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Abstract— The interpretation of iterative optimization algo-
rithms as dynamical systems has led to a variety of advances
in their analysis and design using tools from control. In this
paper, we identify a structure of dynamical systems that arises
naturally in a variety of optimization algorithms, and we show
how to take advantage of this structure in system analysis.
In particular, first-order optimization algorithms consist of the
gradient of the objective in feedback with graded dynamical
systems, which are systems whose signal spaces decompose as
direct sums that are not mixed by the system dynamics.

I. INTRODUCTION

Optimization problems are prevelant throughout science
and engineering [1], with iterative algorithms used to con-
struct numerical solutions [2]. Recent work in the controls
community has interpreted such algorithms as dynamical
systems in order to exploit the variety of tools from control
theory [3] to study optimization algorithms [4]–[6].

The interpretation of optimization algorithms as dynamical
systems has led to the application of tools from control to
systematically analyze their convergence properties [4], [5].
These analysis techniques make use of integral quadratic
constraints [7] and dissipativity theory [8]–[11] from robust
control, and have provided novel insights into algorithm be-
havior, such as robustness to noisy gradient evaluations [12].
Beyond analysis, tools from control can also be used to
synthesize novel optimization algorithms [13], [14].

In addition to analysis and synthesis results, the interpreta-
tion of optimization algorithms has provided insight into the
structure of algorithms. A first-order method, for instance,
can be modeled as a dynamical system in feedback with
the gradient of the objective function, where the dynamical
system must contain an integrator so that fixed points of the
system correspond to first-order stationary points of the op-
timization problem [5]. Other examples of structure include
the particular plant structures in algorithm synthesis [13],
and separation of optimization and consensus components
in distributed optimization [15].

In this paper, we describe a general system structure
posessed by various iterative optimization algorithms. As we
illustrate, a wide variety of optimization algorithms has the
form of a dynamical system in feedback with an uncertainty
(such as the objective function, its gradient, a projection
onto the constraint set, etc.). Moreover, the iterates of the
system separate into distinct subspaces that are not mixed by
the system dynamics, but only by the uncertainty. Examples
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Fig. 1. Block diagram of an uncertain dynamical system consisting of a
block-diagonal plant M with exogneous input w and exogenous output z
in feedback with an uncertainty ∆.

of optimization algorithms with such structure include first-
order methods that explicitly model the evolution of the func-
tion values, primal-dual algorithms for linearly-constrained
optimization, and distributed optimization algorithms.

Main contributions. Our main contributions are as follows:

1) We define the notion of a graded dynamical system,
which is a system whose state space separates as a
direct sum of subspaces and whose dynamics do not
mix iterates between these subspaces. This notion gen-
eralizes the block-diagonal system structure in Fig. 1.

2) We motivate this system structure by illustrating how
it naturally arises in the modeling of optimization
algorithms as dynamical systems; optimization algo-
rithms are graded dynamical systems in feedback with
uncertain and/or nonlinear components.

3) We then show how to leverage the graded structure in
the analysis of such systems. We consider Lyapunov
analysis of graded autonomous systems, dissipativity
analysis for graded systems with inputs and outputs,
and integral quadratic constraints for graded systems
with uncertainty.

The block diagram in Figure 1 illustrates the structure
of optimization algorithms, where a dynamical system M
is in feedback with an uncertainty ∆. Here, the plant is
block diagonal, which is a special case of being graded. In
general, graded systems need not be diagonal, but do not
mix subspaces of their inputs and outputs.

Notation. In block diagrams, shaded gray blocks indicate
dynamical systems, while shaded blue blocks represent un-
certainties. The column space, row space, and null space of
a matrix are denoted col(·), row(·), and null(·), respectively.
The symbol ⊕ represents the direct sum of two vector spaces.
The sets of real and natural numbers are denoted R and N.
We denote the transfer function of a discrete-time linear time-
invariant (LTI) dynamical system G by Ĝ(z).



