over a trajectory of length zero. There are no
actions to take, so the optimal cost-to-go over trajectories of length zero is zero for states in the goal set and
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infinite otherwise,

G∗
0(s) =

{
0 if s ∈ SG

∞ otherwise

Let’s now construct the optimal cost-to-go over trajectories of length one. For a state s for which there exists
an action a ∈ A(s) such that s′ = f(s, a) is in the goal set, the cost-to-go is the stage cost ℓ(s, a). If there
does not exist such an action, then the cost-to-go is infinite.

G∗
1(s) =

{
ℓ(s, a) if there exists a ∈ A(s) such that f(s, a) ∈ SG

∞ otherwise

We can express this in terms of the optimal cost-to-go over zero-length trajectories as

G∗
1(s) = min

s∈A(s)
ℓ(s, a) +G∗

0(f(s, a))

This says that the optimal cost-to-go from state s is the minimum of the optimal cost-to-go over all neigh-
boring states s′ plus the cost to get from state s to s′. Likewise, for each state s, the optimal cost-to-go
for trajectories of length two is the minimum of the optimal cost-to-go for trajectories of length one over all
neighboring states plus the cost to get to the neighbor. Continuing this recursion, the optimal cost-to-go
over trajectories of length k+ 1 can be written in terms of the optimal cost-to-go over trajectories of length
k as

G∗
k+1(s) = min

a∈A(s)
ℓ(s, a) +G∗

k(f(s, a))

Since the cost-to-go is a function of the state, this formula must be used to compute G∗
k+1(s) for all s. Value

iteration uses this formula to recursively compute the cost-to-go along trajectories of increasing length.

Termination. If the stage costs are all nonnegative, then the optimal cost-to-go over trajectories of length
k becomes stationary after a finite number of iterations. At this point, G∗

k is the optimal cost-to-go G∗ and
the algorithm terminates. We can construct an upper bound on the number of iterations as follows. For
every state s, there either exists a trajectory that reaches the goal with finite cost or there is no solution. For
each state for which there exists a plan that reaches the goal, consider the number of stages in the optimal
trajectory. The maximum number of stages taken from all states that can reach the goal is an upper bound
on the number of iterations before the cost-to-go becomes stationary.

Principle of optimality. Value iteration is based on the principle of optimality. This general principle states
that portions of optimal plans are also optimal. To see this, consider an optimal trajectory s1, s2, . . . , sn from
state s1 to sn. For any i and j, the portion of the trajectory from si to sj must also be the optimal path
between si and sj . This general principle allows us to break up the problem of finding an optimal trajectory
into smaller subproblems of finding optimal trajectories between closer states. The value iteration recursion
states that the optimal cost-to-go from state s is the optimal cost-to-go from state s′ plus the cost to get
from s to s′ (by applying action a).

Steady state. If there exists a trajectory from the initial state to a goal state, then G∗
k becomes stationary

after a finite number of iterations and is equal to the optimal cost-to-go G∗. In this case, the optimal
cost-to-go satisfies the Bellman equation

G∗(s) = min
a∈A(s)

ℓ(s, a) +G∗(f(s, a))

This is a functional equation whose variable is the optimal cost-to-go G∗ (which is a function of the state).
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Optimal controller. Value iteration constructs the optimal cost-to-go, but does not directly construct the
optimal trajectory. We can recover the optimal action (from any state) using the optimal cost-to-go. For
each state s, the optimal action a is the action that minimizes the immediate cost ℓ(s, a) of taking action a
from state s plus the optimal cost-to-go from the next state f(s, a),

arg min
a∈A(s)

ℓ(s, a) +G∗(f(s, a)
)

This is a state feedback controller in that it chooses an action based on the state.

Value iteration consists of the following iterations:

G∗
k+1(s) = min

a∈A(s)
ℓ(s, a) +G∗

k(f(s, a)), G∗
0(s) =

{
0 if s ∈ SG

∞ otherwise

• G∗
k is the optimal cost-to-go over trajectories of length k.

• If there exists a trajectory from the initial state to a goal state, then value iteration converges after
a finite number of iterations, in which case G∗

k is the optimal cost-to-go G∗.

• The optimal cost-to-go satisfies the stationary Bellman equation

G∗(s) = min
a∈A(s)

ℓ(s, a) +G∗(f(s, a))

• The optimal state-feedback controller chooses the action a ∈ A(s) that achieves the minimum in
the Bellman equation.

• Value iteration is optimal, systematic, and has O(|S| |A|) time complexity.

Example

Consider the following five-state graph, where sI = a and SG = {d}.

The cost-to-go at each iteration of the algorithm is shown below. The cost-to-go is the same at iterations
three and four, so at this point the algorithm terminates and this is the optimal cost-to-go.

a b c d e

G∗
0 ∞ ∞ ∞ 0 ∞

G∗
1 ∞ 4 1 0 ∞

G∗
2 6 2 1 0 ∞

G∗
3 4 2 1 0 ∞

G∗
4 4 2 1 0 ∞

G∗ 4 2 1 0 ∞
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To recover the optimal actions, consider starting in state a. The action that leads to b is chosen since
2 + G∗(b) = 4 is better than 2 + G∗(a) = 6 (the 2 comes from the action cost). From state b, the optimal
action leads to c, which produces a total cost 1 +G∗(c) = 1. Similarly, the next action leads to d which is a
goal state.
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Markov Decision Processes

We now extend our discrete control problem formulation to include uncertainty in the control actions. We
still assume that the state is known. This problem formulation is called a Markov decision process (MDP),
which is a mathematical framework that models decision making under partial uncertainty.

11.1 Problem formulation

The components of a Markov decision process are as follows:
• A state space S, where each element s of S is a state.

• For each state s, an action space A(s) of possible actions a available from state s.

• A state transition probability p(s′ | s, a) that describes the probability of being in state s′ given that
the robot was in state s and applied action a.

• A trajectory length T that may be finite or infinite.

• A stage reward r(s, a) associated with applying action a from state s, and a terminal reward rT (s)
associated with being in state s at the end of the trajectory (only applies to trajectories of finite length).

• A discount factor γ that indicates how much to discount future rewards (we need γ < 1 for infinite-
length trajectories to ensure that the expected cumulative cost is finite, but allow γ = 1 for finite-length
trajectories).

Since state transitions are now stochastic, we need to find a controller or policy that specifies what action
to take from any state, which we denote as

π : S → A(s)

For any state s, the controller specifies that the robot should take action a = π(s). In the terminology
of control, this is a closed-loop controller. Furthermore, the trajectory is now a stochastic process, and so
the cumulative reward is a random process that depends on the particular state transitions. We therefore
consider the expected cumulative reward over the trajectory.

Our goal is to find a controller that maximizes the expected cumulative reward over the trajectory from
any initial state.

The reason for the terminal action and the discount factor is so that we can search over trajectories of finite
or infinite length. When searching over trajectories of a finite length, we can use the terminal reward to
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reward the system for ending in certain states. For instance, we could set

rT (s) =
{
∞ if s ∈ SG

0 otherwise

to reward being in a set of goal states SG at the last iteration. When searching over trajectories of infinite
length, we need a discount factor to ensure that the expected cumulative reward is finite (since it is an
infinite sum). In this case the terminal reward has no effect.

The expected cumulative reward over a trajectory of length T from state s and following policy π is

V π
T (s) = E

[
T −1∑
t=0

r(st, at) + rT (sT )
]

or V π(s) = E
[ ∞∑

t=0
γt r(st, at)

]

where the expectation is over the trajectory obtained from the initial state s0 = s and policy π.

Remark. Here we maximize reward while we previously minimized cost. These formulations are equivalent
when the cost is the negative reward, ℓ(x, u) = −r(x, u). The field of reinforcement learning is optimistic
and maximizes reward, while the field of controls is pessimistic and minimizes cost.

11.2 Value iteration

We previously studied various algorithms for the case in which state transitions are deterministic. Many of
these algorithms (such as A∗), however, do not easily generalize to the stochastic setting. The algorithm
that does naturally generalize is value iteration. As we will see, value iteration may also be used when the
control actions are stochastic and the state cannot be directly measured.

Before, we used Gt to denote the cost-to-go over trajectories of length t. Since we are now maximizing
reward, we use Vt for the value function, which is the expected cumulative reward over trajectories starting
from time t, and we use V for the value function over the entire planning horizon. For example, the optimal
value function from time t is

V ∗
t (s) = max

at,...,aT −1
E

[
T −1∑
k=t

γk r(sk, ak) + rT (sT )
]

where the expectation is taken over the state transitions st, . . . , sT beginning from state st = s and applying
the sequence of actions at, . . . , aT −1. We want to compute the optimal value function over the entire planning
horizon, which is V ∗

0 .

As before, let’s consider planning over trajectories of length zero, that is, starting at the end of the planning
horizon. There are no actions to take at this point, so the optimal value function from time T is just the
terminal reward,

V ∗
T (s) = rT (s)

To construct the value iteration, let’s write the optimal value function starting at time t− 1,

V ∗
t−1(s) = max

at−1,at,...,aT

E

[
T −1∑

k=t−1
γk r(sk, ak) + rT (sT )

]

where st−1 = s and the expectation is over the sequence of states st, . . . , sT . We will see that we can
construct this recursively in terms of the optimal value function from time t. To do so, we first separate the
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maximization over the first action at−1 and the expectation over the next state st to obtain

V ∗
t−1(s) = max

at−1
max

at,...,aT

Est
Est+1,...,sT

[
T −1∑

k=t−1
γk r(sk, ak) + rT (sT )

]

The actions at+1, . . . , aT do not affect the state st, so we can swap the order of the maximization and
expectation to obtain

V ∗
t−1(s) = max

at−1
Est

[
max

at,...,aT

Est+1,...,sT +1

[
T −1∑

k=t−1
γk r(sk, ak) + rT (sT )

]]

The first term r(st−1, at−1) is now independent of the inner maximization and expectation, so we can pull
it out.

V ∗
t−1(s) = max

at−1
Est

[
r(st, at) + γ max

at,...,aT

Est+1,...,sT +1

[
T −1∑
k=t

γk−1 r(sk, ak) + rT (sT )
]]

The inner term is the maximum expected cumulative reward over a trajectory of length T starting from
state s1, which is precisely V ∗

T (s1). Therefore, we have the recursion

V ∗
t−1(s) = max

a0
Es1

[
r(s0, a0) + γ V ∗

T (s1)
]

where the expectation is over the next state s1 obtained from being in state s = s0 and applying action a0.
To summarize, value iteration consists of the following recursion:

V ∗
t−1(s) = max

a∈A(s)

{
r(s, a) + γ Es′∈S

[
V ∗

t (s′)
]}
, V ∗

0 (s) = rT (s)

where the expectation is over all next states s′ given the current state s and control action a. Since the reward
is deterministic, the state space is discrete, and the next state s′ has the probability density p(s′ | s, a), we
can write the expectation explicitly as follows.

V ∗
t−1(s) = max

a∈A(s)

{
r(s, a) + γ

∑
s′∈S

V ∗
t (s′) p(s′ | s, a)

}
, V ∗

0 (s) = rT (s)

To construct a controller over trajectories of finite length, we can set the discount factor to γ = 1. To
construct a controller over trajectories of infinite length, the discount factor must be strictly less than one
γ < 1 and the terminal reward is irrelevant.

Convergence. Unlike the deterministic case, value iteration for stochastic problems may only converge in
the limit as the number of iterations tends to infinity. This happens where there are cycles in the graph with
probabilities in the open interval (0, 1). As the algorithm iterates, the value function considers longer and
longer trajectories that may traverse the cycle more and more times, each time with a reduced probability.
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To illustrate the asymptotic convergence in the stochastic setting, consider the following problem, where
each edge has a reward of 1 with the transition probability shown on the graph. With probability 1/2, the
reward is 3. With probability 1/4, the reward is 7. With probability 1/8, the reward is 11. Each time
another cycle is taken, the reward increases by 4 and the probability is cut in half. The expected cumulative
reward is then the infinite summation

V (xI) = 3
( 1

2
)

+ 7
( 1

4
)

+ 11
( 1

8
)

+ . . . =
∞∑

i=0

3 + 4i
2i+1 = 7

The value function converges to a finite value, but only in the limit as the length of the path tends to infinity.

Stochastic value iteration may only converge asymptotically as the number of iterations tends to infinity.

Optimal controller. The value function implicitly describes a controller, which specifies which action to
take from any state. The optimal controller is the argument that achieves the minimum in the value function
recursion. This is a state feedback controller in that it chooses an action based on the state. If the value
function is optimal, then so is the controller.

The value function implicity defines the state-feedback controller

π(s) = arg max
a∈A(s)

{
r(s, a) + γ

∑
s′∈S

V (s′) p(s′ | s, a)
}

11.3 Applications

We now provide several applications of Markov decision processes1.

Fishing

Consider fishing in a specific area over time. Our goal is to maximize the expected cumulative reward from
fishing the area, where we get paid each year based on the number of fish that are caught and sold. Fishing
too much results in a large immediate reward, but this will result in a low fish population that limits the
future reward.

The search graph for this problem is shown below. In contrast to the deterministic case, each edge of the
search graph now has three associated quantities: the control action a, the stage reward r(s, a), and the
transition probability p(s′ | s, a).

