
Asymptotic Mean Ergodicity of Average Consensus Estimators

Bryan Van Scoy and Randy A. Freeman and Kevin M. Lynch

Abstract— Dynamic average consensus estimators suitable for
the decentralized computation of global averages of constant
or slowly-varying local inputs include the proportional (P) and
proportional-integral (PI) estimators. We analyze the conver-
gence properties of these estimators when run on i.i.d. random
graphs which are connected and balanced on average, but need
not be connected or balanced at each time step. The statistics of
the steady-state process are found using the Kronecker product
covariance and an ergodic theorem is used to determine whether
the steady-state process is mean ergodic. We show that for
constant inputs the P estimator is asymptotically mean ergodic
only for systems with non-zero forgetting factor which do not
have zero steady-state error on average. The PI estimator has
both the asymptotic mean ergodicity property and zero steady-
state error in expectation for constant inputs independent of
initial conditions, proving that the time-averaged output of each
agent robustly converges to the correct average.

I. INTRODUCTION
The average consensus problem is considered in which a

group of agents calculates the global average of their inputs
using only local interactions with neighboring agents. Appli-
cations of average consensus include formation control [1],
distributed Kriged Kalman filtering [2], distributed merging
of feature-based maps [3], and distributed estimation for
motion coordination [4]. We study the problem of average
consensus over a random graph topology using the polyno-
mial linear protocol with focus on the proportional (P) and
proportional-integral (PI) estimators [5].

Previous work has examined the convergence and robust-
ness properties of the P and PI dynamic average consensus
estimators for constant communication graphs [5]. In this
paper, we consider the case where the graph is chosen
randomly at each time step, modeling noisy communica-
tion channels where packets are dropped randomly. While
the random graphs prevent asymptotic convergence of each
agent’s estimate to the average of the constant inputs, in
this paper we pose a slightly weaker question: Under what
conditions do the time-averaged values of the estimator
outputs converge to the actual average of the inputs? With
this property, estimator outputs can be low-pass filtered to
obtain the correct average.

Convergence properties of average consensus algorithms
over random graphs have been studied recently [6], [7], [8],
[9], [10]. Much of the analysis has been performed on single-
hop static consensus algorithms. Single-hop protocols are
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often used due to their simplicity in message passing, but
higher degree protocols have also been shown to achieve av-
erage consensus [11]. We address multi-hop communication
using the general polynomial linear protocol framework. This
allows for the analysis of a general class of linear consensus
protocols of arbitrary degree. Also, the current literature only
addresses static consensus algorithms in which the inputs to
the system are assigned as initial states. This simplifies the
analysis by reducing the problem to the study of infinite
products of stochastic matrices. However, this setup is not
robust to initialization errors since a single fault at one time
step can cause the system to converge to an incorrect value.
The system is also not robust to agents joining or leaving
the network and must be reinitialized whenever a change
occurs. We use dynamic average consensus where the agent
inputs are assigned not as initial states but as inputs into
the networked dynamic system. Dynamic average consensus
estimators are said to be robust if they converge to the
average of all the inputs independent of the initial state.

To study the steady-state behavior of average consensus
estimators over random graphs, we first state an ergodic the-
orem which gives necessary and sufficient conditions on the
steady-state covariance for a discrete time random process
to be asymptotically mean ergodic, meaning that the time-
average converges to the ensemble average of the steady-state
process. An expression for the steady-state covariance of the
output of a polynomial linear protocol system is derived.
The ergodic theorem is then applied to the polynomial linear
protocol to identify conditions under which the estimator
is ergodic. Results are applied to the P and PI estimators
which are both polynomial linear protocols. The robustness
and steady-state error properties of these estimators have
already been established for constant graphs, so they are
known for the expected system. In this paper, we show
that if the randomly chosen graphs are i.i.d. and connected
and balanced on average (but with no requirement on each
graph being connected and balanced), then the PI estimator is
ergodic, robust, and has expected steady-state error of zero,
so the time-averaged output of each agent converges to the
exact average independent of the initial state. Therefore the
exact average can be obtained using a low-pass filter at the
output of each agent.