II. GRADED DYNAMICAL SYSTEMS

We first introduce the novel concept of a graded dynamical
system. Informally, a graded dynamical system is one in
which the state, input, and output spaces each decompose
into disjoint subspaces that the system dynamics do not mix.
The block-diagonal system in Fig. 1 is graded, for instance.
However, graded systems need not be block diagonal.

A. Preliminaries

Before describing graded systems, we first describe the
notions of a graded vector space and a graded map; see [19,
Section 2.1.1] and [20, Section 1.5.1] for reference.

A vector space X is graded if it has a decomposition as a
direct sum of vector spaces. In particular, let I be an index
set, and let Xi for i ∈ I be a set of subspaces whose direct
sum is the whole space:

X =
⊕
i∈I

Xi. (1)

This implies that each element x ∈ X has a unique
decomposition over these subspaces:

x =
∑
i∈I

xi where xi ∈ Xi. (2)

Since there is a bijection (invertible mapping) between an
element x and its subspace decomposition {xi} for i ∈ I,
we use the two representations interchangeably. Elements of
a subspace Xi are called homogeneous of grade i.

A linear map A : X → X is graded with respect to the
grading on X if it preserves the grading of homogeneous
elements, meaning that

A(Xi) ⊆ Xi for all i ∈ I, (3)

where A(Xi) is the image of Xi under the linear map A.

B. Autonomous systems

Consider the autonomous linear time-invariant discrete-
time dynamical system described by the difference equation

xk+1 = Axk (4)

for each iteration k in the natural numbers N = {0, 1, 2, . . .}.
At each iteration k ∈ N, the state xk is in the state space X ,
and the linear map A : X → X is the state transition map.

Definition 1: A graded autonomous dynamical system is
a system (4) in which the state space X is a graded vector
space and the state transition map A is a graded map with
respect to this grading.

We now formalize the concept that graded dynamical sys-
tems do not mix subspaces. Let xk denote a trajectory of the
system, and let the homogeneous elements xi

k ∈ Xi denote
its corresponding subspace decomposition. By linearity of
the state transition map, the next state is∑

i∈I
xi
k+1 = xk+1 = Axk = A

∑
i∈I

xi
k =

∑
i∈I

Axi
k. (5)

Since the subspace decomposition is unique, this implies
that each homogeneous element of the state also satisfies
the system dynamics,

xi
k+1 = Axi

k for all i ∈ I.

Moreover, this implies that each subspace is invariant along
the system dynamics, so any state that starts in a subspace
Xi remains in the subspace forward in time.

C. Systems with inputs and outputs

We now extend the notion of a graded dynamical system
to systems with inputs and outputs.

Consider the discrete-time linear time-invariant dynamical
system that is described by the iterations

xk+1 = Axk +Buk, (6a)
yk = Cxk +Duk. (6b)

For each iteration k ∈ N, the state xk is in the state space X ,
the input uk is in the input space U , and the output yk is in
the output space Y . The system dynamics are then described
by the linear maps

A : X → X, B : U → X,

C : X → Y, D : U → Y.

Definition 2: A graded input-output dynamical system is
a system (6) in which the state space X , input space U , and
output space Y are all graded with respect to the same index
set I, and the state-space maps are graded in that

A(Xi) +B(U i) ⊆ Xi,

C(Xi) +D(U i) ⊆ Y i.
For graded dynamical systems, there exists an index set I

and subspaces Xi, U i, and Y i for i ∈ I whose direct sum
is the whole state, input, and output space, respectively,

X =
⊕
i∈I

Xi, U =
⊕
i∈I

U i, Y =
⊕
i∈I

Y i.

By definition of the direct sum, each state x ∈ X , input
u ∈ U , and output y ∈ Y has a unique decomposition over
these subspaces,

x =
∑
i∈I

xi, u =
∑
i∈I

ui, y =
∑
i∈I

yi,

where xi ∈ Xi, ui ∈ U i, and yi ∈ Y i for each subspace
index i ∈ I. Since there is a bijection between a state x and
its subspace decomposition {xi}i∈I (and likewise for inputs
and ouputs), we use the two representations interchangeably.