1https://towardsdatascience.com/real-world-applications-of-markov-decision-process-mdp-a39685546026
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The states are the possible fish populations, which for simplicity are empty, low, medium, and high. From
any non-empty fish population, the possible actions are to fish or not to fish. From the empty state, the
only option is to re-breed the fish. There is no reward for choosing not to fish, while the reward for fishing
increases with the size of the population. Re-breeding on the other hand has a large negative reward since
it costs money. Fishing has a high probability of reducing the population, no probability of increasing the
population, and a small probability that the population remains the same.

Value iteration. We can apply value iteration to find the policy that maximizes the expected cumulative
discounted reward. The value function for the low state is updated as follows:

V ∗
t+1(Low) = max

{
$5 + γ

[
0.75Vt(Empty) + 0.25Vt(Low)

]
, γ
[
0.3Vt(Low) + 0.7Vt(Medium)

]}
With γ = 0.95, the value function (rounded to whole numbers) over multiple iterations is shown in the
following table, where the last row is the optimal value function (to within a small tolerance).

Iteration Empty Low Medium High
0 0 0 0 0
1 -200 5 10 50
2 -195 8 38 75
...

...
...

...
...

439 272 497 535 572

The optimal policy is as follows:

Empty Low Medium High
Re-breed Do not fish Do not fish Fish

The optimal controller indicates that the best strategy is to wait until the population is high and then fish.
The reason to always fish when the population is high is that future rewards are discounted, so it is better
to fish now and get the immediate reward than to not fish since that cannot lead to a better state.

Game show

Consider playing a game show that consists of 10 rounds of questions of increasing difficulty. In each round,
the contestant chooses whether to answer the question or quit. Correctly answering the question earns a
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reward and moves the contestant to the next round, while answering incorrectly results in losing everything.
At any point, the contestant may quit and keep the current reward.

Here, the reward for taking an action from a state is stochastic, as it also depends on whether the contestant
answers the question correctly or not. The generalization of our problem formulation to this setting is
straightforward.

11.4 Linear–Quadratic–Regulator

The linear–quadratic–regulator (LQR) problem is to find a control policy for a linear dynamical system that
optimizes a quadratic cost function. In particular, consider the system dynamics

xt+1 = Atxt +Btut + wt

where wt ∼ N(0, σ2I) is Gaussian noise. Given matrices Qt and Rt, consider the optimal value function
that is the minimum expected cumulative cost,

V ∗
T (x0) = min

u0,...,uT −1
E

[
xT

TQTxT +
T −1∑
t=0

xT
t Qtxt + uT

t Rtut

]

where the expectation is over the process noise. We will show that the optimal value function is a quadratic
function of the state, meaning that there exists a matrix Pt such that

V ∗
t (x) = xTPtx

Over trajectories of length zero, the optimal value function is the terminal cost, so P0 = QT . Now suppose
that the optimal value function over trajectories of length t is quadratic. We will show that the optimal
value function over trajectories of length t+ 1 is also quadratic. From value iteration,

V ∗
t+1(x) = min

u
(xTQt+1x+ uTRt+1u) + Ew

[
V ∗

t (Atx+Btu+ w)
]

Since the optimal value function over iterations of length t is quadratic (by assumption), the last term is

Ew

[
V ∗

t (Atx+Btu+ w)
]

= Ew

[
(Atx+Btu+ w)TPt(Atx+Btu+ w)

]
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Expanding the quadratic and using that the noise w is zero mean with covariance σ2I, the expectation
becomes

Ew

[
V ∗

t (Atx+Btu+ w)
]

= (Atx+Btu)TPt(Atx+Btu) + σ2 tr(Pt)

Therefore, we can rewrite value iteration as

V ∗
t+1(x) = min

u

[
x
u

]T [
AT

t PtAt +Qt+1 AT
t PtBt

BT
t PtAt BT

t PtBt +Rt+1

] [
x
u

]
+ σ2 tr(Pt)

The last term does not depend on the action u. In general, the quadratic optimization problem

min
u

[
x
u

]T [
Q S
ST R

] [
x
u

]
has optimal value xT(Q − SR−1ST)x with optimizer u = −R−1STx. Applying this result to the above
problem, we have that the optimal value function is quadratic with

Pt+1 = AT
t PtAt +Qt+1 −AT

t PtBt

(
BT

t PtBt +Rt+1
)−1

BT
t PtAt

and the optimal policy is the linear state-feedback controller πt(x) = Ktx where

Kt = −
(
BT

t PtBt +Rt+1
)−1

BT
t PtAt
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Partially Observable Markov Decision Processes

We now consider the case in which the state is not directly observable and both actuation and perception
are corrupted by noise. We still assume that the state space is discrete. This problem formulation is called
a partially observable Markov decision process (POMDP), which is a mathematical framework that models
decision making under uncertainty in both control actions and measurements.

12.1 Problem formulation

The components of the problem are as follows:
• A finite state space S, where each element s of S is a state.

• An action space A, where each element a of A is an action.

• An observation space O, where each element o of O is an observation.

• A state transition probability p(s′ | s, a) that describes the probability of being in state s′ given that
the system was in state s and applied action a.

• An observation probability p(o | s) that describes the probability of observing o from state s.

• A (possibly infinite) planning horizon T .

• A stage reward rt(s, a) associated with applying action a from state s at time t, and a terminal reward
rT (s) associated with being in state s at the end of the planning horizon.

At each time t ∈ {0, 1, . . . , T − 1}, the system is in state st ∈ S, the decision-maker observes an observation
ot ∈ O and then applies an action at ∈ A which causes the system to transition to the next state st+1 ∈ S.
We assume that the state completely describes the system at each point in time. This is sometimes called
the Markov assumption, which means that future states and past states are conditionally independent given
the present state and decision,

p(st+1 | st, at, . . . , s0, a0) = p(st+1 | st, at)
p(ot | st, at−1, st−1, . . . , a0, s0) = p(ot | st)

When choosing the action at, the decision-maker has access to the information history, which is the collection
of all measurements and actions up to time t,

ht = (o0, a0, . . . , ot−1, at−1, ot)

In general, the policy that the agent uses to choose actions may depend on the entire information history,
and may be deterministic or stochastic. Since a deterministic policy is a special case of a stochastic policy,
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we assume a stochastic policy. The action at is then sampled from the policy

at ∼ πt(· | ht)

where the policy is the probability distribution over actions given the information history.

In contrast to the MDP case, the action space A does not depend on the state since we do not know the
state (otherwise we could gain information by observing what actions are allowable!). Instead, we allow for
any action a ∈ A at each point in time, so the state transition probability must take this into account (if an
action is not allowable, then its transition probability must be zero). Also, we only consider planning over
a finite horizon since this case is tractable; we can approximate planning over an infinite horizon by making
the terminal time T large.

Problem: Find a policy that maximizes the expected cumulative reward,

maximize
π0,...,πT −1

E

[
T −1∑
t=0

rt(st, at) + rT (sT )
]

where the expectation is taken over the observations ot ∼ p(· | st), actions at ∼ πt(· | h), and state
transitions st+1 ∼ p(· | st, at). We denote the optimal policy at time t as π∗

t .

Example (Tiger POMDP). A classic example of a POMDP is the following. Consider a game in which
a tiger is hidden behind one of two doors, while a person seeks to open the door without the tiger. The
person may choose to listen for the tiger or open either door. There is a small cost to listen, while there
is a large cost to choosing the door with the tiger (because it will attack you). The goal is for the person
to choose the actions that maximize the expected reward.
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12.2 Value function

In the MDP case, the value function was a function of the state, and the optimal controller was constructed
using the optimal value function. While we could use the same value function in this case, we do not know
the state and therefore cannot construct the optimal controller from that value function. Instead, we would
like the value function to depend on the information that we do know, which is precisely the information
history. We now define the value function and associated controller as a function of the information history.

The (suboptimal) value function associated with a policy π from time t to the final time T is defined as the
expected cumulative reward associated with an information history,

V π
t (h) = E

[
T −1∑
k=t

rk(sk, ak) + rT (sT )

∣∣∣∣∣ ht = h

]

The optimal value function is the maximum value function over all policies,

V ∗
t (h) = max

π
V π

t (h)

Our goal is to compute the optimal value function V ∗
t at each time t, in which case the optimal policy is

πt(at | ht) = arg max
at∈A

E
[
rt(st, at) + V ∗

t+1(ht+1) | ht, at

]

12.3 Principle of optimality

The principle of optimality states that the optimal value function can be computed recursively backward in
time starting from the terminal time T .

Theorem (Principle of optimality). The optimal value function satisfies the backward recursion

V ∗
T (hT ) = E[rT (sT ) | hT ]

V ∗
t (ht) = max

at∈U
E[rt(st, at) + V ∗

t+1(ht+1) | ht, at] for t = 0, . . . , T − 1

where ht+1 = (ht, zt+1, at) is the information available at time t with h0 = (z0).

Remark. The proof of the principle of optimality is considerably more complicated than in the MDP case.
In particular, the same reasoning as before gives an incorrect proof. This line of reasoning is as follows. By
definition, the optimal value function at time t is

V ∗
t (ht) = max

K
EK

[
T −1∑
k=t

rk(xk, uk) + rT (xT )

∣∣∣∣∣ ht

]

We can write this in terms of the value function at time t+ 1 as

V ∗
t (ht) = max

K
EK

[
rt(st, at) + V K

t+1(ht+1) | ht

]
We can separate the maximization and expectation over the current controller Kt and the future controllers
as

V ∗
t (ht) = max

KT

max
Kt+1:T −1

EKt
EKt+1:T −1

[
rt(st, at) + V K

t+1(ht+1) | ht

]
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But in general, the maximum of the expectation is less than or equal to the expectation of the maximum,

max
x

Ey f(x, y) ≤ Ey max
x

f(x, y)

So when we swap the order of the maximization and expectation, we get the inequality

V ∗
t (ht) ≤ max

KT

EKt max
Kt+1:T −1

EKt+1:T −1

[
rt(st, at) + V K

t+1(ht+1) | ht

]
The immediate reward is independent of the future variables, so we can bring in the inner maximization and
expectation to obtain

V ∗
t (ht) ≤ max

KT

EKt

[
rt(st, at) + V ∗

t+1(ht+1) | ht

]
Replacing the controller Kt with the action at, we obtain an inequality version of the principle of optimality,

V ∗
t (ht) ≤ max

at∈U
E
[
rt(st, at) + V ∗

t+1(ht+1) | ht, at

]
While this argument only shows that the above inequality holds, it can be shown that it also holds with
equality, which is the principle of optimality.

Proof. We now provide a correct proof of the principle of optimality. At each time t, define the Bellman
operator Tt, which maps a function V of the information history at time t+1 to a function of the information
history at time t,

Tt(V )(ht) = min
u

E(rt(st, at) + V (ht+1) | ht, at)

The principle of optimality then states that the optimal value function is obtained by iterating the Bellman
operator,

V ∗
T (hT ) = E[rT (xT ) | hT ], V ∗

t (ht) = Tt(V ∗
t+1)(ht) for t = 0, . . . , T − 1

We write f ≥ g to denote that f(x) ≥ g(x) for all x.

a) Bellman iteration is one-step optimal (even if the current value function is suboptimal).

V π
t (ht) = E((rt(st, at) + V π

t+1(ht+1))πt(at, ht) | ht, at)

≥ min
π̂

E
((
rt(st, at) + Vt+1π(ht+1)

)
π̂t(st, at) | ht, at

)
= min

a
E
(
rt(st, at) + V π

t+1(ht+1) | ht, at

)
= Tt(V π

t+1)(ht)

The second step changes optimization over policies to optimization over actions, which is possible
because we’re optimizing a linear function of the pdf K̂, so an optimal policy can be found by picking
the pointwise maximum at each ht.

b) The Bellman operator is contractive. That is, if f ≤ g, then Tt(f) ≤ Tt(g). To prove this, suppose a
pair of value functions satisfy V K

t+1 ≤ V K̂
t+1 for t = 0, . . . , N − 1. Then for any tuple (st, at, ht+1),

rt(st, at) + V K
t+1(ht+1) ≤ rt(st, at) + V K̂

t+1(ht+1)

Now use the fact that if f ≤ g, then minx f(x) ≤ minx g(x). Minimizing both sizes with respect to at,
we obtain Tt(V K

t+1) ≤ Tt(V K̂
t+1) as required.
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We can now prove optimality of the recursive Bellman policy. For any policy K,

V K
t ≥ Tt(V K

t+1) (one-step optimality)
≥ TtTt+1(V K

t+2) (monotonicity of Tt applied to V K
t+1 ≥ Tt+1(V K

t+2))
≥ TtTt+1Tt+2(V K

t+3) (monotonicity of Tt+1 and Tt applied to V K
t+2 ≥ Tt+2(V K

t+3))
...

≥ TtTt+1 · · · TN−1(V K
N ) (iterating above steps)

≥ TtTt+1 · · · TN−1(V ∗
N ) (all policies have same final value function)

= V ∗
t (recursion from the principle of optimality)

To summarize, we have shown that

V K
t ≥ (V ∗

t from principle of optimality) = V K∗

t = (V ∗
t optimal value function)

Therefore, V ∗
t from the principle of optimality is indeed an optimal policy, and it is also deterministic.

12.4 Belief

The belief is defined as the probability distribution over the state given the information history,

bt(s | h) = p(st = s | ht = h)

Notation. We previously wrote the belief as a function of the state only. Here, we emphasize that the belief
depends also on the information history.