The subsequent sections are organized as follows. Section
II introduces the average consensus problem. Section III
defines the covariance using the Kronecker product and es-
tablishes several useful results of the covariance, and Section
IV gives sufficient conditions on the steady-state covariance
for a random process to be asymptotically mean ergodic.
The main theorem is presented in Section V which develops
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the steady-state covariance for a general polynomial linear
protocol using the separated system. Results are applied to
the P and PI estimators in Section VI, and Section VII
summarizes the conclusions.

Notation: The vectors 1n and 0n represent the n × 1
vectors with all entries 1 and 0, respectively. In represents
the n × n identity matrix. The expectation of a random
variable x is denoted E[x], and the expectation of a matrix
A is denoted E[A] and is the element-wise expectation of
each element of A. A diagonal matrix with entries αi on the
diagonal is denoted diag(α1, . . . , αn). The symbol ⊗ denotes
the Kronecker product, except in (6) where it represents the
tensor product. The spectral radius is denoted ρ(·).

II. PROBLEM SETUP

Consider a group of n agents whose communication
topology is modeled as a weighted directed graph G. The
adjacency matrix of G is defined as A = [aij ] ∈ Rn×n

where aij > 0 if agent i can receive information from agent
j and zero otherwise. The neighbors of agent i, denoted
Ni, is the set of agents from which agent i can receive
information. The Laplacian matrix is L = diag(A1n) − A.
Therefore, L is positive semidefinite and satisfies Lv = 0n
where v = 1n/

√
n. The graph is said to be balanced if and

only if vTL = 0Tn . The algebraic connectivity of the graph
is the second smallest eigenvalue of L, denoted λ2(L). The
graph is connected if and only if |λ2(L)| > 0.

The weights aij can be chosen to optimize the perfor-
mance of the system if the communication graph is known
[12]. When the graph is unknown, however, it is often useful
to use the weights to bound the eigenvalues of the Laplacian.
For example, inverse-out degree weighting assigns aij =
1/[deg(i)+deg(j)] where deg(i) is the out-degree of agent i.
This decentralized weighting scheme restricts the eigenvalues
of L to the region D0∩D1 where Dx ⊂ C denotes the closed
unit disc centered at x [11]. It also has the added advantage
of producing symmetric (and therefore balanced) expected
Laplacians under suitably symmetric packet-loss probability
distributions (see [11] for details).

The consensus problem is to design an estimator whose
output converges to the same signal for each agent. Average
consensus requires the consensus signal to be (1/n)

∑n
i=1 u

i
k

where uik is the input to agent i at time k. The P estimator
is implemented on agent i using the equations

xik+1 = (1− γ)xik − kp
∑
j∈Ni

aij
[
yik − y

j
k

]
(1)

yik = xik + uik (2)

where xik is the internal state and yik is the output of agent
i at time k, and γ and kp are system parameters. The PI
estimator equations are

νik+1 = (1− γ)νik + γuik − kp
∑
j∈Ni

aij
[
νik − ν

j
k

]
− kI

∑
j∈Ni

aij
[
ηik − η

j
k

]
(3)

ηik+1 = ηik + kI
∑
j∈Ni

aij
[
νik − ν

j
k

]
(4)

where νik and ηik are the internal states of agent i at time k,
νik is the output, and γ, kp, and kI are system parameters.

The convergence properties of the P and PI estimators for
constant communication graphs have been studied [5]. In this
paper we study the steady-state behavior of the estimators
when the graph is not constant; that is, L = Lk is time
dependent. We seek to determine the steady-state behavior
of the time-varying systems and give conditions under which
the estimators achieve average consensus for constant inputs.

III. KRONECKER PRODUCT COVARIANCE

Given random matrices A ∈ Rm×n and B ∈ Rp×q , we
would like a way of representing the covariances between
Ai,j and Bk,l for all i, j, k, l. The covariance matrix between
two random vectors x ∈ Rn and y ∈ Rm is generally defined
as the n×m matrix

C(x, y) ≡ E
[
(x− E[x]) (y − E[y])

T ]
. (5)

This definition, however, is limited to vectors (and scalars)
and does not generalize to higher dimensions. By interpret-
ing vectors as 1st-order tensors and matrices as 2nd-order
tensors, the covariance matrix can be viewed as a 2nd-order
tensor composed using the outer product of two 1st-order ten-
sors. Basser and Pajevic generalize this concept to obtain the
covariance of two 2nd-order tensors resulting in a 4th-order
covariance tensor [13]. In general, the covariance between
an nth-order random tensor a and mth-order random tensor
b can be described by an mnth-order tensor using the tensor
product (or outer product),

C(a, b) ≡ E[(a− E[a])⊗ (b− E[b])], (6)

where ⊗ denotes the tensor product. An intuitive definition
for the covariance between two matrices is then given by
Definition 1.

