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Abstract— We formulate a method for designing dynamic
average consensus estimators with optimal worst-case asymp-
totic convergence rate over a large set of undirected graphs.
The estimators achieve average consensus for constant inputs
and are robust to both initialization errors and changes in
network topology. The structure of a general class of polynomial
linear protocols is characterized and used to find global optimal
parameters using polynomial matrix inequalities (PMIs). For
the case of the PI estimator, these conditions are converted into
convex linear matrix inequalities (LMIs) and solved efficiently.

I. INTRODUCTION

We consider the dynamic average consensus problem
where each agent in a network uses communication with its
network neighbors along with a local estimator to calculate
the average input of all the agents [1], [2], [3], [4], [5].
Average consensus is important for its central role in many
applications in decentralized control of multi-agent systems.

Two challenges in applying decentralized average consen-
sus to distributed control are (1) the slow convergence rate of
most average consensus algorithms and (2) the requirement
that the local estimators produce correct estimates even in
the face of changing communication networks. In this paper
we develop an estimator design procedure that addresses
these two issues. We characterize the possible communi-
cation networks that can occur in terms of their minimum
algebraic connectivity. Our design procedure is guaranteed
to find the globally optimal estimator parameters which give
the minimum worst-case asymptotic convergence time. In
addition, the estimator achieves zero steady-state error for
constant inputs and is robust to both initialization errors and
changes in network topology (such as the addition/removal of
agents). The design process contains two steps: 1) conditions
are found on the state-transition matrix such that the system
achieves average consensus for constant inputs and is robust
to both the initial state and changes in network topology, 2)
the worst-case convergence rate is then optimized over the
set of connected undirected graphs whose Laplacian matrices
have non-zero eigenvalues in a given range [λmin, λmax]
subject to the conditions found in step one.

The design process is developed for a general n-
dimensional estimator of degree ` where n is the number
of state variables on each agent and ` is the number of
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communication hops. Although the procedure is guaranteed
to find the global optimum, the design is computationally
challenging for n > 2. The case of n = 2 is shown to be
convex and an efficient algorithm is given.

A. Related Work

Much work has been done on achieving fast static con-
sensus. Xiao and Boyd [6] optimize the asymptotic con-
vergence rate for a known graph. For undirected graphs,
the global optimal asymptotic convergence rate is found
using semidefinite programming (SDP). Improving on these
results, Oreshkin et al. [7] use a local predictor at each node
to enhance the convergence rate, and Erseghe et al. [8] use
the alternating direction multipliers method (ADMM) and
distributed optimization to select optimal parameters.

Static consensus, however, is inherently non-robust to
changes in network topology [9]. Much less work has been
done on optimizing dynamic average consensus estimators
which are robust to changes in network topology. Elwin et
al. [10] optimize the worst-case performance of dynamic
average consensus estimators by applying numerical global
optimization solvers, but no guarantees are given of finding
the global optimum.

The rest of the paper is organized as follows. Section II
sets up the average consensus problem, defines the poly-
nomial linear protocol, and states the two problems to be
solved. A general polynomial linear protocol of dimension
n and degree l is studied in Sections III and IV; the first
problem of developing conditions on the state-transition
matrix is solved in Section III, and then Section IV formu-
lates the problem of optimizing the worst-case asymptotic
convergence rate to solve the second problem. The results
are then used to design the optimal worst-case PI estimator
in Section V, and conclusions are given in Section VI.

Notation: The vectors 1n and 0n represent the n × 1
vectors with all entries 1 and 0, respectively. The symbol
⊗ represents the Kronecker product. The spectral radius is
denoted ρ(·). The transpose of A is denoted by AT . The
Moore-Penrose pseudoinverse of a matrix A is denoted A†.
A diagonal matrix with entries αi on the diagonal is denoted
diag(α). A > 0 and A ≥ 0 mean that the matrix A is positive
definite and positive semi-definite, respectively. A matrix M
is said to be convergent if and only if its power sequence
{Mk}∞k=1 converges to a finite constant matrix as k →∞.

II. PROBLEM SETUP

A. Dynamic Average Consensus

Consider a group of N agents whose communication
topology is modeled as a weighted undirected graph G.