The Bayes filter describes how the belief changes based on applying actions and observing measurements.
While we previously decomposed the Bayes filter into actuation and perception updates, we here describe
a full update consisting of both actuation and perception. After applying an action a and observing o, the
belief b′ at the next time step is

b′(s′, h′) = η
∑
s∈S

p(s′ | s, a) p(o′ | s) b(s, h)

where the constant η is chosen such that the belief sums to one and the information history at the next time
step is h′ = (h, o′, a).

12.5 Separation principle

The value function may in general depend on the entire information history whose size grows with time.
Instead of keeping track of all past information, however, it is sufficient to keep track of the belief, which is
of fixed size. For this reason, we say that the belief is a sufficient statistic for the problem.

Information
Bayes
filter

Control
policy

Action
Belief
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Since we can construct the optimal policy from the optimal value function, and the optimal value function
depends on the belief, we can separate the control problem into two steps: estimation and control. We
first use the Bayes filter to construct the belief, which is the estimate of the underlying state, and then
construct the optimal value function (for example, using value iteration) to obtain the optimal policy. This
fundamental result is known as the separation principle.

Theorem (Separation principle). The belief is a sufficient statistic in that the optimal value function is
a function of the belief. In terms of the belief, value iteration is the backward recursion

V ∗
T (b) =

∑
s∈S

rT (s) b(s)

V ∗
t (b) = max

a∈A

∑
s∈S

(
rt(s, a) +

∑
o∈O

Vt+1(b′)
∑
s′∈S

p(o | s′) p(s′ | s, a)
)
b(s) for t = 0, . . . , T − 1

where b′ is the belief obtained from applying the Bayes filter from belief b with action a and observation o.

Proof. From the principle of optimality, the optimal value function at time T is

V ∗
T (hT ) = E[rT (s) | hT ] =

∑
s∈S

rT (s) bT (s)

where the expectation is over the state s. This is a function of the belief, bT . Therefore, there exists a
function JT such that VT (h) = JT (bT (h)). We will now use induction to show that this holds for all times,
that is, there exists Jt such that Vt(h) = Jt(bt(h)).

Suppose that Vt+1(h) = Jt+1(bt+1(h)) for some function Jt+1, and apply the principle of optimality:

Vt(ht) = min
at

E(rt(st, at) + Vt+1(ht+1) | ht, at)

= min
at

E(rt(st, at) + Jt+1(bt+1(ht+1)) | ht, at)

= min
at

E(rt(st, at) + Jt+1(Ft(bt(ht), ot+1, at)) | ht, at)

= min
at

(∑
s∈S

rt(st, at) bt(s, ht) +
∑
y∈Y

Jt+1(Ft(bt(ht), y, at)) p(ot+1 = y | ht, at)
)

The final probability above can be evaluated as:

p(ot+1 = o | ht, at) =
∑

o,s∈S

p(ot+1 = o, st+1 = s′, st = s | ht, at)

=
∑

o,s∈S

p(ot+1 = o | ot+1, st = s, ht, at) p(st+1 | st, ht, at) p(st = s | ht, at)

=
∑

o,s∈S

p(yt+1 = y | st+1, at) p(xt+1 = z | st = s, at) p(st = s | ht)

=
∑

o,s∈S

Ct+1(y, z, at)At(o, s, at) bt(s, ht)

Subsituting this back into the above expression for the value function, we obtain

Vt(ht) = min
at∈A

∑
s∈S

bt(s)
(
rt(st, at) +

∑
y∈Y

Jt+1(Ft(bt(ht), y, at))
∑

s′,s∈S

Ct+1(y, s′, a)At(s′, s, a)
)

= Jt(bt)
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for some Jt, since the value function depends only on the belief bt. So by induction, we have that Vt(ht) =
Jt(bt) for all t. The optimal decision also depends only on the belief,

at = arg min
at∈A

∑
s∈S

bt(s)
(
rt(st, at) +

∑
y∈Y

Jt+1(Ft(bt(s), y, at))
∑

z,x∈X

Ct+1(y, z, u)At(z, x, u)
)

= kt(bt)

Therefore, we do not need to remember the entire information history ht (which is growing with time). It
suffices to remember the belief bt, which is of fixed size. For this reason, we say that the belief state is a
sufficient statistic for the problem.

Given the optimal value function V ∗
t in terms of the belief, the optimal controller is the action that attains

the maximum value. In particular, we can express the optimal controller in terms of the belief as

πt(b) = arg max
a∈A

∑
s∈S

(
rt(s, a) +

∑
o∈O

Vt+1(b′)
∑
s′∈S

p(o | s′) p(s′ | s, a)
)
b(s)

The optimal controller separates into an optimal state estimator (the Bayes filter) and the above optimal
controller based on the belief. While we could have used a stochastic controller, we have shown that there
always exists an optimal controller that is deterministic, so it is not necessary to use a stochastic controller.

POMDP

p(s′ | s, a)
p(o | s)

Bayes filter

b′(s′) = η
∑

s∈S

p(s′ | s, a) p(o | s) b(s)

Optimal decision

a = argmax
a∈A

∑

s∈S

(
r(s, a) +

∑

o∈O

V ′(b′)
∑

s′∈S

p(o | s′) p(s′ | s, a)
)
b(s)

Belief b

Action aObservation o

Optimal controller

12.6 LQG scenario

The problem of making sequential decision under uncertainty has a particularly simple solution when the
models are linear, the reward is quadratic, and the noise is Gaussian. This is known as the LQG case.
In the LQG scenario, the Bayes filter is the Kalman filter, and the optimal decision is the solution to the
linear–quadratic regulator (LQR) problem.

When the system dynamics are linear, the state transition function has the form

xt+1 = Ast +Bat + wt

where wt is the process noise. Similarly, the measurement function has the form

zt = Cst + vt
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where vt is the measurement noise. Here, we assume that both the process and measurement noise are
Gaussian random variables that are independent across time,

wt ∼ N (0,W ) and vt ∼ N (0, V )

where W and V are the process and measurement covariances. We also assume that the initial state is a
Gaussian random variable with x0 ∼ N (x̂0,Σ0). We also assume that both the stage reward and terminal
reward are quadratic,

r(x, u) = xTQx+ uTRu and rT (x) = xTQTx

with Q ⪰ 0, QT ⪰ 0, and R ≻ 0.

Under these assumptions, the Bayes filter is the Kalman filter. The belief at each time t is a Gaussian
random variable with mean ŝt and covariance Σt. We can use value iteration to recursively compute the
belief backward in time as follows:

Lt = −AΣtC
T(CΣtC

T + V )−1

Σt+1 = AΣtA
T +W + LtCΣtA

T

x̂t+1 = Aŝt +Bat − Lt (zt − Cŝt)

Using the optimal value function, the optimal decision is the LQR controller given by

Kt = −(BTPt+1B +R)−1BTPt+1A

Pt = ATPt+1A+Q−ATPt+1B (BTPt+1B +R)−1BTPt+1A

at = Kt ŝt

with terminal condition PT = QT . Note that the Kalman filter propagates the belief forward in time, while
value iteration recursively constructs the belief backward in time.

In this case, there is an additional separation in the structure of the optimal controller. For a general POMDP
the optimal decision depends on the entire belief bt. But here the optimal controller only depends on the mean
ŝt of the belief. The Kalman filter constructs the Gaussian belief which consists of a mean and covariance,
but the optimal controller only depends on the mean of the belief. The optimal controller structure in this
case is to produce the best estimate of the state possible, and then use the optimal state-feedback controller
on this estimate as if it were the true state.

Plant

xt+1 = Axt +But + wt

zt = Cxt + vt

Kalman filter

x̂t+1 = Ax̂t +But − Lt (zt − Cx̂t)

LQR controller

ut = Kt x̂t

x̂t

utzt

LQG controller
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12.7 Belief MDP

As we have seen, the optimal controller separates into an optimal estimator (the Bayes filter) followed by
an optimal decision based on the belief. While the state is unobservable, the belief is formed from the
information history which is known, so the decision-maker can make decisions based on its belief. We now
show that the optimal decision is equivalent to applying value iteration in the MDP case to the belief directly.

Recall that value iteration on the belief is given by

V ∗
t (bt) = max

u∈U

∑
x∈X

(
rt(x, u) +

∑
z∈Z

Vt+1(b′)
∑

x′∈X

p(z | x′) p(x′ | x, u)
)
bt(x)

To make this look like value iteration applied directly to the belief, we need to formulate the stage reward for
a given belief and the transition function for the belief. The expected reward of having belief b and taking
action u is

Rt(b, u) = E[rt(x, u) | ht] =
∑
x∈X

rt(x, u) b(x)

The probability of the next belief b′ given the current belief b and action u is

p(b′ | b, u) =
∑
x∈X

∑
z∈Z

∑
x′∈X

p(b′ | b, u, z) p(z | x′, u) p(x′ | x, u) b(x)

where p(b′ | b, u, z) is a point-mass distribution centered on the single belief b′ produced by the Bayes filter
from the belief b with action u and measurement z. Using the reward and state transition for the belief,
value iteration is equivalent to the recursion

V ∗
t (b) = max

u∈U

{
Rt(b, u) +

∫
V ∗

t+1(b′) p(b′ | b, u) db′
}

where the integral is over all future beliefs b′. This is precisely value iteration applied directly to the
(observable) belief, where the iteration involves an integral since the belief space is continuous (even though
the state space is discrete). The only difference between this and the case in which the state space is discrete
is that the summation became an integral over all beliefs. There are several difficulties:
• The belief space is continuous, so it is uncertain how to represent the belief in a tractable way.

• To do value iteration, we must compute an integral over belief space, which is not trivial.

12.8 Value iteration

As we have seen, we can use value iteration to recursively compute the optimal value function backward in
time, and then use the optimal value function to construct the optimal controller. The difficulty is that,
even when the state space is discrete, the belief space consists of probability distributions over states and
is therefore continuous. While value iteration is conceptually very similar in both discrete and continuous
spaces, it is much more difficult to implement in continuous spaces since we must somehow represent the
value function on a computer.

Despite these difficulties, it is possible to find an exact solution when everything is finite (the state space,
action space, observation space, and planning horizon). Let n denote the number of states, and denote the
belief as a vector of probabilities b = (p1, . . . , pn). In this case, the optimal value function over trajectories
of any finite length is piecewise linear convex (PWLC), which is a function of the form

V ∗
t (b) = max

v∈Vt

vTb = max
v∈Vt

∑
x∈X

v(x) b(x)

for some finite set Vt of n-dimensional vectors.
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13

Multi-Agent Sensor Fusion

Sensor data is often collected using multiple sensors that are connected together in a network. These
estimates are then fused together to form a cohesive view of the world. We now introduce decentralized
algorithms for sensor fusion.

13.1 Motivation

Applications

• Smart grid. The electric grid is a network of transmission lines, substations, transformers, and other
devices that deliver electricity from the power plant to homes and businesses1. The smart grid uses
communication between the utility and its consumers and sensing along transmission lines to increase
efficiency, reduce outages, integrate renewable energy systems, and lower costs by reducing peak demand.

1https://www.smartgrid.gov/the_smart_grid/smart_grid.html
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• Smart transportation. The transportation network consists of roads, train tracks, bike lanes, airports,
and other infrastructure that enable transit. Smart transportation uses a variety of technologies to
monitor, evaluate, and manage transportation systems to enhance efficiency and safety2.

• Smart healthcare. Healthcare is the organized provision of medical care to individuals or a community.
Smart healthcare is the integration of patients and doctors on a common platform for intelligent health
monitoring by analyzing day-to-day human activities.

• Environmental monitoring. Environmental monitoring uses networks of sensors to analyze various
environments, from farming crops to the ocean. Monitoring is used to build models of the environment
(such as currents in the ocean), to track oil spills in the ocean, and to protect the public and the
environment from toxic contaminants and pathogens.

2https://www.digi.com/blog/post/introduction-to-smart-transportation-benefits
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Centralized solutions

In each of these applications, information is collected by sensors connected in a network. The main difficulty
in fusing the information is that the information is spread across the network at various locations. One
approach is to gather all the information in a single place, fuse the information (for instance, using a Bayes
filter), and then send the information back to each agent. While straightforward, this solution has various
drawbacks:

• the algorithm is not robust to failures of the centralized agent because, if the centralized agent fails,
then the entire computation fails

• the method is not scalable because the amount of communication and memory required on each agent
scales with the size of the network

• each agent must have a unique identifier so that the centralized agent counts each information only once

• the fused information is delayed by an amount that grows with the size of the network

• the information from each agent is exposed over the entire network, which is unacceptable in applications
involving sensitive data

Another approach is called flooding the network. Instead of using a single central processor, here all agents
act as the central processor. All sensor data is communicated across the network until every agent has all
the information. Each agent can then implement a centralized data fusion algorithm. While this approach is
more robust, it still has many of the drawbacks of the single centralized processor solution. In addition, the
computational demands on each agent scales with the size of the network, so each agent must be a powerful
processor.