Definition 1: The covariance between A ∈ Rm×n and
B ∈ Rp×q is defined as

COV[A,B] ≡ E[(A− E[A])⊗ (B − E[B])] (7)

which has dimensions mp × nq, and where ⊗ denotes the
Kronecker product. The variance is the covariance between
a matrix and itself and is denoted

VAR[A] ≡ COV[A,A] . (8)
In the vector case, the covariances using the Kronecker

product definition and the standard definition are related by
COV[x, y] = vec[C(y, x)] where vec[A] is the vectorization
[14] of a matrix formed by stacking the columns of A.
Equation (5) is valid only for random vectors while (7) is
valid for both random vectors and matrices of any size, so the
latter definition will be used throughout this paper. Theorems
1 and 2 provide useful results for the Kronecker product
covariance which are analogous to those of the scalar case.
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Theorem 1: Given matrices A ∈ Rm×n, B ∈ Rp×q and
vectors x ∈ Rn, y ∈ Rq where A and B are uncorrelated
with x and y, the covariance of the product is

COV[Ax,By] = COV[A,B] (E[x]⊗ E[y])

+ (E[A]⊗ E[B]) COV[x, y] + COV[A,B] COV[x, y]

= COV[A,B] E[x⊗ y] + (E[A]⊗ E[B]) COV[x, y]

= COV[A,B] (E[x]⊗ E[y]) + E[A⊗B] COV[x, y] . (9)
For scalars A,B, x, y, this result reduces to

COV[Ax,By] = COV[A,B] E[x] E[y]

+ E[A] E[B] COV[x, y] + COV[A,B] COV[x, y] . (10)

Theorem 2: Given sets of vectors xi ∈ Rm and yj ∈ Rn,
the covariance of the sum is

COV
[∑

i

xi,
∑
j

yj

]
=
∑
i

∑
j

COV[xi, yj ]. (11)

The following definition is useful to simplify notation.
Definition 2: Let n be a non-negative integer. The nth

Kronecker power is defined as

X⊗n ≡ X ⊗ . . .⊗X︸ ︷︷ ︸
n

. (12)

IV. ASYMPTOTIC MEAN ERGODICITY
Consider a discrete-time random process {Xk}∞k=k0

where
Xk ∈ Rn for k ≥ k0. We extend the ergodic theorem
for a wide-sense stationary random process in [15] to an
asymptotically wide-sense stationary random process. This
establishes conditions under which the time average of the
process converges to the ensemble average as k approaches
infinity.

Definition 3 (Asymptotically Wide-Sense Stationary):
The process Xk is asymptotically wide-sense stationary if
and only if the mean and covariance of the steady-state
process do not change with time; that is, the limits

mX ≡ lim
n→∞

E[Xn] (13)

and

CX(k) ≡ lim
n→∞

COV[Xk+n, Xn] (14)

exist and are finite where mX is the mean and CX(k) is the
covariance of the steady-state process.

Definition 4 (Time Average): The time average mean of a
random process Xk starting at k0 is given by

〈Xn〉T =
1

T

T+k0−1∑
k=k0

Xk+n. (15)

We now state conditions under which the process is
asymptotically ergodic in the mean. The proof is similar to
that of [15] and is omitted for brevity.

Theorem 3 (Asymptotic Mean Ergodicity): Let
{Xk}∞k=k0

be a single-sided asymptotically wide-sense
stationary discrete-time random process with limiting
mean mX and limiting covariance CX(k). The process is
asymptotically mean ergodic, that is,

lim
T→∞

lim
n→∞

〈Xn〉T = mX , (16)

in the mean square sense if and only if the quantity

AME(X) ≡ lim
T→∞

1

T

T−1∑
k=−(T−1)

(
1− |k|

T

)
CX(k) (17)

is zero.
Corollary 1: An asymptotically wide-sense stationary

random process Xk with steady-state covariance given by

CX(k) = λ|k| (18)

is asymptotically mean ergodic if and only if |λ| ≤ 1 and
λ 6= 1.