Define the adjacency matrix of G to be A = [aij ] ∈ RN×N
where aij = aji > 0 if agents i and j communicate
information and zero otherwise (with aii = 0). The neighbors
of agent i, denoted Ni, is the set of agents with which agent
i communicates. The degree of agent i, denoted deg(i), is
the number of agents in Ni. The Laplacian matrix is L =
diag(A1N ) − A which is symmetric, positive semidefinite,
and satisfies L1N = 0N . The algebraic connectivity of the
graph is the second smallest eigenvalue of L, denoted λ2(L).
The graph is connected if and only if λ2(L) > 0.

The weights aij can be chosen to optimize the perfor-
mance of the system if the communication graph is known
[11]. When the graph is unknown, however, it is useful to
use the weights to bound the eigenvalues of the Laplacian.
For example, inverse out-degree (IOD) weighting assigns
aij = 1/[deg(i) + deg(j)]. For undirected graphs, this
decentralized weighting scheme restricts the eigenvalues of
L to the interval [0, 1]. It also has the added advantage
of producing symmetric (and therefore balanced) expected
Laplacians under suitably symmetric packet-loss probability
distributions (see [9] for details).

The average consensus problem is to design an es-
timator where the output of each agent converges to
(1/N)

∑N
i=1 ui,k where ui,k is the input to agent i at time

k.

B. Polynomial Linear Protocol

A general class of linear protocols which can be used for
average consensus is the polynomial linear protocol [9].

Definition 1: A polynomial linear protocol of dimen-
sion n and degree l is the collection Σ(L) =
[A(L), B(L), C(L), D(L)] where

A(L) ≡
l∑
i=0

Li ⊗Ai B(L) ≡
l∑
i=0

Li ⊗Bi

C(L) ≡
l∑
i=0

Li ⊗ Ci D(L) ≡
l∑
i=0

Li ⊗Di

are polynomials in L which describe the linear system

xk+1 = A(L)xk +B(L)uk (1)
yk = C(L)xk +D(L)uk. (2)

For a SISO system, the sizes of matrices and vectors are
L ∈ RN×N , Ai ∈ Rn×n, Bi ∈ Rn, CTi ∈ Rn, Di ∈ R,
xk ∈ RNn, yk ∈ RN .

Example 1: The standard PI estimator (see [12] for the
continuous-time version) is a polynomial linear protocol of
dimension two and degree one with parameters γ, kp, and
kI where [

A0 B0

C0 D0

]
=

 1− γ 0 γ
0 1 0
1 0 0


[
A1 B1

C1 D1

]
=

 −kp kI 0
−1 0 0
0 0 0

 .

For undirected graphs, the Laplacian is symmetric and
can be diagonalized as D = QTLQ where D =
diag(λ1, . . . , λN ), λi are the eigenvalues of L, and Q ∈
RN×N is orthogonal. Using the change of variable x̄k =
(Q⊗ I)xk, the system (1) and (2) may be separated as

x̄i,k+1 = A(λi)x̄i,k +B(λi)ui,k (3)
yi,k = C(λi)x̄i,k +D(λi)ui,k (4)

for i = 1, . . . , N (see [9, Theorem 5]).

C. Problem Statement
We wish to design an average consensus estimator with op-

timal worst-case asymptotic convergence rate over a large set
of graphs while having other desired properties. Specifically,
let G be the set of connected undirected graphs whose Lapla-
cian matrices have eigenvalues in Λ := {0, [λmin, λmax]}.
Using the separation principle in equations (3) and (4), we
study the system

xk+1 = A(λ)xk +B(λ)uk (5)
yk = C(λ)xk +D(λ)uk (6)

where λ ∈ Λ. The parameters λmin and λmax are bounds
for the non-zero eigenvalues of the Laplacian which depend
on the weighting scheme. For example, if IOD weighting is
used then we can take λmax = 1 if the graph is not known [9,
Theorem 1]. The choice of λmin depends on the minimum
connectivity of the graphs which we expect to occur. A larger
value of λmin tightens the bounds on the range of networks
which allows us to achieve better worst-case performance.

To obtain robustness to changes in network topology, we
desire the output process of the estimator to be asymptoti-
cally mean ergodic in the presence of i.i.d. switching graphs,
meaning that the time average of each agent’s output con-
verges to the statistical average as time approaches infinity.
The statistical average is the output of the estimator when the
expected Laplacian is used. If the estimator achieves average
consensus for the expected Laplacian, then a local low-pass
filter can be applied to the output of each agent to obtain
the global average. Conditions for the output process of a
polynomial linear protocol to be asymptotically mean ergodic
are given in [13].