To overcome these limitations, decentralized algorithms use the computation and communication abilities of
each agent to fuse the information without using a central processor. Agents communicate relatively small
amounts of information with their local neighbors and process the results using simple computations. This
results in algorithms that are robust, scalable, safe, and efficient.
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13.2 Graph theory

In multi-agent systems, it is common to describe the communication network among the agents using a
graph. A graph is a collection of nodes (or vertices) that are connected by edges (or arcs). Nodes in the
graph represent agents (such as sensors or robots), and edges in the graph indicate the flow of information
among the agents.

Example. The following graph consists of the four nodes {1, 2, 3, 4}. There is an edge connecting nodes
2 and 4, which indicates that agent 2 is able to communicate information with agent 4. The adjacency
and Laplacian matrices are as shown.

1

2

3

4

A =


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

 L =


¬2 −1 −1 ¬0
−1 ¬3 −1 −1
−1 −1 ¬3 −1
¬0 −1 −1 ¬2



In the above graph, edges do not have an associated direction. In terms of the communication network among
the agents, this describes the scenario in which the flow of information is always bidirectional between two
agents, meaning that if one agent can send information to another agent then it can also receive information
from that agent. To describe directed communication, we can use a directed graph (or digraph), where edges
have an associated direction. The direction is typically denoted by an arrow in the diagram. We use the
convention that the direction of the arrow indicates the flow of information, so an arrow from node i to node
j indicates that agent j can receive information from agent i.

In addition to direction, edges may also have weights associated with them. Directed graphs with edge
weights are called weighted digraphs. The edge weights are typically shown next to the edge in the diagram.
We can always interpret an unweighted graph as a weighted graph in which the edge weights are all one.
Likewise, we can interpret an undirected graph as a directed graph in which edges always come in pairs.

Example. The following is a weighted digraph. The set of nodes is {1, 2, 3, 4, 5}, where each node
represents an agent (or robot) in the system. There is a directed edge from node 2 to node 3 with
weight a23, which represents that agent 2 is able to communicate information to agent 3, and the
information is weighted by a23.

1

2

3

4

1

1

1

2
1 A =


0 1 0 0
0 0 2 0
1 0 0 1
0 1 0 0

 L =


¬1 −1 ¬0 ¬0
¬0 ¬2 −2 ¬0
−1 ¬0 ¬2 −1
¬0 −1 ¬0 ¬1



There are several matrices that are often used to represent graphs. The adjacency matrix is an n×n matrix
where n is the number of nodes in the graph. The ijth component of the matrix is equal to the weight aij if
there is an edge between nodes i and j and zero otherwise. The adjacency matrices for each of the previous
examples is shown above.

Another common matrix is the Laplacian matrix. The Laplacian matrix is defined in terms of the adjacency
matrix as L = diag(A1)−A, where 1 is an n-dimensional vector of all ones. In other words, the off-diagonal
elements of the Laplacian matrix are −aij for i ̸= j, and the diagonal elements are

∑n
j=1 aij . Multiplication

by the Laplacian matrix represents an averaging operation over the graph. To see this, suppose that each
node i has an associated variable xi, and stack all of these variables into the concatenated vector. When we
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multiply this vector by the Laplacian matrix, the ith entry of the resulting vector is

(Lx)i =
n∑

j=1
aij (xi − xj) where x =

x1
...
xn


This is a weighted sum of the differences between the variable on agent i and that of agent j. If all agents
have the same value meaning that x1 = x2 = . . . = xn, then the product Lx is the vector of all zeros. For
connected graphs, Lx = 0 if and only if all elements of x are the same, meaning that all agents agree on
the same value. Agreement for multi-agent systems is often called consensus. This is quite useful as we
often want all agents to have a common view of the world. The Laplacian matrices for each of the previous
examples is shown above.

Connected. A graph is connected if there exists a path between any two nodes, and a directed graph is
strongly connected if there exists a directed path from any node to any other node. Multi-agent algorithms
require the communication graph to be connected since otherwise there would be some agents that do not
receive information (either directly or indirectly) from some other agents which makes data fusion impossible.

Balanced. A weighted graph is balanced if the sum of the weights along all incoming edges is equal to the
sum of the weights on all outgoing edges. Notice that the diagonal elements of the Laplacian matrix are the
sums of the incoming weights, so each row of the Laplacian matrix sums to zero. In terms of the Laplacian
matrix, a graph is balanced if and only if all columns of the Laplacian matrix also sum to zero. Undirected
graphs are always balanced. The previous examples are both balanced. In multi-agent algorithms, using a
balanced graph is important since this preserves the amount of incoming and outgoing information.

13.3 Static average consensus

We now consider one of the simplest problems for multi-agent systems: computing the average of static
quantities over a network. While computing an average may seem trivial, it can be quite challenging de-
pending on the scenario (such as if the quantities vary in time, the agents are mobile so the communication
network changes in time, or agents enter/leave the network during the computation).

Consider a group of n agents, where each agent i has a static reference variable ui. The static average
consensus problem is for all agents to compute the average of the reference variables over all agents:

uavg = 1
n

n∑
i=1

ui

Perhaps the simplest decentralized algorithm to solve this problem is as follows:

xi(k + 1) = xi(k)−
n∑

j=1
aij

(
xi(k)− xj(k)

)
, xi(0) = ui

where aij are the weights of the adjacency matrix of the communication graph and k is the iteration index.
Each agent updates its estimate of the average using a weighted sum of the difference between its estimate
and those of its neighbors (aij = 0 if there is no edge from node i to j, so the summation only involves
quantities of neighboring agents). At each iteration k, this requires each agent i to communicate its current
estimate xi(k) with its neighbors and then perform the above update. By stacking the agent variables into
vectors, we can write the algorithm in terms of the graph Laplacian matrix as

x(k + 1) = (I − L)x(k), x(0) = u
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The following result states that, under reasonable assumptions on the communication network, the iterates
on each agent converge asymptotically to the correct average uavg.

Theorem. Suppose that the communication graph is a constant, strongly connected, and weight-
balanced digraph and that the reference signal ui at each agent i ∈ {1, . . . , n} is a constant scalar.
Then there exists a positive constant c > 0 such that∥∥∥∥xi(k)− 1

n

n∑
i=1

ui

∥∥∥∥ ≤ c ρk

for all agents i ∈ {1, . . . , n}, where the convergence factor is ρ = ∥I − L− 1
n 11T∥2.

The above algorithm solves the static average consensus problem in that each agent is able to compute the
average of the reference variables over the network using only local communications with neighboring agents
and local computations that do not scale with the number of agents. Notice, however, that the reference
variables only enter the algorithm as the initial conditions. This algorithm therefore cannot adapt to changes
in the reference signals or track time-varying references.

Choice of weights

The above algorithm converges if ρ = ∥I − L− 1
n 11T∥ < 1 which depends on the edge weights in the graph

(through the Laplacian matrix). For the directed graph above using the given edge weights, we have ρ = 2.56,
so the bound does not guarantee convergence. If we instead choose the weights so that the adjacency matrix
is

A =


0 1

2 0 0
0 0 1

2 0
1
3 0 0 1

3
0 1

2 0 0


then we have ρ = 0.58 and the iterates converge quickly to the average of the reference variables. Given the
structure of the communication network, we can efficiently solve an optimization problem to find the edge
weights that result in the fastest convergence rate3.

Analysis

To analyze the convergence properties of the algorithm, we first show that the sum of the iterates is preserved
over time. Multiplying the recursive update of the algorithm on the left by the row vector 1T and using that
the Laplacian is balanced, we have that

1Tx(k + 1) = 1T(I − L)x(k) = 1Tx(k)

so the average of the estimates is the same at each iteration. Applying this recursively and using the
initialization, we have that 1Tx(k) = 1Tu for all k. Now define the error of each agent i as the difference
between the estimate of agent i and the exact average of the reference variables,

ei(k) = xi(k)− 1
n

n∑
j=1

uj

Let e(k) denote the concatenated error vector over all the agents. Since the average is preseved over time,
we can write the error as

e(k) =
(
I − 1

n 11T)x(k)
3https://web.stanford.edu/~boyd/papers/pdf/fastavg_cdc03.pdf
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The matrix 1
n 11T can be interpreted as a perfect averaging matrix, since multiplying this matrix by a vector

results in a vector where each element is the average of the original vector. Now consider how the error
evolves as a function of time. Using the recursive update of the algorithm, the error at the next time step is

e(k + 1) =
(
I − 1

n 11T)(I − L)x(k) =
(
I − L− 1

n 11T)x(k) =
(
I − L− 1

n 11T) e(k)

where we used that the Laplacian satisfied both L1 = 0 and 1TL = 0T. Taking the norm of both sides gives
the bound ∥e(k + 1)∥ ≤ ρ ∥e(k)∥. Applying this recursively, we obtain ∥e(k + 1)∥ ≤ ρk ∥e(0)∥ which implies
the above result.

13.4 Dynamic average consensus

Applications

Formation control

Consider a group of n agents that seek to position themselves to form a particular formation. One way to
represent a formation is as a vector of moments. For instance, if the agents are in the two-dimensional plane
and we let (pix, piy) denote the position of agent i with p = (p1, . . . , pn) the positions of all agents, then a
vector of first- and second-order moments is of the form

f(p) = 1
n

n∑
i=1


pix

piy

p2
ix

p2
iy


If each agent can measure its position, then the agents can move in such a way that their positions minimize
the cost ∥f(p)− f⋆∥ where f⋆ is a given a vector of desired moments4.

Environmental monitoring

Consider a group of n agents where each agent is able to measure the environment at its current location.
The goal is for each agent to construct a cohesive model of the global environment in a decentralized

4https://ieeexplore.ieee.org/document/4700861
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manner through communicating with its local neighbors. Suppose that the environmental is described by
the parameters x that evolve according to the linear dynamics

x(k + 1) = Ax(k) +Bu(k) + w(k)

where w(k) is zero-mean Gaussian noise with covariance matrix Q(k). We will assume for simplicity that A
and B are constant, but the following also works when they vary in time. In the absense of a good model
for the environment dynamics, we can set A to the identity and B to zero to indicate that the environment
is (approximately) static.

At each time k, each agent i measures the environment at its location pi(k) to obtain the measurement zi(k).
We assume that measurements are linear functions of some given basis functions for the environment, that
is,

zi(k) = Ci(k)x(k) + vi(k)
where vi(k) is zero-mean Gaussian noise with covariance matrix Ri(k) and

Ci(k) =
[
ψ(1)(pi(k)

)
ψ(1)(pi(k)

)
. . . ψ(1)(pi(k)

)]
The functions ψ(j) are local basis functions, such as sinusoids in Fourier series, wavelets, piecewise polyno-
mials, or splines. Stacking all of the quantities into vectors, this is equivalent to

z(k) = C(k)x(k) + v(k)

The optimal state estimator for this system is the Kalman filter. In information form, the actuation update
is

Ω′ = (AΩ−1A+Q)−1

ξ′ = Ω′ (AΩ−1ξ +Bu)

Each agent can implement these equations to update its model of the environment based on the control
action u(k). The perception update is

Ω′ = Ω + CTR−1C = Ω +
n∑

i=1
CT

i R
−1
i Ci

ξ′ = ξ + CTR−1z = ξ +
n∑

i=1
CT

i R
−1
i zi

Updating the estimate of the environmental parameters based on observations requires the measurements of
all agents. Since information is additive, this appears as a sum over all agents. One way for the agents to
implement the information filter in a decentralized manner is to use a dynamic average consensus estimator
to track the average of each element of the summations, multiply by the number of agents (which may be
known or can be estimated), and then added to the current information matrix and information vector.5

Dynamic average consensus estimator

All of the above examples require a group of agents to cooperatively track the average of time-varying signals.
We now describe a simple algorithm to do this, known as a dynamic average consensus estimator.

1

z − 1
L

x

u

−

y

5https://ieeexplore.ieee.org/document/4542870
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One particular estimator is given by the above block diagram, where u is the (possibly time-varying) vector
of reference signals, y is the vector of estimates of the average of the reference signals, and L is the graph
Laplacian. This is a discrete-time linear time-invariant system, which is described by the following difference
equations:

x(k + 1) = x(k) + Ly(k)
y(k) = u(k)− x(k)

While this is a compact way of representing the algorithm, keep in mind that multiplication by the Lapla-
cian L is an operation that can be performed in a decentralized manner using only communication with
neighboring agents. For each agent i, the algorithm is given by

xi(k + 1) = xi(k) +
∑

j∈Ni

aij (yi(k)− yj(k))

yi(k) = ui(k)− xi(k)

where Ni is the set of agents from which agent i receives information (that is, its neighbors). Each iteration
of the algorithm requires agents to perform a round of communication with neighboring agents and simple
local computations. The algorithm only requires each agent to store a single scalar state variable xi(k).

Theorem. At each iteration k, the error of the estimator is upper bounded by

∥y(k)− avg(u(k))∥ ≤ ∥avg(x(0))∥+
k∑

m=0
∥I − L− 1

n 11T∥k−m ∥dis(um − um−1)∥

where u(−1) := x(0) is the initial condition.

From this bound, we make a few observations:
• The first term depends on the average initial condition x(0). This suggests that we must initialize the

state of the estimator to have an average of zero. A simple way to do this is to set xi(0) = 0 for each
agent i.

• The second term depends on the disagreement between the difference of the reference signals at two
consecutive time steps. If the reference signals are constant, then these terms are all zero and the
error converges asymptotically to zero, just as with the static average consensus estimator. When the
reference signals are time varying, the error depends on how quickly the signals change.