Definition 5 (Convergent): A square matrix A is conver-
gent when its power sequence {Ak}∞k=1 converges to a finite
constant matrix as k →∞. From the Jordan decomposition,
A is convergent if and only if all Jordan blocks associated
with eigenvalues at λ = 1 are of size one, and all other
eigenvalues have magnitude less than one.

Corollary 2: An asymptotically wide-sense stationary
random process Xk with steady-state covariance given by

CX(k) = CA|k|B (19)

where A ∈ Rn×n is convergent, B ∈ Rn×1, C ∈ R1×n, and
any eigenvalue of A at one is either uncontrollable through B
or unobservable through C, is asymptotically mean ergodic.

V. POLYNOMIAL LINEAR PROTOCOL

A general class of linear protocols which can be used for
average consensus is the polynomial linear protocol [11].
Theorem 4 provides conditions under which the output of a
polynomial linear protocol is asymptotically mean ergodic by
examining the covariance of the output process. Ergodicity
implies that time averages are equal to ensemble averages,
so the low-pass filtered output of each agent converges to the
ensemble average as time approaches infinity if the process
is asymptotically mean ergodic. For protocols of degree one,
Corollary 3 shows that the expected output is the output of
the deterministic system using the expected Laplacian.

Definition 6: A polynomial linear protocol of degree l is
the collection Σ(X) = [A(X), B(X), C(X), D(X)] where

A(X) ≡
l∑

i=0

Xi ⊗Ai B(X) ≡
l∑

i=0

Xi ⊗Bi

C(X) ≡
l∑

i=0

Xi ⊗ Ci D(X) ≡
l∑

i=0

Xi ⊗Di (20)

are polynomials in X which describe the linear system

xk+1 = A(X)xk +B(X)uk (21)
yk = C(X)xk +D(X)uk (22)

for k ≥ k0. The sizes of matrices and vectors are X ∈ Rn×n,
Ai ∈ Rp×p, Bi ∈ Rp×q , Ci ∈ Rm×p, Di ∈ Rm×q , xk ∈
Rnp×1, yk ∈ Rnm×1.

Example 1: The P estimator is a polynomial linear proto-
col of degree one with parameters γ and kp where A0 = 1−
γ, C0 = D0 = 1, A1 = B1 = −kp, and B0 = C1 = D1 = 0.
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Example 2: The PI estimator is a polynomial linear pro-
tocol of degree one with parameters γ, kp, and kI where

A0 =

[
1− γ 0

0 1

]
B0 =

[
γ
0

]
C0 =

[
1 0

]
D0 = 0 (23)

and

A1 =

[
−kp kI
−kI 0

]
B1 =

[
0
0

]
C1 =

[
0 0

]
D1 = 0. (24)

Note that a polynomial linear protocol Σ(X) of degree l
may be written as

A(X) = X̃Ã B(X) = X̃B̃

C(X) = X̄C̃ D(X) = X̄D̃ (25)

where

X̃ =
[
In ⊗ Ip X ⊗ Ip . . . X l ⊗ Ip

]
, (26)

X̄ =
[
In ⊗ Im X ⊗ Im . . . X l ⊗ Im

]
(27)

and

Ã =

In ⊗A0

...
In ⊗Al

 B̃ =

In ⊗B0

...
In ⊗Bl


C̃ =

In ⊗ C0

...
In ⊗ Cl

 D̃ =

In ⊗D0

...
In ⊗Dl

 . (28)

Definition 6 is a permutation of that given by Freeman
et al. in [11]. This reordering of the states allows for the
separation of the system according to the eigenvalues of X .
When X is a Laplacian matrix, it always has an eigenvalue
at zero, so the subsystem corresponding to this eigenvalue
can be analyzed separately.