With this notion of a graded dynamical system, we are
now able to state our first main result.

Theorem 1 (Graded dynamical system): The iterates of a
graded dynamical system satisfy the system dynamics on
each subspace:

xi
k+1 = Axi

k +Bui
k

yik = Cxi
k +Dui

k



for all iterations k ∈ N and all subspace indices i ∈ I, where
the iterates

xi
k ∈ Xi, ui

k ∈ U i, yik ∈ Y i

are the homogeneous elements in the subspace decomposi-
tions of the state xk ∈ X , input uk ∈ U , and output yk ∈ Y ,
respectively.

This result implies that each subspace is invariant along
the system dynamics, meaning that any state that starts in a
subspace Xi remains in the subspace forward in time when
an input in the corresponding subspace U i is applied.

Proof: Let (xk, uk, yk) for k ∈ N denote a trajectory of
the system, and let the homogeneous elements (xi

k, u
i
k, y

i
k) ∈

Xi×U i×Y i denote its subspace decomposition. By linearity
of the state-space maps (and similar to (5)), the next state is∑

i∈I
xi
k+1 =

∑
i∈I

(Axi
k +Bui

k)

and the output is∑
i∈I

yik =
∑
i∈I

(Cxi
k +Dui

k).

Since the subspace decomposition is unique, this implies the
homogeneous elements also satisfy the system dynamics.

III. MOTIVATING EXAMPLES

We now motivate the notion of a graded dynamical system
by illustrating how this structure naturally arises in a variety
of optimization algorithms.

A. Function values

The iterates of an optimization algorithm are often in the
domain of the objective function. Consider minimizing a
real-valued function f , and let xk ∈ dom f for k ∈ N denote
the iterates of the algorithm. Associated with these iterates
are the corresponding function values, fk = f(xk) ∈ R.
While the iterates are in the domain of the objective function,
the function values are real numbers. We now show how
including both the iterates and the function values leads to
a graded dynamical system.

G
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Fig. 2. Block diagram of a gradient-based optimization algorithm.

Consider the gradient-based iterative optimization algo-
rithm described by the block diagram in Figure 2. When
the dynamical system G is linear and time invariant with
transfer function Ĝ(z) = −α/(z − 1)I , for instance, this
describes the gradient descent algorithm,

xk+1 = xk − αgk where gk = ∇f(xk),

with stepsize α ∈ R. This intepretation of the system enables
the use of tools from robust control, such as dissipativity

theory and integral quadratic constraints, to analyze its
convergence properties. However, this representation does
not take into account the function values of the iterates. One
may want to include the function values as a measure of per-
formance (such as the optimality gap), or the function values
may enter the analysis through the interpolation conditions
for the function class [16]. The combined dynamics of the
iterates xk and function values fk are described by the block
diagram in Figure 3.
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Fig. 3. Block diagram of a gradient-based optimization algorithm that
includes the function values of iterates.

This system has the structure of a block-diagonal system
in feedback with the operator ∆ =

[
f
∇f

]
, which is the same

as that in Figure 1. In particular, suppose the system G has a
state-space realization with state space X , input space U , and
output space Y . Then the diagonal system [G 0

0 1 ] is graded
with respect to the spaces X ⊕ R, U ⊕ R, and Y ⊕ R.

B. Primal-dual algorithms

While the dynamical system in the previous example was
block diagonal as in Fig. 1, graded dynamical systems gen-
eralize this structure as illustrated by our next two examples.

Consider the linearly-constrained optimization problem

minimize f(x) (7a)
subject to Ax = b (7b)

with decision variable x ∈ Rn, objective f : Rn → R,
constraint matrix A ∈ Rm×n, and constraint vector b ∈ Rm.
One method to solve this problem is the primal-dual algo-
rithm represented by the block diagram in Figure 4.

A Gp AT
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b
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Fig. 4. Block diagram of a primal-dual algorithm, where Gp and Gd are
dynamical systems that represent the primal and dual dynamics, respectively.