• The graph Laplacian appears in the term ∥I − L − 1
n 11T∥. To improve the convergence properties of

the algorithm, we can choose the edge weights to minimize this quantity, just as we did for the static
average consensus estimator.

Analysis

The algorithm is a discrete-time linear time-invariant system, so we can write down the closed-form solution
for the error signal as a function of time and use that to construct the upper bound. First, define the error
as the difference between the output and the average input,

e(k) = y(k)− avg(u(k))

Using the algorithm dynamics, the error satisfies the recursion

e(k + 1) = (I − L) e(k) + dis
(
u(k + 1)− u(k)

)
, e(0) = dis(u(0))− x(0)
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This is a linear time-invariant system which has the solution

e(k) = (I − L)k
(
dis(u(0))− x(0)

)
+

k−1∑
m=0

(I − L)k−m−1 dis(u(m+ 1)− u(m))

Shifting the index in the summation and using that multiplication by 1
n 11T does not affect the disagreement

directions, we have that

e(k) = (I − L)k
(
dis(u(0))− x(0)

)
+

k∑
m=1

(I − L− 1
n 11T)k−m dis(u(m)− u(m− 1))

Now define u(−1) = x(0) and absorb the disagreement part of the first term into the summation to obtain
the simplified expression

e(k) = −avg(x(0)) +
k∑

m=0
(I − L− 1

n 11T)k−m dis(u(m)− u(m− 1))

Taking the norm of both sides and using that ∥a+ b∥ ≤ ∥a∥+ ∥b∥ and ∥ab∥ = ∥a∥ ∥b∥ gives the upper bound
in the result.

Extensions

The above algorithm has the limitation that it must be initialized correctly in order to have zero steady-state
error. While this is straightforward to do when initializing the algorithm, it makes the algorithm non-robust
to agents entering or leaving the network in the middle of the computation (for instance, if an agent’s
battery dies or it wanders away from the rest of the agents). We can interpret such a scenario as restarting
the algorithm from the current iterates of all the agents except for the addition or subtraction of the agent
that entered or exited. If xi(k) is nonzero for the transitioning agent i, then this results in an error that
will persist in the algorithm. There are algorithm designs that automatically adjust to agents entering and
leaving the network; such algorithms are called robust dynamic average consensus estimators.

Here, we only considered computing a simple average over a network. To solve complex problems, agents
may need to fuse their information in other ways. For instance, the agents may want to cooperatively solve
an optimization problem. This is known as decentralized optimization. It turns out that decentralized opti-
mization algorithms decompose into a centralized optimization algorithm and a dynamic average consensus
estimator6.

GoptGcon

L

∇f

6https://ieeexplore.ieee.org/document/9794703
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Appendices



A

Probability

Probability is a branch of mathematics that describes the likelihood of an event. In probabilistic robotics,
uncertainty in sensor measurements, control actions, the robot state, and the map of the environment are
taken into account by modeling such quantities as random variables. This chapter describes the basic
probabilistic concepts and notation that are used throughout the book.

A.1 Probability space

A probability space is a mathematical tool used to model a random experiment in which various outcomes
may occur. A probability space consists of the following three elements:
• The sample space is the set of all possible outcomes of the experiment.

• The event space is the set of all events, where each event is a set of outcomes.

• The probability function that assigns a probability to each event.

Example (Rolling a die). We can use probability to model the number facing up after rolling a die.

• In this example, the experiment is rolling the die.

• The possible outcomes are that any one face of the die is facing up; we label each of these outcomes
with the numbers one through six.

• The sample space is the set of all outcomes, which is the set {1, 2, 3, 4, 5, 6}.

• Events are sets of outcomes (or subsets of the sample space), such as the event of rolling the number
one {1} and the event of rolling an even number {2, 4, 6}.

• The probability function assigns a probability to each event. If the die is fair, for instance, then we
would assign the same probability to each outcome.
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Example (Spinner). We can use probability to model the direction (or color) of a spinner after being
spun.

• In this example, the experiment is spinning the spinner.

• The possible outcomes are the directions that the spinner may face; we label each of these outcomes
with their angle from the horizontal axis.

• The sample space is the set of all outcomes, which is the set [0, 2π).

• Events are sets of outcomes (or subsets of the sample space), such as the event of facing exactly
north {π/2} and the event of being on the right-hand side [−π/2, π/2].

• The probability function assigns a probability to each event. If the spinner is fair, for instance,
then we would assign the same probability to each angle.

The probability of an event is a real number between zero and one that describes the likelihood of the event.
The probability of an event A is denoted P (A).

Probability functions must satisfy certain rules. For any events A and B, the following properties hold.
• 0 ≤ P (A) ≤ 1

• if A ⊂ B, then P (A) ≤ P (B)

• P (Ac) = 1− P (A) where Ac is the complement of A

• P (A ∪B) = P (A) + P (B)− P (A ∩B)
If A and B are disjoint (their intersection is empty), then the last property simplifies to P (A ∪ B) =
P (A) + P (B).

Furthermore, the probability that any event occurs is one.

Example (Die, continued). Going back to our example, suppose the die is fair, meaning that each
side has the same probability of landing face up. Then each probability must be P ({i}) = 1/6 for
i ∈ {1, 2, 3, 4, 5, 6} so that the total probability is one. From this, we can construct probabilities of
other sets by using the above properties. For instance, we can compute the probability of rolling an
even number as

P ({2, 4, 6}) = P ({2} ∪ {4} ∪ {6}) = P ({2}) + P ({4}) + P ({6}) = 1
6 + 1

6 + 1
6 = 1

2
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A.2 Random variables

A random variable is a variable over the outcomes of an experiment.

Remark. Technically, a random variable is neither random nor a variable. Instead, a random variable is a
function from an outcome to a number (such as a real number or integer). In this class, however, we will
ignore this detail and think of random variables as quantities that can be manipulated (for example, using
addition and multiplication) and have other associated quantities (such as probability densities, expected
values, etc.).

Notation. We typically use a capital letter (such as X) to refer to a random variable and the corresponding
lower case letter (such as x) to refer to its possible values.

Continuous vs discrete

A random variable may be discrete or continuous, depending on the size of the sample space of the experiment.
A discrete random variable is a random variable over a finite (or countably infinite, such as the set of integers)
set of outcomes. An example of a discrete random variable is rolling a die, since there are only six possible
outcomes. A continuous random variable is a random variable over an uncountably infinite (such as the set
of real numbers) set of outcomes. An example of a continuous random variable is measuring the distance to
an object, since the outcome may be any positive real number (possibly up to a maximum reading of the
sensor).

Probability mass and density functions

For a discrete random variable X, its associated probability mass function (pmf) is the function pX that
maps outcomes x to probabilities by

pX(x) = P (X = x)

For a continuous random variable X, its associated probability density function (pdf) is the function pX

that maps outcomes x to probabilities such that∫ b

a

pX(x) dx = P (a ≤ X ≤ b)

Notation. For simplicity, we often omit the reference to the random variable and just write p(x).

Total probability

Since the probability that any event occurs is one, summing a discrete random variable over all outcomes
must be one. Likewise, integrating a continuous random variable over all outcomes must be one.∑

x

p(x) = 1 or
∫

x

p(x) dx = 1

The sum and integral are over the entire sample space.
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Joint probability

The joint probability that a random variable X has value x and another random variable Y has value y is

p(x, y) = p(X = x and Y = y)

The random variables are called independent if the joint probability is the product of the individual proba-
bilities,

p(x, y) = p(x) p(y) (independent)

Conditional probability

Random variables often provide information about other random variables. Suppose that we know the value
y of a random variable Y and we would like to know the value x of another random variable X. This is the
conditional probability p(X = x | Y = y) that is defined as

p(x | y) = p(x, y)
p(y)

If X and Y are independent, then Y provides no information about X and their conditional probability
simplifies to

p(x | y) = p(x) (independent)

Conditional independence

Two random variables X and Y are conditionally independent from another random variable Z if the random
variable Z carries no information about the conditional distribution of X given Y . Conditional independence
can be expressed in the following equivalent forms:

p(x | y, z) = p(x | z) or p(x, y | z) = p(x | z) p(y | z)

Remark. In general, conditional independence does not imply independence, and independence does not
imply conditional independence!

Law of total probability

The law of total probability involves decomposing a probability function as the sum (or integral) over the
entire sample space.

p(x) =
∑

y

p(x | y) p(y) or p(x) =
∫

y

p(x | y) p(y) dy

This is often useful to decompose a probability that is unknown, p(x), into probabilities that are known,
p(x | y) and p(y).

Bayes rule

Bayes rule provides another way of rewriting a random variable in terms of other random variables (that
may be easier to compute). For events A and B, Bayes rule states that the conditional probability of A
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given B is
p(A | B) = p(B | A) p(A)

p(B)
In terms of probability functions, Bayes rule states that

p(x | y) = p(y | x) p(x)
p(y) = likelihood · prior

evidence

This follows directly from the definition of conditional probability since

p(x, y) = p(x | y) p(y) = p(y | x) p(x)

Typically, the random variable x is the quantity that we are trying to estimate, and the random variable y
is the available information. The likelihood p(y | x) is the probability of measuring y given x. Since we have
measured y, we can think of this as a function of the unknown x, although it is not a probability distribution
in x. The prior p(x) describes the probability of an estimate before fusing the information, and the evidence
p(y) is the probability of the measurement independent of the unknown x. As a function of x, the evidence
is constant so we typically absorb it into a normalizing constant:

p(x | y) = η p(y | x) p(x) where η = 1
p(y)

If we have other background knowledge (such as previous measurements), then we can condition all proba-
bilities in Bayes rule by this extra information:

p(x | y, z) = p(y | x, z) p(x | z)
p(y | z)

Notation (Normalizing constant). We often use η to refer to a normalizing constant that can be inferred by
the fact that the resulting expression must be a valid probability distribution and therefore sum (or integrate)
to one. The same symbol η may be used in multiple expressions, even though the value of the constant is
different.

Tree diagram

We can use a tree diagram to visualize events and their associated probabilities. Consider two events A and
B. The following two (equivalent) trees illustrate all possible scenarios.

Sample Space

p(A) p(¬A)

p(B | A) p(¬B | A) p(B | ¬A) p(¬B | ¬A)

Given any three independent probabilities, it is possible to compute all remaining probabilities in the tree.
For instance, suppose we know the probabilities p(A) and p(B) of each event along with the conditional
probability p(B | A). We can then solve for the remaining probabilities as follows. First, from the law of total
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probability, the probability of not A is p(¬A) = 1− p(A) and the probability of not B is p(¬B) = 1− p(B).
We can also use Bayes rule to obtain the conditional probability of A given B as

p(A | B) = p(B | A) p(A)
p(B)

Applying the law of total probability again, the probability of not A given B is p(¬A | B) = 1 − p(A | B).
Then applying Bayes rule again, the probability of not A given B is

p(¬A | B) = p(B | ¬A) p(¬A)
p(B)

A.3 Gaussian random variable

A Gaussian random variable is a continuous random variable whose probability density function is the normal
distribution. For a one-dimensional Gaussian random variable with mean µ and variance σ2, the density is

p(x) = N (x;µ, σ2) = 1√
2πσ2

exp
(
−1

2
(x− µ)2

σ2

)
For a multi-dimensional random variable with mean µ and covariance matrix Σ, the density is

p(x) = N (x;µ,Σ) = det(2πΣ)− 1
2 exp

(
− 1

2 (x− µ)TΣ−1(x− µ)
)

This recovers the one-dimensional case when x is a scalar and Σ = σ2.

The cumulative distribution function of a one-dimensional Gaussian random variable is

1
2

[
1− erf

(
x− µ
σ
√

2

)]
where erf is the error function.

Proposition. If x ∼ N (µ,Σ), then Ax+ b ∼ N (Aµ+ b, AΣAT).

Proposition. If
[
x
y

]
∼ N

([
µx

µy

]
,

[
Σx Σxy

Σyx Σy

])
, then x | y ∼ N (µx + ΣxyΣ−1

y (y − µy),Σx −ΣxyΣ−1
y Σyx).

Proposition. If x ∼ N (µx,Σx) and y ∼ N (µy,Σy) are independent, then x+ y ∼ N (µx + µy,Σx + Σy).

A.4 Statistics

There are various statistics that we can use to describe a random variable.

Expectation

The expectation (or expected value) of a random variable X is

E(X) =
∑

x

x p(x) or
∫

x

x p(x) dx
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The expectation is linear, so for any a and b,

E(aX + b) = a E(X) + b

For a vector or matrix-valued random variable, the expectation is computed componentwise.

Notation. We often use the symbol µ to denote the expectation of a random variable.

Covariance

The covariance is a measure of the joint variability between two random variables. The covariance is defined
as

cov(X,Y ) = E [(X − E X)(Y − E Y )T] = E(XY T)− E(X) E(Y T)

A Guassian random variable is parameterized by its covariance matrix Σ.

Variance

The variance of a random variable is its covariance with itself,

var(X) = cov(X,X) = E [(X − µ)(X − µ)T]

Notation. We often use the symbol σ2 to denote the variance of a scalar random variable, or the symbol Σ
for a matrix random variable.

A.5 Entropy

The entropy of a probability distribution is a function that describes the expected information of a given
outcome. For a distribution p, the entropy is

Hp(x) = E [− log2 p(x)]

where − log2 p(x) is the number of bits needed to encode the outcome x using an optimal encoding. The
entropy describes where a robot may want to explore to gain more information (by moving to areas with
high entropy).