A. Separated System

Consider the average consensus problem in Section II.
Given a Laplacian matrix L ∈ Rn×n, consider the polyno-
mial linear protocol Σ(L) of degree l. Let Q ∈ Rn×n be an
orthogonal matrix such that Q =

[
v S

]
where v = 1n/

√
n

and S ∈ Rn×(n−1). Define the reduced Laplacian to be
L̂ ≡ STLS. Since S and v are orthogonal, we have vTS = 0.
To simplify notation, let ṽ = v ⊗ I and S̃ = S ⊗ I so that
Q̃ = Q ⊗ I =

[
ṽ S̃

]
. Performing the change of variable

x̃k = Q̃Txk, the separated system Σ̃(L) is

Ã(L) =

[
A0 ṽTA(L)S̃

0 A(L̂)

]
B̃(L) =

[
ṽTB(L)

S̃TB(L)

]
(29)

C̃(L) =
[
v ⊗ C0 C(L)S̃

]
D̃(L) = D(L) (30)

which is equivalent to the original system.

B. Asymptotic Mean Ergodicity

We now state our main theorem which gives conditions
under which a time-varying polynomial linear protocol is
asymptotically mean ergodic.

Theorem 4: Consider the time-varying polynomial linear
protocol Σ(Lk) of degree l based on the time-varying
Laplacian Lk where E[Lk] is balanced and connected, and
Lk are i.i.d. and independent of the initial state for all k.
The output process due to a constant input is asymptotically
mean ergodic if the following hold:

1) A0 is convergent,
2) any eigenvalues of A0 with magnitude one are unob-

servable through C0,
3) ρ

(
E
[
A(L̂k)

])
< 1, and

4) Ci = Di = 0 for 0 < i ≤ l.
Remark 1: The assumptions on the Laplacian in Theorem

4 do not require the Laplacian to be balanced or connected
at any individual time step.

Remark 2: Requirements (1) and (2) in Theorem 4 are
also necessary for Σ to achieve robust average consensus
[11]. Requirement (3) eliminates the possibility of E[A(L̂k)]
having simple eigenvalues at one, and requirement (4) is
needed to evaluate the expression for the covariance of the
output.

Proof: [Theorem 4] Using the separated system in (29)
and (30),[
zk+1

wk+1

]
=

[
A0 ṽTA(Lk)S̃

0 A(L̂k)

] [
zk
wk

]
+

[
ṽTB(Lk)

S̃TB(Lk)

]
u (31)

yk =
[
v ⊗ C0 C(Lk)S̃

] [zk
wk

]
+D(Lk)u (32)

for k ≥ 0 and initial conditions z0 and w0. The system can
also be written as in (25) where Ã, B̃, C̃,D̃, L̃k and L̄k are
defined in (26) - (28) (where X is replaced by Lk). Define
the steady-state covariance between two random vectors xk
and yk as

σ2
x,y ≡ lim

k→∞
COV[xk, yk] . (33)

We want to determine the steady-state covariance of the
output in (32),

Cy(k) ≡ lim
n→∞

COV[yn+k, yn] , (34)

to determine if the system is asymptotically mean ergodic
using Theorem 3. Note that zk and wk are uncorrelated with
Lj for j ≥ k. Using the Kronecker product relations from
Section III, the following covariances are zero,

COV
[
A0zk, ṽ

TA(Lk)S̃wk

]
= (A0 ⊗ ṽT E

[
L̃k

]
ÃS̃)COV[zk, wk] = 0 (35)

and

COV
[
A0zk, ṽ

TB(Lk)u
]

= (A0 ⊗ ṽT )COV
[
zk, L̃k

]
(I ⊗ B̃u) = 0 (36)
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since E[Lk] is balanced and zk is uncorrelated with Lk,
respectively. Define the variance

σ̂2(k) ≡ VAR
[
A(Lk)S̃wk +B(Lk)u

]
= VAR

[
L̃k(ÃS̃wk + B̃u)

]
= E

[
L̃⊗2k

]
(ÃS̃)⊗2VAR[wk]

+ VAR
[
L̃k

]
(ÃS̃ E[wk] + B̃u)⊗2. (37)

Taking the limit as k →∞ of (37),

σ̂2 ≡ lim
k→∞

σ̂2(k) (38)

= E
[
L̃⊗2k

]
(ÃS̃)⊗2σ2

w + VAR
[
L̃k

]
(ÃS̃w̄ + B̃u)⊗2

where w̄ = limk→∞ wk. The variances and covariances
of the state can be found recursively using the Kronecker
product relations from Section III. Using (35) and (36), the
variance of zk+1 is

VAR[zk+1] = A⊗20 VAR[zk] + (ṽT )⊗2σ̂2
x(k). (39)