We now state the two problems to be solved.
Problem 1: Given the size of the polynomial linear proto-

col (n and l), determine conditions on A(L) such that there
exist B(L), C(L), and D(L) where Σ(L)

• achieves exact average consensus for constant inputs,
• regardless of the choice of initial states (i.e., conver-

gence is robust to initial conditions), and
• is asymptotically mean ergodic.
Problem 2: Given λmin, λmax, the size of the estimator

(n and l), and the solution to Problem 1, determine Σ(L)
which optimizes the worst-case asymptotic convergence rate
over all graphs in G and has the properties listed in Problem
1. That is, solve

α = min
Ai

max
λ∈Λ

ρ(A(λ)) (7)

subject to conditions from Problem 1



where ρ(A(λ)) does not include any unobservable eigenval-
ues of the pair (A(λ), C(λ)).

III. STRUCTURE OF A POLYNOMIAL LINEAR PROTOCOL

A characterization of a polynomial linear protocol is given
in [9, Theorem 5] which gives necessary and sufficient
conditions for an estimator to achieve consensus for constant
inputs and to be robust to initial conditions. This charac-
terization, however, gives no insight into how to design the
system. In this section, we develop conditions on A(L) which
may be used for design and provide the solution to Problem
1. First, we give necessary and sufficient conditions on A(L)
for estimators which achieve average consensus for constant
inputs and are robust to initial conditions. Then we show how
to use the remaining degrees of freedom to obtain desired
properties of the estimator.

Condition 1: Given A(L) of degree l and dimension n,
there exist v, w, xk, yk ∈ Rn for k = 0, . . . , nl such that

0 =


I −A0

...
. . .

−Al I −A0

. . . . . .
−Al . . . I −A0




xnl

...
xl
...

x0 − v

 (8)

0 =


I −AT0

...
. . .

−ATl I −AT0
. . . . . .

−ATl . . . I −AT0




ynl

...
yl
...

y0 − w

 (9)

Dj =

{
0, j < 0

1− wT (I −A0)v, j = 0
(10)

where

Dj = −
[
yT0 . . . yTl

]−Al . . . I −A0

. . .
...
−Al


xl−j...
x−j

 (11)

and xk = 0n for k > nl.
We now state our main result which shows that Σ(L)

achieves average consensus for constant inputs and is robust
to initial conditions if and only if Condition 1 is satisfied.

Theorem 1: Consider a polynomial linear protocol Σ(L)
with A(λ) convergent for all λ ∈ eig(L).

1) If Σ(L) achieves average consensus for constant inputs
and is robust to initial conditions, then A(L) satisfies
Condition 1.

2) If A(L) satisfies Condition 1, then there exist B(L),
C(L), and D(L) such that Σ(L) achieves average
consensus for constant inputs and is robust to initial
conditions.

Proof: 1) Let Σ(L) be a robust protocol with A(λ)
convergent for all λ ∈ eig(L). From [9, Theorem 5], we have
that B(λ) ∈ Col(I −A(λ)), CT (λ) ∈ Col

(
I −AT (λ)

)
,

H(0) = 1, and H(λ) = 0 for λ > 0 where

H(λ) = C(λ)[I −A(λ)]†B(λ) +D(λ).

Then there exist vectors x(λ) and y(λ) such that B(λ) =
[I −A(λ)]x(λ) and C(λ) = yT (λ)[I −A(λ)] for all λ, so

0 =
[
I −A(λ) B(λ)

] [x(λ)
−1

]
where x(λ) =

∑∞
k=0 λ

−kxk. The null space vector[
xT (λ) −1

]T
can be written as a polynomial vector with

degree bounded from above by [14, Lemma 5]
n∑
i=1

degi
([
I −A(λ) B(λ)

])
− min
i=1,...,n

degi
([
I −A(λ) B(λ)

])
≤ nl

where the notation degi(A(λ)) denotes the degree of the ith
column of the polynomial matrix A(λ), so

0 =
[
I −A(λ) B(λ)

] [λnlx(λ)
−λnl

]
where λnlx(λ) is a polynomial vector of degree at most nl.
Therefore, xk = 0 for all k > nl. Similarly, yk = 0 for
k > nl.

For λ > 0, the matrix form of the equation B(λ) = [I −
A(λ)]x(λ) is given by

0
...
0
...
B0

...
Bl


=



I −A0

...
. . .