A.6 Density of a transformation

Given an n-dimensional random variable x with density f , the density g of y = h(x) is

g(y) = f(h−1(y))
∣∣∣∣det ∂h

−1(y)
∂y

∣∣∣∣
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A.7 Inverse-Variance Weighting

Two scalar measurements

Suppose we want to measure a scalar quantity whose true value is µ. To approximate the quantity, we take
two measurements z1 and z2, which are random variables. Assume that
• the measurements are unbiased, meaning that E(zi) = µ

• the measurements are uncorrelated, meaning that cov(z1, z2) = 0

• the variance of each measurement is var(zi) = σ2
i

To obtain a better estimate, we could take a weighted linear combination of the measurements:

ẑ = w1z1 + w2z2

But how should we choose the weights? The fused estimate ẑ is also a random variable. Let’s first compute
its expected value. Using that the expectation is linear and that the estimates are unbiased,

E(ẑ) = E(w1z1 + w2z2) = (w1 + w2)µ

For the fused estimate to also be unbiased, the weights must sum to one, w1 + w2 = 1. This gives one
equation that the weights must satisfy, but we need another equation since there are two weights. We want
to choose the weights such that they minimize the variance of the estimate, which is given by

var(ẑ) = E [(ẑ − µ)2]

= E [(w1(z1 − µ) + w2(z2 − µ))2]

= w2
1 E [(z1 − µ)2] + 2w1w2 E [(z1 − µ)(z2 − µ)] + w2

2 E [(z2 − µ)2]

= w2
1σ

2
1 + w2

2σ
2
2

To write this as a function of a single variable, we can use that the weights must sum to one.

var(ẑ) = w2
1σ

2
1 + (1− w1)2σ2

2

To minimize the variance, we take the derivative and set it equal to zero:

0 = d
dw1

var(ẑ) = 2w1σ
2
1 − 2 (1− w1)σ2

2

which implies that the optimal weights are

w1 = σ2
2

σ2
1 + σ2

2
and w2 = σ2

1
σ2

1 + σ2
2

Using these optimal weights, the fused estimate is

ẑ = σ2
2 z1 + σ2

1 z2

σ2
1 + σ2

2

The variance of the optimal estimate is

var(ẑ) = σ2
1 σ

2
2

σ2
1 + σ2

2

which is better than either of the individual measurements.
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A.8 Estimation

Suppose we are given the value of a random variable z and we want to estimate the value of another random
variable s. The likelihood is the conditional probability distribution of z given s, viewed as a function of s,

s 7→ p(z | s)

The maximum likelihood estimate (MLE) is the value of s for which the likelihood is maximized,

ŝMLE = arg max
s

p(z | s)

Now suppose we have prior knowledge about the distribution of s. We can then use Bayes rule to write the
probability of s given z as

p(s | z) = p(z | s) p(s)
p(z)

The maximum a posteriori (MAP) estimate is the mode of this conditional probability distribution, which is
the state s that is most likely given the measurement z. Since the denominator p(z) is constant with respect
to s, the MAP estimate is

ŝMAP = arg max
s

p(z | s) p(s)

Comments
• The MAP estimate is the same as the MLE when the prior is uniform.

• Since the logarithm is a monotonically increasing function, we can take the log of the objective without
changing the optimal solution. Therefore,

ŝMAP = arg max
s

log p(z | s)︸ ︷︷ ︸
measurement

model

+ log p(s)︸ ︷︷ ︸
prior
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A.9 Information theory

The information associated with a random event is a quantity that describes the amount of information
associated with an observation of the event.

Definition

For an event with probability p, the information I(p) is characterized by following three properties:
a) I(p) is monotonically decreasing in the probability p, so an increase in the probability of an event

decreases the information from observing the event and vice versa.

b) I(1) = 0, so events that always occur provide no information.

c) I(p1p2) = I(p1) + I(p2), so the information from independent events is the sum of the information from
each event.

The only choice for the information function that satisfies these properties is the negative logarithm of the
probability, whose graph is the following:

1
p

I(p) = − log p

Example (Information of a coin flip). Consider flipping a coin with probability p of landing on heads and
probability 1− p of landing on tails. The information associated with each event is

I(heads) = − log p
I(tails) = − log(1− p)

When p = 0.5, both events have the same probability and therefore provide the same amount of
information. On the other extreme, suppose that p = 0. Then the information associated with observing
heads is infinite (since this event has zero probability of occuring) while observing tails has information
zero (since this event occurs with probability one). In general, events with low probability provide high
information, and vice versa.

Remark. While we could use any base for the logarithm in the definition of the information, base two is
often used since the information is then the number of bits required to encode the random variable.

We can view the information as a function of the probability p, or of the underlying random variable x whose
probability is p(x), that is,

I(x) = − log p(x)
The entropy associated with a random variable is the expected information,

E(x) = E [I(x)] = E [− log p(x)]
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Example (Entropy of a coin flip). Going back to our previous example, the entropy associated with the
random variable x of flipping the coin is

E(x) = −p log p− (1− p) log(1− p)

where p is the probability of heads and 1 − p that of tails. The maximum entropy is one bit, which
occurs when p = 0.5. At the extreme when p = 0 or p = 1, the entropy is zero since there is no expected
information obtained from flipping the coin.

1

1

p

E(x)

Gaussian random variable

We now describe the information associated with a Gaussian random variable. Recall that the probability
density function of a Gaussian random variable with mean µ and covariance Σ is

p(x) = det(2πΣ)− 1
2 exp

(
− 1

2 (x− µ)TΣ−1(x− µ)
)

Expanding the exponential, we have

p(x) = det(2πΣ)− 1
2 exp

(
− 1

2µ
TΣ−1µ

)︸ ︷︷ ︸
constant

exp
(
− 1

2x
TΣ−1x+ xTΣ−1µ

)
This motivates the canonical parameterization of a Gaussian random variable, which is

p(x) = η exp
(
− 1

2x
TΩx+ xTξ

)
where Ω = Σ−1 is the information matrix and ξ = Σ−1µ is the information vector. This is an equivalent
parameterization of a Gaussian, and we can recover the mean and covariance from the information matrix
and information vector as µ = Ω−1ξ and Σ = Ω−1.

Using the definition of information, the information of a Gaussian random variable (in information form) is

I(x) = 1
2x

TΩx− xTξ + constant

where the information matrix Ω is the quadratic term and the information vector ξ is the (negative of the)
linear term. We can also interpret this as a quadratic centered at the mean µ with curvature Ω,

I(x) = 1
2 (x− µ)TΩ(x− µ) + constant

Both the covariance matrix Σ and information matrix Ω are positive definite, meaning that all of their
eigenvalues are positive. Therefore, the information is an upward-facing quadratic function of the random
variable x, and the quadratic is centered about the mean µ. So observing the mean contains the least amount
of information, while observing measurements further from the mean have more information.
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B

Coordinates and Transformations

Mobile robots take measurements relative to their current pose while moving in their environment. To fuse
measurements from various locations, we must transform these local measurements to a global reference
frame.

B.1 Motivation: Sensor measurements in global coordinates

Consider a robot located at some known position and orientation with respect to a global reference frame.
Suppose there is a sensor mounted on the robot at some location and orientation with respect to the robot.
If the sensor measures a point p relative to itself (the sensor does not know where it is in the world), then
what is the coordinate of the point in the global reference frame?

Let (rx, ry, rθ) denote the pose of the robot with respect to the global reference frame, and let (sx, sy, sθ)
denote the pose of the sensor with respect to the robot reference frame. Then a point p = (px, py) in the
sensor reference frame has coordinates z = (zx, zy) in the global reference frame, where[

zx

zy

]
=
[
rx

ry

]
+
[
cos rθ − sin rθ

sin rθ cos rθ

] [
sx

sy

]
+
[
cos(rθ + sθ) − sin(rθ + sθ)
sin(rθ + sθ) cos(rθ + sθ)

] [
px

py

]
In this chapter, we will learn how to derive this expression as well as more general coordinate transformations.

150



ECE 411: Sensor Fusion for Robotics B - Coordinates and Transformations

B.2 Points, vectors, and reference frames

In Euclidean space, a reference frame is a coordinate system defined by a reference point at the origin of
the frame and a reference point at unit distance along each of the coordinate axes. Typically reference
frames used in robotics are a global reference frame (such as the corner of the room or the location of a
fixed AprilTag), a body frame attached to the robot, and sensor frames attached to individual sensors on
the robot.

Remark. All frames that we use are stationary and intertial. When we refer to a reference frame attached to
a moving rigid body, what we actually mean is a motionless frame that is instantaneously coincident with a
frame that is fixed to the (possibly moving) rigid body. This is in contrast to dynamics where a non-inertial
reference frame is attached to a rotating rigid body.

A point p in physical space can be represented in relation to a reference frame by specifying it as a linear
combination of the coordinate axes from the origin of the frame. Keep in mind that this is just a represen-
tation of the point, but this representation depends on the particular reference frame. The same point p has
different representations in different frames.

In this example, the point p is represented as pa = (1, 2) in frame a while it has representation pb = (4,−2)
in frame b.

We can use a point in some reference frame to describe a vector, which is an arrow from the origin of the
reference frame to the point. To describe a vector without relying on explicit coordinates, we can use the
difference between two points in which case the vector v = p2 − p1 points from p1 to p2.

B.3 Rotations

Consider two reference frames a and b. We can represent the origin of b with respect to a by a point p.
But how do we represent the orientation of the frame? We can specify the orientation of a rigid body in
the plane by a single angle θ. While this is sufficient in two dimensions, more angles are needed to describe
orientation in three-dimensional space. To see how this generalizes, consider representing the directions of
the coordinate axes (x̂b, ŷb) of frame b in terms of the coordinate axes (x̂a, ŷa) of frame a.[

x̂b

ŷb

]
=
[
cos θ − sin θ
sin θ cos θ

] [
x̂a

ŷa

]
Therefore, the orientation of a frame in two dimensions can be represented by the above matrix, which is
called a rotation matrix. The columns of a rotation matrix are unit vectors (since the coordinate axes (x̂b, ŷb)
are unit vectors), are orthogonal (since the coordiante axes are orthogonal), and have unit determinant (since
the reference frame is assumed to be right-handed). These conditions yield the following general definition
of a rotation matrix.
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Definition (Special orthogonal group). The special orthogonal group SO(n), also known as the group of
rotation matrices, is the set of all n× n real orthogonal matrices R with unit determinant.

SO(n) = {R ∈ Rn×n | RTR = I and detR = 1}

Planar rotations

In two dimensions, a rotation matrix always has the form

R(θ) =
[
cos θ − sin θ
sin θ cos θ

]
for some angle θ, which represents a counterclockwise rotation by θ radians in the plane. Planar rotations
have the following properties:

• Rotation by an angle θ1 followed by a rotation θ2 is equivalent to a rotation by the sum θ1 + θ2,

R(θ1)R(θ2) = R(θ1 + θ2)

• Rotation by an angle of zero leaves points unchanged:

R(0) =
[
1 0
0 1

]
• The inverse of a rotation represents a clockwise rotation in the plane. Since a counterclockwise rotation

of θ is equivalent to a clockwise rotation of −θ, we have that

R(−θ) = R(θ)−1 = R(θ)T =
[

cos θ sin θ
− sin θ cos θ

]
All of these relationships may be easily verified by directly substituting the definition of the rotation matrix
and using standard trigonometric identities. The last property also follows from the fact that a rotation
matrix is orthogonal, which means that its inverse is equal to its transpose.

Group structure

As their name suggests, the set of rotation matrices form a mathematical group (the special orthogonal
group). A group is a set of elements along with a group operation (denoted here by ·) such that, for any
elements A and B in the group, the following properties are satisfied:
• closure: A ·B is also in the group

• associativity: (A ·B) · C = A · (B · C)

• identity element: there exists an identity element I in the group such that A · I = I ·A = A

• inverse element: there exists an element A−1 in the group such that A−1 ·A = A ·A−1 = I

For the special orthogonal group, elements of the group are rotations and the group operation is matrix
multiplication.

For rotations in the plane, closure is due to the fact that two consecutive rotations is equivalent to a single
rotation by the sum of the angles, associativity is due to this along with associativity of addition, the identity
element is a rotation by angle zero (in which case R is the identity matrix), and the inverse of a rotation is
a rotation in the opposite direction.
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Uses

Rotation matrices may be used in various contexts. A rotation matrix may be used for the following:
a) To represent the orientation of a reference frame relative to another frame

A rotation Rab may be used to represent the orientation of reference frame b with respect to frame a.
We may also simply write Rb when a is the global reference frame. The orientation of frame a with
respect to frame b is given by the inverse of the rotation,

Rba = R−1
ab

b) To change the orientation of a reference frame
We may also interpret a rotation Rab as an operator that changes the orientation Rbc of frame c with
respect to b to the orientation Rac of frame c with respect to a. This change of orientation is described
by

Rac = RabRbc

where the middle frame b “cancels out”.

c) To rotate a vector or a frame
We can also use a rotation to describe the rotation of a vector or a frame. To emphasize this description
as a rotation instead of an orientation, we use the notation

R = Rot(ω̂, θ)

to describe a rotation about the unit vector ω̂ by an amount θ (any rotation in two and three dimensions
can be represented in this way). Such a rotation is given as follows, depending on the frame in which
the unit vector is represented:

Rot(ω̂a, θ)Rab or Rab Rot(ω̂b, θ)

We can also rotate a vector v about a unit vector ω̂ to obtain another vector v′, all represented in the
same reference frame, as

v′ = Rot(ω̂, θ) v

B.4 Rigid body motions

We now consider both the orientation and position (that is, the pose or configuration) of a rigid body. We
could use a rotation matrix R ∈ SO(n) to represent the orientation and a point p ∈ Rn to represent the
position of a rigid body with respect to some reference frame. To simplify the notation, we combine both of
these into the following single object.