Similarly, the other variances and covariances of the state are

VAR[wk+1] = (S̃T )⊗2σ̂2
x(k)

= E
[
A(L̂k)⊗2

]
VAR[wk] + (S̃T )⊗2

VAR
[
L̃k

]
(ÃS̃ E[wk] + B̃u)⊗2, (40)

COV[zk+1, wk+1] =
(
A0 ⊗ E

[
A(L̂k)

])
COV[zk, wk]

+ (ṽT ⊗ S̃T )σ̂2
x(k), (41)

COV[wk+1, zk+1] =
(

E
[
A(L̂k)

]
⊗A0

)
COV[wk, zk]

+ (S̃T ⊗ ṽT )σ̂2
x(k). (42)

The steady-state variance of zk may be infinite due to the
possible eigenvalue of A0 at one. The other systems all have
eigenvalues with magnitude less than one, so the steady-state
variances and covariances are given by

σ2
w =

[
I − E

[
A(L̂k)⊗2

]]−1
(S̃T )⊗2VAR

[
L̃k

]
(ÃS̃w̄ + B̃ū)⊗2, (43)

σ2
z,w =

[
I −A0 ⊗ E

[
A(L̂k)

]]−1
(ṽT ⊗ S̃T )σ̂2

x, (44)

σ2
w,z =

[
I − E

[
A(L̂k)

]
⊗A0

]−1
(S̃T ⊗ ṽT )σ̂2

x. (45)

The covariance between the state at iteration k + i and k is

COV[zk+i, zk] =
(
Ai

0 ⊗ I
)

VAR[zk] , (46)

COV[wk+i, wk] =

(
E
[
A(L̂k)

]i
⊗ I
)

VAR[wk] , (47)

COV[zk+i, wk] =
(
Ai

0 ⊗ I
)

COV[zk, wk] , (48)

COV[wk+i, zk] =

(
E
[
A(L̂k)

]i
⊗ I
)

COV[wk, zk] . (49)

For the steady-state process, the covariances are

lim
k→∞

COV[zk+i, zk] =
(
Ai

0 ⊗ I
)
σ2
z , (50)

lim
k→∞

COV[wk+i, wk] =

(
E
[
A(L̂k)

]i
⊗ I
)
σ2
w, (51)

lim
k→∞

COV[zk+i, wk] =
(
Ai

0 ⊗ I
)
σ2
z,w, (52)

lim
k→∞

COV[wk+i, zk] =

(
E
[
A(L̂k)

]i
⊗ I
)
σ2
w,z. (53)

Using the assumption that Ci = Di = 0 for 0 < i ≤ l, the
steady-state covariance of the output at time step k + i and
k is

Cy(i) = lim
k→∞

COV[yk+i, yk] (54)

= lim
k→∞

[(ve ⊗ C0)⊗ (ve ⊗ C0)] COV[zk+i, zk]

+ [(ve ⊗ C0)⊗ (S ⊗ C0)] COV[zk+i, wk]

+ [(S ⊗ C0)⊗ (ve ⊗ C0)] COV[wk+i, zk]

+ [(S ⊗ C0)⊗ (S ⊗ C0)] COV[wk+i, wk] . (55)

Using the expressions in (50) to (53),

Cy(i) =
[
(ve ⊗ C0A

i
0)⊗ (ve ⊗ C0)

]
σ2
z

+
[
(ve ⊗ C0A

i
0)⊗ (S ⊗ C0)

]
σ2
z,w

+ [(S ⊗ C0)⊗ (ve ⊗ C0)]
(

E
[
A(L̂k)

]
⊗ I
)i
σ2
w,z

+ [(S ⊗ C0)⊗ (S ⊗ C0)]
(

E
[
A(L̂k)

]
⊗ I
)i
σ2
w.

(56)

Both A0 and E[L̂k] are convergent. Any eigenvalues at
one of A0 are unobservable through C0, and E[L̂k] has no
eigenvalues at one. Therefore we can apply Corollary 2. The
steady-state variance σ2

z may be infinite, however, which
would cause the system to not be ergodic. σ2

z may only have
infinite values in positions corresponding to an eigenvalue
at one of A0, but this does not affect the output since the
eigenvalue at one is unobservable through C0. Therefore the
output yk is ergodic by Corollary 2.