−Al I −A0

. . . . . .
−Al I −A0

. . .
...
−Al




xnl

...
xl
...
x0



which gives equation (8) and the structure for B(λ),B0

...
Bl

 =

−Al . . . I −A0

. . .
...
−Al


xl...
x0

 (12)

with B0 = (I−A0)v. Similarly, the matrix form of CT (λ) =
[I −AT (λ)]y(λ) gives equation (9) andC

T
0
...
CTl

 =

−A
T
l . . . I −AT0

. . .
...
−ATl


yl...
y0

 (13)

with C0 = wT (I − A0). The condition H(λ) = 1 implies
that D(λ) = −yT (λ)[I −A(λ)]x(λ). Writing this in matrix
form gives equation (11). Since D(λ) is a polynomial of
degree l, we have Dj = 0 for j < 0. For λ = 0, the transfer
function is

1 = H(0) = C0(I −A0)†B0 +D0 = wT (I −A0)v +D0

which implies that equation (10) is satsified. Therefore,
Condition 1 is satisfied and the estimator has the form given
in equations (11), (12), and (13).



2) Let Σ(L) be a polynomial linear protocol with A(λ)
convergent for all λ ∈ eig(L) and where Condition 1 is
satisfied. Define

x(λ) =

nl∑
k=0

λ−kxk, y(λ) =

nl∑
k=0

λ−kyk.

Then equations (8) and (12) combine to give the matrix form
of the polynomial matrix equation B(λ) = [I − A(λ)]x(λ)
with B0 = (I − A0)v, so B(λ) ∈ Col(I −A(λ)) for all λ.
Similarly, equations (9) and (13) combine to give the matrix
form of the polynomial matrix equation C(λ) = yT (λ)[I −
A(λ)] with C0 = wT (I−A0), so CT (λ) ∈ Col

(
I −AT (λ)

)
for all λ. Equation (11) is the matrix form of the polynomial
equation D(λ) = −yT (λ)[I − A(λ)]x(λ) which implies
H(λ) = 0 for λ > 0. From equation (10), we have that

H(0) = C0(I −A0)†B0 +D0

= wT (I −A0)v + (1− wT (I −A0)v) = 1.

Then by [9, Theorem 5], the protocol achieves average
consensus for constant inputs and is robust to initialization
errors.

The following corollary shows how to choose the vector
w to achieve robustness to changes in network topology.

Corollary 1: A polynomial linear protocol of degree one
with the form given in Theorem 1 is asymptotically mean
ergodic if w is chosen such that y0 = 0.

Proof: If y0 = 0, then CT1 = −yT0 A1 = 0 and
D1 = yT1 A1x−1 = 0, so the protocol is asymptotically mean
ergodic by [13, Theorem 4].

From Theorem 1 and Corollary 1, Condition 1 is both
necessary and sufficient for a polynomial linear protocol
to have the properties listed in Problem 1. Therefore, we
can robustly optimize the spectral radius of A(λ) subject
to Condition 1 and then choose y0 = 0 to obtain all of the
desired properties. We show how to choose v in Section V-A.

IV. ROBUST OPTIMIZATION OF SPECTRAL
RADIUS

In this section we develop a solution to Problem 2. We
start with the simplified problem of finding conditions such
that ρ(A(λ)) < α for some fixed λ, and then add additional
constraints to guarantee that ρ(A(λ)) < α for all λ ∈
[λmin, λmax]. Bisection is then performed on α to obtain the
solution to Problem 2.

A. Fixed λ

First, we develop conditions such that ρ(A(λ0)) < α for
some fixed λ0. Define the degree n polynomials in µ,

x(µ) = det(µI −A(λ0)) =

n∑
i=0

xiµ
i

x̃(µ) =
(µ
α

)n
x(α2/µ) =

n∑
i=0

x̃iµ
i

and denote the vectors of coefficients as

x =
[
x0 x1 . . . xn

]T
x̃ =

[
x̃0 x̃1 . . . x̃n

]T
.

We can now state the following lemma which follows
immediately from [15, Lemma 1].

Lemma 1: For fixed λ0, ρ(A(λ0)) < α if and only if
H > 0 where H satisfies the linear system of equations

xxT − x̃x̃T =

[
−α2H 0n

0Tn 0

]
+

[
0 0Tn
0n H

]
.