Definition (Special Euclidean group). The special Euclidean group SE(n), also known as the group of
rigid body motions or homogeneous transformation matrices in Rn, is the set of pairs of rotations and
points,

SE(n) = SO(n)× Rn = {(R, p) | R ∈ SO(n), p ∈ Rn}

We use T = (R, p) to denote rigid body motion in SE(n), where R is a rotation in SO(n) and p is a point
in Rn.
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Homogeneous coordinates and transformations

Homogeneous coordinates are a convenient way to represent points and vectors, and homogeneous matrices
represent their transformations.

Consider a point p ∈ Rn in n-dimensional space. In homogeneous coordinates, this point is represented
by the (n + 1)-dimensional vector [ p

1 ]. Homogeneous coordinates are always one dimension larger than the
standard coordinates. This extra dimension will allow us to represent transformations in a compact and
simple manner.

Since a vector v ∈ Rn is the difference between two points, its homogeneous representation is [ v
0 ].

The homogeneous form of vectors and points is different: points append a one while vectors append a zero.
This convention will reinforce several rules:
• sums and differences of vectors are vectors

• the sum of a vector and a point is a point

• the difference between two points is a vector

• the sum of two points is meaningless
To transform a homogeneous coordinate back to a normal coordinate, first scale it so that the last component
is one, and then extract the top part to obtain (x, y). For example, the homogeneous coordinate (x, y, z)
corresponds to the standard coordinate (x/z, y/z). However, all transformations that we will do preserve
the one in the last component, so this extra scaling is not necessary; you can simply read off the x and y
values as the first two components of the homogeneous coordinate.

We can associate an element T ∈ SE(n) with its homogeneous transformation matrix, which is the (n+1)×
(n+ 1) real matrix

T =
[
R p
0 1

]
For planar rigid body motion, a homogeneous transformation matrix has the form

T =

cos θ − sin θ x
sin θ cos θ y

0 0 1


where (x, y) is the position and θ the orientation of the rigid body.

The homogeneous transformation matrix T maps homogeneous coordinates in the pose frame to homogeneous
coordinates in the global frame.

T : pose frame 7→ global frame (homogeneous coordinates)

Given a point p in the pose frame, its corresponding homogeneous coordinate in the global frame is T [ p
1 ].
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Properties

• The inverse of a transformation matrix is also a transformation matrix.

T−1 =
[
R p
0 1

]−1
=
[
RT −RTp
0 1

]
∈ SE(n)

• The product of two transformation matrices is also a transformation matrix.

T1T2 =
[
R1 p1
0 1

] [
R2 p2
0 1

]
=
[
R1R2 R1p2 + p1

0 1

]
∈ SE(n)

• Multiplication of tranformation matrices is associative, meaning that (T1T2)T3 = T1(T2T3), but generally
not commutative, meaning that T1T2 ̸= T2T1.

• For any transformation matrix T ∈ SE(n) and any points x, y, z ∈ Rn,

- preservation of distances between points: ∥Tx− Ty∥ = ∥x− y∥
- preservation of angles between vectors: ⟨Tx− Tz, Ty − Tz⟩ = ⟨x− z, y − z⟩

where ⟨·, ·⟩ and ∥ · ∥ denote the standard Euclidean inner product and norm in Rn.

This last point establishes that elements of SE(n) do in fact represent rigid body motions in that they
preserve angles between vectors and distances between points.

Uses

Just as rotation matrices may be used in various contexts, we can use an element T ∈ SE(n) in the following
ways:

a) To represent the pose of a reference frame relative to another frame
A rigid body motion Tab = (Rab, pab) may be used to represent the pose of reference frame b with respect
to frame a, where Rab and pab are the orientation and position of frame b represented in frame a. We
may also simply write Tb when a is the global reference frame. The pose of frame a with respect to
frame b is given by the inverse of the motion,

Tba = T−1
ab
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b) To change the frame in which a vector or frame is represented
Similar to the subscript cancellation rule for rotations, a rigid body motion Tab may be used to change
the frame in which a frame is represented:

Tac = TabTbc

Similarly, for a vector vb represented in b, its representation in a is

va = Tabvb

c) To displace (rotate and translate) a vector or frame
We can also use a rigid body motion to describe the displacement of a vector or a frame. To emphasize
this description as a rotation and translation, we use the notation

T = Trans(p) Rot(ω̂, θ) where Rot(ω̂, θ) =
[
R 0
0 1

]
and Trans(p) =

[
I p
0 1

]
Such a displacement is given as follows, depending on the frame in which the unit vector ω̂ and point p
are represented:

TTab = Trans(pa) Rot(ω̂a, θ)Tab or TabT = Tab Trans(pb) Rot(ω̂b, θ)

We can also displace a vector v about a unit vector ω̂ and point p to obtain another vector v′, all
represented in the same reference frame, as

v′ = Tv = Trans(p) Rot(ω̂, θ) v
In the first case, T represents the position and orientation of a reference frame (such as one placed on a rigid
body), while in the last two cases T represents an operator that either changes the reference frame or moves
a vector or frame.

Example (relative odometry measurements). Suppose the robot measures the odometry zij from pose xi

to pose xj with information matrix Ωij . Let Zij , Xi, and Xj denote the corresponding homogeneous
transformation matrices. The frames that these matrices map between is as follows:

Xi : pose i 7→ global
Xj : pose j 7→ global
Zij : pose i 7→ pose j

Then the homogeneous transformation matrix X−1
i Xj represents how node i sees node j. The error

associated with an odometry-based edge is given by the transformation matrix

Z−1
ij (X−1

i Xj) : pose j 7→ pose j

Sensor measurements in global coordinates

We now show how to use homogeneous coordinates and transformations to map a sensor measurement p
taken from a sensor on a robot to the global reference frame. Using the same notation as previously, the
sensor measurement in the global frame is given byzx

zy

1


︸ ︷︷ ︸
sensor

measurement in
homogeneous

global coordinates

=

cos rθ − sin rθ rx

sin rθ cos rθ ry

0 0 1


︸ ︷︷ ︸

transformation
from robot frame
to global frame

cos sθ − sin sθ sx

sin sθ cos sθ sy

0 0 1


︸ ︷︷ ︸

transformation
from sensor frame

to robot frame

px

py

1


︸ ︷︷ ︸
sensor

measurement in
homogeneous

sensor coordinates
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Expanding this result and simplifying yields the expression shown previously.

Example. Consider the following values:rx

ry

rθ

 =

 1.5
1
−π/4

 and

sx

sy

sθ

 =

−0.2
0
π/2

 and
[
px

py

]
=
[

2
−3

]

The following figure shows the robot (black), mounted sensor (blue), and measurement all in the world
frame.

Relative poses

Suppose a rigid body moves from pose T1 to T2 (both with respect to a global reference frame) as shown
below.

We can interpret T2 as the second pose relative to the global frame and T−1
1 as the change of reference frame

from the global frame to that of the first pose. Therefore, the second pose relative to the first pose is given
by

T12 = T−1
1 T2
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Using their representation as homogeneous transformation matrices we obtain

T12 = T−1
1 T2 =

[
RT

1R2 RT
1 (p2 − p1)

0 1

]
=
(
RT

1R2, R
T
1 (p2 − p1)

)
For a planar rigid body moving from pose (x1, y1, θ1) to pose (x2, y2, θ2), the homogeneous transformation
matrix representing the second pose with respect to the first pose iscos θ1 − sin θ1 x1

sin θ1 cos θ1 y1
0 0 1

−1 cos θ2 − sin θ2 x2
sin θ2 cos θ2 y2

0 0 1

 =

cos ∆θ − sin ∆θ ∆x cos θ1 + ∆y sin θ1
sin ∆θ cos ∆θ ∆y cos θ1 −∆x sin θ1

0 0 1

 ,
so, the second pose with respect to the first pose is∆x cos θ1 + ∆y sin θ1

∆y cos θ1 −∆x sin θ1
∆θ

 where

∆x
∆y
∆θ

 =

x2 − x1
y2 − y1
θ2 − θ1



B.5 Perspective-n-point problem

The perspective-n-point (PnP) problem is to estimate the relative pose between an object and a camera,
given a set of correspondences between points in space and their projections on the image plane.

Suppose we are given a set of n known points P1, P2, . . . , Pn in a fixed world frame, and we use a cam-
era to measure their projections P I

1 , P
I
2 , . . . , P

I
n on the image plane. The goal is to find the coordinates

PC
1 , P

C
2 , . . . , P

C
n of the points in the camera frame. The coordinates in the camera frame are related to those

of the world frame by a transformation:
PC

i = RPi + t

Our goal is to find the rotation matrix R and translation vector t so that we can map points in the world
frame to points in the camera frame (or vice-versa).

For there to be a unique solution for this transformation, we need at least n = 3 points. This is known as
the P3P problem, whereas the more general case with n points is called PnP.

The P3P problem setup is illustrated below, where O is the optical center (or center of projection) of the
camera, the points P1, P2, P3 are the points of interest that we know in the world frame, P I

1 , P
I
2 , P

I
3 are their

projections onto the camera frame, and the rotation matrix R and tranlation vector t are the unknowns that
map the world frame to the camera frame.1

1https://jingnanshi.com/blog/pnp_minimal.html
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C

Least Squares

Least squares (LS) is an approach to approximate the solution to an over-determined system of equations
by minimizing the sum of the squares of the residuals (or errors) from each individual equation.

C.1 Problem statement

Given a set of n decision variables x1, . . . , xn and a set of m residuals r1, . . . , rm, each of which maps a set
of decision variables to a scalar, consider the set of equations

r1(x1, . . . , xn) = 0
r2(x1, . . . , xn) = 0

...

rm(x1, . . . , xn) = 0

This system of equations may have one solution, many solutions, or no solution. If the equations have no
solution, then the best that we can do is find a set of variables that make the residuals as small as possible
(since they cannot all be made zero). The least squares approach to this problem is to minimize the sum of
the squared residuals,

minimize
x1,...,xn

m∑
j=1

rj(x1, . . . , xn)2

This is called the least squares problem because it finds the values that make the squared errors as small as
possible. Instead of minimizing the sum of the squared errors, we could also minimize a weighted sum of the
squared errors:

minimize
x1,...,xn

m∑
j=1

wj rj(x1, . . . , xn)2

where wj is the weight for the jth residual. To simplify the notation, we can write the least squares problem
in vector form by defining

x =

x1
...
xn

 and r(x) =

 r1(x)
...

rm(x)

 and W =

w1 . . . 0
...

. . .
...

0 . . . wm


The decision variable x is now an n-dimensional vector, the residual r is a function that maps a decision
variable to an m-dimensional vector of residuals, and the weight W is an m×m diagonal matrix. The least
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squares problem can now equivalently be written as

minimize
x

r(x)TWr(x)

We could also define the weighted norm ∥y∥W =
√
yTWy, in which case the weighted least squares problem

is
minimize

x
∥r(x)∥2

W

The solution to this optimization problem is called the least squares estimator (LSE), which we denote by
x̂.

C.2 Linear least squares

Consider the case in which the residuals are each affine functions of the decision variables,

r1(x1, . . . , xm) = a11x1 + a12x2 + . . . a1nxn − b1

r2(x1, . . . , xm) = a21x1 + a22x2 + . . . a2nxn − b2

...

rm(x1, . . . , xm) = am1x1 + am2x2 + . . . amnxn − bm

The scalar aij is the coefficient in the residual ri of the decision variable xj , and the scalar bi is the constant
coefficient in the residual ri. The vectorized residual is then

r(x) = Ax− b where A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 and b =


b1
b2
...
bm


If there exists a solution x to the linear equation Ax = b, then the residual for this solution is zero. Even
when this system of equations does not have a solution, the least squares solution minimizes the sum of
the squared residuals to find an approximate solution. The least squares problem is then to find the “best”
solution by solving the optimization problem

minimize
x

∥Ax− b∥2
W

While there is no closed-form expression for the solution to a general least squares problem, we can obtain a
simple expression in the linear case. A closed-form expression for the linear least squares estimator (LLSE)
is

x̂ = (ATWA)−1ATWb

To derive this expression, we can use the following rules for vector calculus,

∂

∂x
(xTAx) = 2Ax and ∂

∂x
(Ax) = AT

Then setting the derivative of the objective function equal to zero and applying the chain rule, we have that

0 = ∂

∂x
(Ax− b)TW (Ax− b) = 2ATW (Ax− b)

whose solution is the linear least squares estimator. When the weights are all one, the weight matrix is the
identity and the linear least squares estimator simplifies to

x̂ = (ATA)−1ATb
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If A has linearly independent columns, then the matrix (ATA)−1AT is the pseudoinverse of A, which is
denoted A†. This is a left inverse in that A†A = I, but it is not necessarily a right inverse in that AA† ̸= I
in general. Instead of computing the inverse explicitly, a more computationally efficient way is to use the
command x = A\b in MATLAB.