As a concrete example, suppose the primal and dual
dynamical systems are LTI with transfer matrices

Ĝp(z) =
−α

z − 1
I and Ĝd(z) =

β

z − 1
I,



where α and β are the primal and dual stepsizes, respectively.
A state-space representation of this algorithm is then

xk+1 = xk − α
(
∇f(xk) +ATλk

)
, (8a)

λk+1 = λk + β
(
b−Axk

)
, (8b)

where xk ∈ Rn and λk ∈ Rm are the primal and dual states.
The structure of the algorithm is such that all fixed points
of the system (8) satisfy the first-order optimality conditions
for the optimization problem (7).

The primal-dual algorithm in Figure 4 has the form of
a dynamical system in feedback with an operator ∆ as in
Figure 1, except that the plant is not block diagonal. In
particular, the plant and uncertainty are

M =

[
0 Gp Gp 0

−Gd 0 0 Gd

]
and ∆ =

 A 0
0 AT

∇f 0

 .

Here, we take the constraint vector as the exogeneous input,
w = b, and the performance channel is omitted. The
exogeneous signal spaces are then W = Rm and Z = ∅.
The uncertainty channel is

p =

[
x
λ

]
and q =

 Ax
ATλ
∇f(x)

 ,

where the uncertainty signal spaces are

P = Rn × Rm and Q = Rm × Rn × Rn.

A fundamental result in linear algebra is that, for any matrix
A ∈ Rm×n, the vector spaces Rn and Rm have the following
decompositions as direct sums:

Rn = row(A)⊕ null(A),

Rm = col(A)⊕ null(AT).

Therefore, each of the uncertainty signal spaces has the
structure of a direct sum,

P = row(A)× col(A)︸ ︷︷ ︸
P 1

⊕ null(A)× null(AT)︸ ︷︷ ︸
P 2

and

Q = col(A)× row(A)× row(A)︸ ︷︷ ︸
Q1

⊕ null(AT)× null(A)× null(A)︸ ︷︷ ︸
Q2

.

The performance channel spaces have similarly structure.
Moreover, if the primal and dual dynamics are diagonal so
that Gp = gpI and Gd = gdI (as in the example primal-dual
algorithm in (8)), then the system dynamics do not mix these
subspaces in that, if the input is in Qi, the output will be in
P i for i ∈ {1, 2}. In other words, the system M is graded
with respect to the input grading P = P 1 ⊕ P 2 and output
grading Q = Q1 ⊕Q2.

C. Distributed optimization algorithms
Consider a network of n agents, where each agent j ∈

{1, . . . , n} has a local objective function fj : Rd → R and
local decision variable xj ∈ Rd, and the agents cooperate to
solve the distributed optimization problem

minimize

n∑
j=1

fj(xj), (9a)

subject to x1 = x2 = . . . = xn. (9b)

The goal is to minimize the objective (optimization) subject
to agreement on the solution (consensus). It has been shown
that every distributed optimization algorithm (from within a
broad class of algorithms) has the form in Figure 5, where
the consensus and optimization dynamics are separated [15].
Here, L denotes the graph Laplacian, and ∇f denotes the
gradient of the global objective function.

GoptGcon

L
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Fig. 5. Block diagram representation of a distributed optimization al-
gorithm, where Gopt and Gcon are dynamical systems that represent the
optimization and consensus dynamics, respectively.

As in the previous subsection, the signal spaces decompose
as direct sums. For instance, the signal spaces for the input
and output of the Laplacian are

Z = Rn = row(L)⊕ null(L),

V = Rn = col(L)⊕ null(LT),

and these subspaces are not mixed by the system when the
consensus dynamics have the form Gcon = gconI .

D. Discussion
The previous examples illustrate that a variety of optimiza-

tion algorithms can be modeled as graded dynamical systems
in feedback with other components (such as the gradient of
the objective function, the constraint matrix, or the graph
Laplacian). Similar results apply to a variety of optimization
algorithms, such as the alternating direction method of mul-
tipliers (ADMM) [17] and proximal methods [18], among
others.