B. Robust λ

Now we develop additional conditions which guarantee
that ρ(A(λ)) < α for all λ ∈ [λmin, λmax]. Define the
functions

f1(λ) = det(αI −A(λ))

f2(λ) = det(αI +A(λ))

f3(λ) = det(α2I −Ψ(A(λ)))

where the matrix Ψ(A(λ)) ∈ Rn(n+1)/2×n(n+1)/2 is defined
as

(Ψ(A(λ)))j,k = det

(
A(λ)y1,z1 A(λ)y1,z2
A(λ)y2,z1 A(λ)y2,z2

)
where (y1, y2) and (z1, z2) are the j-th and k-th pairs
in the sequence (1, 2), (1, 3), . . . , (1, n), (2, 3), (2, 4), . . . ,
(2, n), (3, 4), . . ., (n − 1, n). Then fi is a polynomial in
λ of degree δi where δ1,2 = ln and δ3 = ln(n − 1), so
fi(λ) =

∑2mi

j=0 fi,jλ
j where mi = dδi/2e for i = 1, 2, 3.

Let Γi = ΓTi ∈ Rmi×mi and ∆i ∈ Rmi(mi−1)/2. Define the
following matrices in Rmi+1×mi+1:

(Fi)j,k =


fi,j+k−2, j = k

fi,j+k−2/2, |j − k| = 1

0, otherwise

(Ri)j,k =

{
1, j = k = 1

0, otherwise

Si(Γi) =
λmin + λmax

2

([
0mi

Γi
0 0Tmi

]
+

[
0Tmi

0
Γi 0mi

])
−
[

0 0Tmi

0mi
Γi

]
− λminλmax

[
Γi 0mi

0Tmi
0

]
Ti(∆i) ∈ {T = TT ∈ R(mi+1)×(mi+1) : xTTx = 0, ∀x}.

Then we have the following robust performance condition
which appears in [16, Theorem 1].

Lemma 2: ρ(A(λ)) < α for all λ ∈ [λmin, λmax] if and
only if the following conditions hold:
• ρ(A(λ0)) < α for some λ0 ∈ [λmin, λmax];
• for i = 1, 2, 3, there exist βi ∈ R, Γi = ΓTi ∈ Rmi×mi ,

and ∆i ∈ Rmi(mi−1)/2 which satisfy the PMIs
0 < βi

0 ≤ Γi

0 ≤ Fi − βiRi − Si(Γi) + Ti(∆i).



Note that Lemma 1 can be used to ensure that the first
condition is satisfied. In general, the conditions in Lemma
1 and Lemma 2 are polynomial matrix inequalities (PMIs),
i.e., matrix inequalities whose coefficients are polynomials
in the variables. Global solutions to this type of problem
can be found by solving convex LMI relaxations whose
solution is guaranteed to converge to the global solution of
the original PMI as the size of the relaxation increases. Finite
convergence can be detected in many cases and conditions
exist to guarantee that the global optimum has been achieved
[17]. Due to the number of variables and order of relaxation
required, this technique was found to be computationally
challenging for problems larger than the PI estimator (n = 2
and l = 1). For the case of the PI estimator, however, these
conditions can be made convex as described in Section V-B.

V. EXAMPLE: PI ESTIMATOR

In this section, the results from Sections III and IV are
used to design the optimal worst-case robust PI estimator.

A. Solution to Problem 1

Condition 1 requires that A0 have a simple (since A0 must
be convergent) eigenvalue at one. To satisfy Condition 1, we
can use the parameterization

A(λ) =

[
1− γ 0

0 1

]
+ λ

[
−kp kI
−1 0

]
without loss of generality which gives

[
x1

x0 − v

]
=


0

−γ/kI
−1
0

 , [
y1

y0 − w

]
=


0
1
−1/γ

0

 .
Substituting these into equations (11), (12), and (13) give

B(λ) =

[
γv1

0

]
+ λ

[
kp(v1 − 1)− kIv2

v1 − 1

]
CT (λ) =

[
γw1

0

]
+ λ

[
kp(w1 − 1/γ) + w2

−kI(w1 − 1/γ)

]
D(λ) = (1− w1γv1) + λ

[
kIv2(w1 − 1/γ)

− [kp(w1 − 1/γ) + w2](v1 − 1)
]

for any v, w ∈ R2 in order for the estimator to be robust
to the initial conditions. Using Corollary 1, we choose
w =

[
1/γ 0

]T
to obtain robustness to changes in network

topology.
The block diagrams for two simple choices of v and w are

shown in Figure 1. Figure 1a is the discrete-time counterpart
to the standard PI estimator in [5], and Figure 1b is equivalent
to the SOI-DC algorithm in [4] which has the additional
benefit of rejecting any signal common to all agents since
the input is passed through the Laplacian before filtering.
To reject common signals, we choose v = 0. Note that the
standard PI estimator from Example 1 uses v =

[
1 0

]T

.