Statistical interpretation

In estimation problems, the residual is typically of the form r(x) = z − g(x), where z is the measurement
and g(x) is the sensor model. If the model is exact, then the residuals are all zero. But sensor measurements
are often noisy, which we model as additive noise,

z = g(x) + δ

where δ is the measurement noise. The residual is then equal to the measurement noise, that is, r(x) = δ.
We now study the statistical properties of the least squares estimator in terms of the statistical properties
of the measurement noise.

Using that the residual is the measurement noise δ = Ax− b, the mean of the least squares estimator is

E(x̂) = E
(
(ATWA)−1ATWb

)
= E

(
(ATWA)−1ATW (Ax− δ)

)
= x− (ATWA)−1ATW E(δ)

The mean of the least squares estimator is equal to the true value if and only if the measurement noise has
zero mean (so the sensor is unbiased),

E(x̂) = x if and only if E(δ) = 0

Assuming that the sensor is unbaised, the covariance of the linear least squares estimator is

cov(x̂) = E
(
(x̂− E(x̂))(x̂− E(x̂))T)

= E
((

(ATWA)−1ATW (Ax− δ)− x
)(

(ATWA)−1ATW (Ax− δ)− x
)T
)

= E
((

(ATWA)−1ATWδ
)(

(ATWA)−1ATWδ
)T
)

= (ATWA)−1ATW E(δδT)WTA(ATWA)−1

Therefore, the linear least squares estimate covariance for an unbiased sensor is

cov(x̂) = (ATWA)−1ATWcov(δ)WTA(ATWA)−1

It can be shown that the choice of weight matrix W that minimizes the covariance of the least squares
estimate is W = cov(δ)−1, in which case the covariance of the estimate reduces to

cov(x̂) = (ATWA)−1

Based on this analysis, a principled choice for the weights is the inverse of the noise variance, that is,
wj = 1/σ2

j , where σ2
j is the variance of the jth sensor. If the sensor has a lot of noise, then its variance is

large, which produces a small weight, so the measurement does not have a large effect in the optimization
problem.
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Example (Inverse-variance weighting). Suppose we directly take m measurements of a quantity x that
we want to estimate, and each estimate zj is perturbed by zero-mean additive Gaussian noise with
variance σ2

j . The residual is then  r1
...
rm

 =

1
...
1

x−
 z1
...
zm


The decision variable is a scalar, while the residual is a vector. Choosing the weights as the inverse of
the measurement noise variance, we have

A =

1
...
1

 and b =

 z1
...
zm

 and W =

1/σ2
1 . . . 0

...
. . .

...
0 . . . 1/σ2

m


The least squares estimator is then

x̂ = (ATWA)−1ATWb =
(

m∑
j=1

1
σ2

j

)−1 m∑
j=1

zj

σ2
j

which is precisely the inverse-variance weighting solution. For instance, if there arem = 2 measurements,
then this simplifies to

x̂ = σ2
1σ

2
2

σ2
1 + σ2

2

(
z1

σ2
1

+ z2

σ2
2

)

C.3 Nonlinear least squares

When the residuals in the least squares problem are not affine functions of the decision variable, there is in
general no closed-form solution for the least squares estimator. Instead, we can use numerical algorithms
that recursively estimate the solution.

The objective function in the least squares problem is the weighted squared norm of the residuals,

f(x) = 1
2r(x)TWr(x) = 1

2∥r(x)∥2
W

which maps a decision vector x to a scalar, where we include the factor of one half for convenience (it does
not change the optimal solution). To describe such numerical algorithms, we will use the gradient of the
objective function, which is the vector of partial derivatives of f with respect to each of the decision variables
xi. In addition, we will use the Jacobian of the residual, which is the m× n matrix of partial derivatives of
each residual function rj with respect to each decision variable xi.

J =



∂r1

∂x1

∂r1

∂x2
. . .

∂r1

∂xn

∂r2

∂x1

∂r2

∂x2
. . .

∂r2

∂xn

...
...

. . .
...

∂rm

∂x1

∂rm

∂x2
. . .

∂rm

∂xn


and ∇f =



∂f

∂x1

∂f

∂x2

...

∂f

∂xm


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Each of these partial derivatives are in general functions of the decision variable, so both the gradient ∇f
and the Jacobian J are functions of x. We can write the gradient of the objective function in terms of the
residual and its Jacobian as

∇f(x) = J(x)TW r(x)
While we could apply any generic unconstrained optimization algorithm to the objective function f , there
are more specialized algorithms that take into account the specific structure of the least squares problem.

Gauss–Newton algorithm

Given an initial condition x0 for the decision variable, the Gauss–Newton algorithm solves a general (non-
linear) least squares problem by iterating the recursion

xk+1 = xk −
(
J(xk)TWJ(xk)

)−1
J(xk)TWr(xk)

The matrix Jk the Jacobian of the residual r evaluated at the current iterate xk. Instead of inverting the
matrix, it is more computationally efficient to perform the update xk+1 = xk −∆k, where the update ∆k is
given by the solution to the linear system of equations

Ωk ∆k = ξk

where
Ωk = J(xk)TWJ(xk) and ξk = J(xk)TWr(xk)

Note that ξk is the gradient of the objective and Ωk an approximation to the Hessian evaluated at the current
iterate. A typical stopping criteria is when the update is small, that is, ∥∆k∥ is less than some tolerance.

Successive linearization

The Gauss–Newton algorithm can be derived by applying the linear least squares solution recursively to the
linearization of the residual about the current iterate:

r(xk+1) = r(xk −∆k) ≈ r(xk)− J(xk)∆k

To minimize the residual at the next iterate xk+1, the Gauss–Newton algorithm solves the linear least squares
problem with A = J(xk) and b = r(xk) to find the update ∆k and then sets xk+1 = xk −∆k.

Information interpretation

We can interpret the quantities Ωk and ξk in the Gauss-Newton algorithm as the information matrix and
information vector of the residual linearized about the current iterate xk. Suppose the residual r(x) is a
zero-mean Gaussian random variable, and recall that the information of a Gaussian random variable is a
quadratic centered about the mean with curvature given by the information matrix. Therefore, if the weight
matrix W is chosen optimally as the information matrix, the information of the residual is

I(r(x)) = 1
2r(x)TWr(x) + constant

Using the linearization of the residual about the current iterate xk, the information at the residual at the
next iterate is approximately

I(r(xk+1)) ≈ I(r(xk)− J(xk)∆k)
= 1

2 (r(xk)− J(xk)∆k)TW (r(xk)− J(xk)∆k) + constant
= 1

2 ∆T
k Ωk∆k −∆T

k ξk + constant
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Therefore, Ωk, ξk, and the update ∆k = Ω−1
k ξk are the information matrix, information vector, and mean

of the residual at the next iterate linearized about the current iterate xk.

Levenberg–Marquardt algorithm

The Levenberg–Marquardt algorithm is a regularized version of the Gauss–Newton algorithm. The regular-
ization term is of the form λ ∥x−xk∥2 for some nonnegative scalar λ. The only change to the Gauss–Newton
algorithm is that the matrix in the linear system has an additional term due to the regularization:

Ωk = J(xk)TWJ(xk) + λI

where I is the identity matrix. Let’s consider what happens to the algorithm in the two extreme cases for
the choice of parameter λ.
• When λ = 0, the Levenberg–Marquardt algorithm reduces to the standard Gauss–Newton algorithm

since the regularization term is zero.

• For large values of λ, the term λI is much larger than J(xk)TWJ(xk), so the update is approximately
a scaled gradient,

∆k ≈
1
λ
∇f(xk)

To summarize, small values of λ approximate the Gauss–Newton algorithm, while large values of λ approx-
imate gradient descent.

Alternative regularization

One disadvantage of using the regularization term λ ∥x−xk∥2 is that the regularization is not scale invariant:
all components of x are weighted the same no matter how they are scaled or weighted. An alternative
regularization is to use the diagonal of the non-regularized matrix,

Ωk = J(xk)TWJ(xk) + λ diag
(
J(xk)TWJ(xk)

)
For this algorithm, the size of each term in the regularization is scaled based on the Jacobian and weight
matrix.

Adaptive stepsize

In general, it is difficult to choose the regularization parameter λ. If the function is approximately linear so
that its linearization is a good approximation globally, then we should choose λ small to approximate the
Gauss–Newton algorithm. But if the function is highly nonlinear, then we cannot trust the linearization far
from the current iterate so we should choose λ large to force the next iterate to be close to the current one,
in which case the algorithm is approximately gradient descent.

One way to choose the parameter λ is to select it adaptively as the algorithm iterates. One such scheme
is as follows. Select an initial value λ0 and a factor α ∈ (0, 1). Then at iteration k of the algorithm, first
compute xk+1 using the current value of the parameter λk.
• If the value of the cost at xk+1 is less than the value at xk, then accept xk+1 as the new iterate and

decrease the parameter as λk+1 = αλk.

• Otherwise, set keep the previous iterate xk+1 = xk and increase the regularization parameter λk+1 =
λk/α.
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Example (location from range measurements). Let (x, y) represent the unknown position of a robot in
the two-dimensional plane. Suppose the robot makes range measurements z1, . . . , zm to landmarks at
known locations (ℓi

x, ℓ
i
y) for i = 1, . . . ,m. The position of the robot can be estimated by solving the

nonlinear least squares problem

minimize
x,y

m∑
i=1

(
zi −

∥∥∥∥[xy
]
−
[
ℓi

x

ℓi
y

]∥∥∥∥)2

For instance, the following figure shows the norm of the residual (left) and contour lines of the squared
residual (right) using five measurements (blue). The true robot position is (1, 1), and the nonlinear
least squares estimate (red) is (1.18, 0.82).

Unlike linear least squares, nonlinear least squares problems may have multiple local minima, and
the algorithm is not guaranteed to find the globally optimal solution. The figure below shows three
trajectories of the algorithm starting from various initial conditions. While the blue and gold trajectories
reach the global optimum, the red trajectory gets “stuck” in a local optimum.
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C.4 Iterative linear least squares

Measurements are often taken sequentially in time. Instead of recomputing the least squares estimator from
scratch each time a new measurement arrives, we can instead update our estimate to take into account the
new measurement.

Consider the least squares estimator x̂ with covariance matrix cov(x̂) = Σ that minimizes the weighted
least squares cost ∥Ax− b∥2

W for some decision variable x. Now suppose that we obtain a new measurement
z = Cx+ δ, where the measurement noise δ has zero mean E(δ) = 0, covariance matrix cov(δ) = R, and is
independent of the previous measurement noise cov(x̂ − x, δ) = 0. Then the updated weighted linear least
squares estimator, using the inverse covariance for the weight of the measurement, is

x̂′ = x̂+K (z − Cx̂)

where the matrix K, known as the Kalman gain, is given by

K = ΣCT(CΣCT +R)−1

The covariance Σ′ of the new estimate can be expressed in terms of the covariance Σ of the previous estimate
as

Σ′ = Σ−K (CΣCT +R)KT

Interestingly, the covariance of the new estimate does not depend on the value z of the measurement, only its
covariance R. Also, the updated covariance Σ′ is “smaller” than the previous covariance Σ, indicating that
the updated estimator is better than the previous one since it takes into account the additional measurement.

Derivation

Weighting the measurement by the inverse of its covariance, the weighted least squares cost of the previous
residuals and the new measurement is

f(x) = (Ax− b)TW (Ax− b) + (z − Cx)TR−1(z − Cx)

To find the optimal estimate, we take the derivative of the cost and set it equal to zero,

0 = ∂f(x)
∂x

= 2ATW (Ax− b)− 2CTR−1 (z − Cx)

The solution to this equation is the updated linear least squares estimator, which we denote x̂′,

x̂′ = (CTR−1C +ATWA)−1(CTR−1z +ATWb)

Since x̂ is the linear least squares estimator for the original problem and its covariance is Σ, we have that

x̂ = (ATWA)−1ATWb and Σ = (ATWA)−1

Substituting these into the expression for the updated linear least squares estimate, we have that

x̂′ =
(
CTR−1C + Σ−1)−1(

CTR−1z + Σ−1x̂
)

To simplify the inverse on the left, we apply the matrix inversion lemma — also called the Woodbury matrix
identity — which states that(

CTR−1C + Σ−1)−1 = Σ− ΣCT(CΣCT +R)−1CΣ

The updated linear least squares estimator is then

x̂′ = (Σ−KCΣ)
(
CTR−1z + Σ−1x̂

)
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It can be shown that
(Σ−KCΣ)CTR−1 = K

which gives the final expression for the updated estimate.

Since the original estimator is unbiased and the measurement noise has zero mean, the updated estimate is
also unbiased,

E(x̂′) = E(x̂) +K (E(z)− C E(x̂)) = x

The difference between the updated estimate and its mean is then

x̂′ − x = (I −KC)(x̂− x) +Kδ

Since the measurement noise is uncorrelated with the error of the previous estimate, cov(x̂−x, δ) = 0. Then
the covariance of the updated estimate is

Σ′ = cov(x̂′) = (I −KC)Σ(I −KC)T +KRKT

It can be shown that this is equivalent to the expression above.
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