For protocols of degree one, the system is linear in Lk

which results in the following.
Corollary 3: Under the same assumptions as Theorem 4,

the time-averaged output of each agent converges to the same
output as Σ(E[Lk]) if the protocol is degree one.

VI. DYNAMIC AVERAGE CONSENSUS

Both the P and PI dynamic average consensus estimators
are polynomial linear protocols of degree one, so asymptotic
mean ergodicity implies that the time-averaged output of
each agent converges to the output of the estimator using the
expected Laplacian by Corollary 3. The expected steady-state
error and robustness to initial conditions is known for the
deterministic system [11]. The ergodicity property of each
estimator is discussed below, and the results are shown in
Table I.
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TABLE I
SUMMARY OF PROPERTIES FOR THE P AND PI ESTIMATORS WITH

E[Lk] BALANCED AND CONNECTED, AND Lk I.I.D. FOR ALL k.
Estimator Ergodic Robust lim

k→∞
E[ek]

P, γ = 0 No No Zero1

P, γ 6= 0 Yes Yes Non-zero
PI Yes Yes Zero

1 If the expectation of the initial state is zero.

A. P Estimator

Consider the P estimator in example 1. The estimator has
different properties depending on the forgetting factor γ since
A0 has an eigenvalue at one if γ = 0. We analyze the two
cases separately.

1) Case 1: γ 6= 0: In this case, the eigenvalue of A0

is 1 − γ which must have magnitude less than one, so we
require 0 < γ < 2. In order for the eigenvalues of E[A(L̂k)]
to have magnitude less than one, kp must be chosen such that
|(1−γ)−kpλi| < 1 for each eigenvalue λi of E[L̂k]. If both
constraints are satisfied, then the four conditions in Theorem
4 are satisfied so the protocol is asymptotically mean ergodic.
The expected output, however, does not converge to the
correct average with zero steady-state error. Therefore the
time average converges to the ensemble average, but neither
is the correct average.

2) Case 2: γ = 0: In this case, the pair (A0, C0) has
an observable eigenvalue at one, so the estimator is not
ergodic. The system can be made ergodic, however, with
extra restrictions. If the Laplacian is balanced at each time
step, then σ2

z,w = 0. In addition, σ2
z = 0 if VAR[z0] = 0.

Using (56), the output is ergodic if Lk is balanced for all k
and VAR[z0] = 0. In this case the estimator does converge to
the correct average, so ergodicity gives that the time-averaged
output of each agent converges to the correct average, but this
requires the extra restrictions on the Laplacian and initial
state.

B. PI Estimator

Consider the PI estimator in example 2. The eigenvalue
at one of A0 is unobservable through C0, and the other
eigenvalue of A0 is 1 − γ so we require 0 < γ < 2. The
constants kp and kI must be chosen such that the eigenvalues
of A(E[L̂k]) have magnitude less than one. If these condi-
tions are satisfied, then the output yk is asymptotically mean
ergodic by Theorem 4, so the time-averaged output of each
agent converges to the ensemble average. Since the expected
steady-state error is zero independent of initial conditions,
the time-averaged output of each agent robustly converges
to the correct average.

VII. CONCLUSIONS

We studied the convergence properties of the P and PI
estimators when packets are dropped at random. Dropped
packets were modeled by i.i.d. random Laplacians assumed
to be balanced and connected on average, although the
Laplacian need not be balanced or connected at any time
step. This model is limited to situations in which the packet

drop probabilities are symmetric between two agents, so that
the expected Laplacian is balanced.

To study the convergence properties of average consensus
estimators over random graphs, the covariance was defined
using the Kronecker product in order to obtain an expression
for the steady-state covariance of the system output. An
ergodic theorem then gave conditions under which the output
of a polynomial linear protocol is asymptotically mean
ergodic. Results were applied to the P and PI estimators,
and it was shown that the P estimator is ergodic either if
γ 6= 0, or the Laplacian is balanced at each time step and
the initial state is deterministic. The PI estimator, however, is
always ergodic (provided that γ, kp, kI satisfy the conditions
in VI-B), has zero expected steady-state error, and is robust
to initial conditions. For the PI estimator, the time-averaged
output of each agent converges with zero steady-state error
in the presence of dropped packets independent of initial
conditions.
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