.

.

.

.

.

h(z)

h(z)

g(z)

g(z)

+

−

u(z) y(z)

+

+

KpL

KIL KIL

(a) x0 = y0 = 0

.

.

.

.

.

.

g(z)

g(z)

h(z)

h(z)

+
u(z) y(z)

−

+

+

KpL

KIL KIL

(b) v = y0 = 0

Fig. 1: Block diagram of the PI estimator for three choices
of v, w, x0, and y0, where Kp =

kp
γ , KI = kI

γ , h(z) =
γ

z−(1−γ) , and g(z) = γ/kI
z−1 .

and w =
[
1/γ 0

]T
. The form of the estimator is then[

A(λ) B(λ)
C(λ) D(λ)

]
= 1− γ 0 0

0 1 0
1 0 1

+ λ

 −kp kI −kp
−1 0 −1
0 0 0

 . (14)

In the following section, the parameters γ, kp, and kI are
chosen to solve Problem 2.

B. Solution to Problem 2

For control systems of dimension two, the stability region
is convex in the coefficients of the characteristic polynomial
[18]. Therefore, using the parameterization of A(λ) from
Subsection V-A, the condition H > 0 in Lemma 1 can be
made convex as shown in the following lemma. The proof,
omitted for brevity, relies on the fact that the matrix H from
Lemma 1 factors when n = 2.

Lemma 3: For the PI estimator, ρ(A(λ)) < α if and only
if

0 < α2 − κ

0 <

[
α2 + κ −(2− γ − kpλ)

−(2− γ − kpλ) (α2 + κ)/α2

]
where κ = 1− γ − kpλ+ kIλ

2.
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Fig. 2: Worst-case spectral radius of the PI estimator as a
function of λmin with λmax = 1.

Combining this result with Lemma 2, we have the following.
Theorem 2: For the PI estimator, ρ(A(λ)) < α for all

λ ∈ [λmin, λmax] if and only if

−α < 1− γ < α

0 < α2 − κ

0 <

[
α2 + κ −(2− γ − kpλ0)

−(2− γ − kpλ0) (α2 + κ)/α2

]
0 ≤ F0 + αF1 − β1R− Γ1S

0 ≤ F0 − αF1 − β2R− Γ2S

0 ≤
[
α2 − (1− γ) kp/2

kp/2 −kI

]
− β3R− Γ3S

0 ≤ Γi, i = 1, 2, 3

0 < βi, i = 1, 2, 3

where

κ = 1− γ − kpλ0 + kIλ
2
0,

F0 =

[
1− γ + α2 −kp/2
−kp/2 kI

]
, F1 =

[
2− γ −kp/2
−kp/2 0

]
,

R =

[
1 0
0 0

]
, S =

[
−λminλmax (λmin + λmax)/2

(λmin + λmax)/2 −1

]
,

and λ0 ∈ [λmin, λmax] and Γi, βi ∈ R for i = 1, 2, 3.
All of the inequalities in Theorem 2 are linear in the

parameters γ, kp, and kI , so these are convex LMIs. There-
fore, bisection can be performed on α to find the minimum
α such that the conditions in Theorem 2 have a solution.
The package CVX was used to specify and solve the LMIs
[19]. Figure 2 shows the optimal worst-case spectral radius
as a function of λmin with λmax = 1. When λmin = 0,
the worst-case asymptotic convergence rate is optimized
over all undirected graphs, including disconnected graphs
which cannot achieve consensus, so α = 1. For the other
extreme case of λmin = 1, the optimization is over only
fully-connected undirected graphs which are able to achieve
consensus in finite time, so α = 0.

VI. CONCLUSIONS
We developed a design process for finding optimal worst-

case robust dynamic average consensus estimators. By char-

acterizing the structure of polynomial linear protocols which
achieve average consensus for constant inputs and are robust
to intialization errors, we developed necessary and sufficient
conditions on A(L). The problem of optimizing the worst-
case asymptotic convergence rate for a general polynomial
linear protocol was then formulated as PMIs which have
globally optimal methods, although the problem is difficult
for n > 2. For the special case of the PI estimator, the
conditions can be made convex and the global optimal
parameters calculated efficiently.

Closed-form solutions for the PI estimator and the case
n = 4 are known and will be published in future work.
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