IV. SYSTEM ANALYSIS

We now turn to the analysis of dynamical systems with
the graded structure. We first use Lyapunov analysis to study
graded autonomous systems and show that the search for
a Lyapunov function separates along each grade, which is
expected since the dynamics do not mix subspaces. We then
apply dissipativity theory to graded systems with exogeneous
inputs and outputs. And finally, since optimization algorithms
also have uncertainties, we use integral quadratic constraints
to study uncertain graded systems.



A. Preliminaries

For each iteration k ∈ N, let Pk and Qk be functions
that map the state space X to the real numbers R. For the
analysis, we will characterize the convergence properties of
these two performance measures.

Given a functional V , we use the inequality V ≥ 0 to
denote that V (x) ≥ 0 for all x in the domain of V . Similarly,
V ≤ 0 denotes that −V ≥ 0. Given a set of functionals
V i : Xi → R for each grade i ∈ I, we let V : X → R
denote the functional

V (x) =
∑
i∈I

V i(xi),

where xi is the homogeneous element in Xi for each grade
i ∈ I in the decomposition (2).

B. Lyapunov analysis

Consider the autonomous system in (4), let Pk and Qk be
two performance measures that map X to R, and suppose
that the system is graded. We then have the following con-
vergence result which states that the search for a Lyapunov
function separates along each grade.

Theorem 2 (Lyapunov analysis): If, for each iteration k ∈
N and grade i ∈ I, there exists a functional V i

k : X → R
such that, for all states x ∈ Xi,

P i
k(x)− V i

k (x) ≤ 0, (positivity condition)

V i
k+1(Ax)− V i

k (x) +Qi
k(x) ≤ 0, (decrease condition)

then the state trajectory satisfies the performance bound

Pk(xk) +

k−1∑
ℓ=0

Qℓ(xℓ) ≤ V0(x0). (10)

Proof: Let (xk) for k ∈ N be a trajectory of the system,
and let xi

k for i ∈ I denote its corresponding decomposition
as in (2). Evaluating the positivity condition at xi

k yields the
inequality

P i
k(x

i
k)− V i

k (x
i
k) ≤ 0.

Since the iterates satisfy the system dynamics on each sub-
space by Theorem 1, we have that xi

k+1 = Axi
k. Therefore,

evaluating the decrease condition at xi
k yields the inequality

V i
k+1(x

i
k+1)− V i

k (x
i
k) +Qi

k(x
i
k) ≤ 0.

Summing each of these inequalities over the grade i ∈ I,
we obtain the cumulative positivity and decrease conditions,

Pk(xk)− Vk(xk) ≤ 0,

Vk+1(xk+1)− Vk(xk) +Qk(xk) ≤ 0.

Summing the second inequality over ℓ ∈ {0, . . . , k − 1}
yields the telescoping sum

Vk(xk)− V0(x0) +

k−1∑
ℓ=0

Qℓ(xℓ) ≤ 0,

then applying the first inequality yields the bound.
For the performance bound to be meaningful, V0(x0) must

be finite. This is the case if there exists a constant c > 0 such

that V0(x) ≤ c ∥x∥ for all x ∈ X . We now describe several
particular cases of this result.

• Setting Q ≡ 0 yields an upper bound on the perfor-
mance P of the last iterate,

Pk(xk) ≤ V0(x0).

• Setting P ≡ 0 yields an upper bound on the cumulative
performance Q,

k−1∑
ℓ=0

Qℓ(xℓ) ≤ V0(x0).

Moreover, bounding each term in the summation by its
minimum value yields the bound on the performance Q
of the best iterate,

minimum
0≤ℓ≤k−1

Qℓ(xℓ) ≤
V0(x0)

k
.

If the performance measure is monotonically decreasing
along system trajectories, then this also implies the
sublinear bound on the performance of the last iterate,

Qk(xk) ≤
V0(x0)

k + 1
.

In the special case when the functional V and the perfor-
mance measures P and Q are the time-invariant quadratics

V (x) = xTV̄ x, P (x) = xTP̄ x, Q = xTQ̄x,

we obtain the following corollary.
Corollary 1: If, for each grade i ∈ I,

ST
i (P̄ − V̄ )Si ⪯ 0,

ST
i (A

TV̄ A− V̄ + Q̄)Si ≤ 0,

where Si is a matrix whose columns span subspace Xi, then
the state trajectory of (4) satisfies the performance bound

xT
k P̄ xk +

k−1∑
ℓ=0

xT
ℓ Q̄xℓ ≤ xT

0 V̄ x0. (11)

C. Dissipativity analysis

We now extend the Lyapunov convergence results from
the previous section to systems with inputs and outputs.

Consider the dynamical system (6). Suppose that the
system is graded and the input and output satisfy a known
set of constraints

M(y, u) ≥ 0 for all y ∈ Y and u ∈ U (12)

for all functions M : Y × U → R in some set M.
For instance, the system is dissipative if Y = U is an
inner product space and ⟨yk, uk⟩ ≥ 0 for all iterations
k ∈ N. Moreover, suppose the constraint decomposes over
the subspaces as

M(y, u) =
∑
i∈I

M i(yi, ui),

where yi ∈ Y i and ui ∈ U i are the homogeneous elements
associated with the input u and output y, respectively.



We can then use this constraint to refine the search for a
Lyapunov function. Doing so leads to the following result.

Theorem 3: If, for each iteration k ∈ N and grade i ∈ I,
there exists a functional V i

k : X → R and Mk ∈ M such
that, for all (x, u, y) ∈ Xi × U i × Y i,

P i
k(x)− V i

k (x) +M i
k(y, u) ≤ 0,

V i
k+1(Ax+Bu)− V i

k (x) +Qi
k(x) +M i

k(y, u) ≤ 0,

then the state trajectory satisfies the bound (10).
Proof: The proof is similar to that of Theorem 2,

where the constraint (12) is used to obtain the positivity and
decrease conditions.

Unlike Theorem 2, the conditions on the functionals V i
k in

Theorem 3 may be coupled due to the condition that Mk =∑
i∈I M i

k ∈ M.

D. Integral quadratic constraints

As we have seen in Section III, many optimization algo-
rithms are graded dynamical systems in feedback with an
operator. We now illustrate how to analyze such systems us-
ing integral quadratic constraints (IQCs) from robust control.

Consider the dynamical system described by the block
diagram in Figure 6, in which the plant M is in feedback
with an uncertainty ∆.

M

∆

qkpk

wkzk

Fig. 6. Uncertain dynamical system consisting of a plant M with exogneous
input w and exogenous output z in feedback with an uncertainty ∆.

The main idea behind IQCs is to replace the uncertainty
with constraints on its filtered input and output, as illustrated
in Figure 7.

∆

Ψ rk

qkpk

Fig. 7. Filtering the input p and output q of the uncertainty ∆ through a
filter Ψ to produce the signal r. The uncertainty is opaque, as it is replaced
in the analysis by constraints on the output of the filter.

Filtering the input and output of the uncertainty ∆ in the
feedback loop in Figure 6 by a filter Ψ as in Figure 7 results
in the closed-loop system from q to r.

If the plant G and filter Ψ are compatibly graded, then
this closed-loop system is also graded. We can then use the
results from the previous subsection to search for a Lyapunov
function using the constraint on the output of the filter.

V. CONCLUSION

The interpretation of optimization algorithms as dynamical
systems enables the breadth of tools from controls to be
applied for their analysis and design. These tools can be
strengthened by taking into account all available structure. In
this paper, we introduced the notion of a graded dynamical
system and showed that a variety of optimization algorithms
can be modeled as such systems in feedback with other
components. Moreover, we described how to leverage this
structure in algorithm analysis. An interesting avenue for fu-
ture work is to specialize techniques for algorithm synthesis
(for example, [13]) to graded dynamical systems.
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