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Abstract—1In the discrete-time average consensus problem,
each agent in a network has a local input and communicates
with neighboring agents to calculate the global average of all
agent inputs. We analyze diffusion-like algorithms where each
agent maintains an internal state which it updates at each time
step using its local input together with information it receives
from neighboring agents. The agent’s estimate of the global
average input is then a local function of its internal state.

Local memory on each agent can be used to enhance the
performance of average consensus estimators in several ways.
Agents can use memory to store both internal state variables as
well as intermediate diffusion calculations within each time step.
We exploit memory to design two types of estimators. First, we
design feedback estimators which track constant input signals
with zero steady-state error. Such estimators produce estimates
that converge exponentially to the global average, and we
consider the cost of an estimator to be the largest time constant
of the exponential decay of its estimation errors. However,
we measure time using normalized units of communicated
real variables per agent, so that estimators requiring more
communication per time step are potentially costlier even if
they converge in fewer time steps. We then show that a certain
estimator having two internal state variables and one diffusion
calculation per time step achieves the minimal cost over all
graphs and all estimators with one or two states no matter how
many intermediate diffusion calculations are stored. Second,
we design a feedforward estimator which tracks time-varying
signals whose frequencies lie below some cut-off frequency. The
steady-state error is finite, but can be made arbitrarily small
using enough diffusion calculations per time step.

I. INTRODUCTION

Given a group of agents, the average consensus problem
is for each agent to calculate the average of agent inputs
using only information obtained from neighboring agents.
This is a fundamental problem in distributed control which
has numerous applications such as formation control [1],
[2], distributed Kriged Kalman filtering [3], and distributed
merging of feature-based maps [4]. We study diffusive algo-
rithms which are scalable, distributed, independent of graph
structure, and use small amounts of memory, communication,
and computation on each agent.

With diffusive algorithms, agents can average internal
variables with their local neighbors as well as perform
any necessary internal calculations. The amount of internal
variables and calculations depends on the capabilities of
each agent. If extra internal memory is available, several
diffusion calculations can be performed and the results stored
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before updating the internal state variables on each agent, or
more internal state variables could be used. Both uses of
memory allow for estimators which have potentially better
performance. We investigate this trade-off between using
more state variables and using more intermediate diffusion
calculations to determine which use of memory yields esti-
mators with better performance.

We design two types of average consensus estimators. The
first estimator uses feedback to track constant input signals
with zero steady-state error where local memory is used to
increase the convergence rate. The estimators are designed to
achieve exact consensus for constant inputs, to be internally
stable, and to have the steady-state value not depend on
the initial conditions. The second estimator is a feedforward
estimator which is designed to track time-varying signals
whose frequencies are upper bounded by some known cut-
off frequency. Although nonzero, the steady-state error can
be made arbitrarily small using enough internal memory on
each agent. The estimator achieves arbitrarily small steady-
state error, estimates the average at the current iteration
(as opposed to the previous iteration), and can transmit all
variables in a single broadcast packet to neighboring agents
at each iteration.

Diffusive average consensus estimators produce estimates
which converge exponentially to the global average by per-
forming weighted averages of variables with neighboring
agents. To design estimators which converge quickly, we
take the cost to be the largest time constant of the expo-
nential decay of the estimation errors. Within each iteration,
multiple diffusion calculations can take place which require
time and communication. Multiple diffusion calculations
can occur either simulatenously where all information is
sent in a single packet, or sequentially where the result of
one diffusion calculation is needed for the second, and so
on. If many sequential diffusion calculations are performed
at each iteration, then the communication cost is high so
the estimator may converge slowly even if it takes few
iterations to converge. Therefore, we normalize the cost by
the number of sequential diffusion calculations per iteration.
All estimators designed in this paper must perform diffusion
calculations sequentially.

Much work has been done on increasing the convergence
rate of average consensus estimators. For known graphs,
Xiao and Boyd [5] showed that the optimal estimator with
one state and one diffusion calculation per iteration can be
found using semidefinite programming. Faster consensus can
be achieved using a two-state estimator with one diffusion
calculation at each iteration [6], [7], [8]. Other estimators
have been designed which use two diffusion calculations



at each iteration (although both diffusion calculations can
be performed simultaneously) [9], [10]. Estimators with a
single internal state and an arbitrary number of diffusion
calculations at each iteration were first designed in [11] with
closed-form expressions in terms of Chebyshev polynomials
given in [12]. We expand these works by giving closed-
form expressions for the cost of estimators which use an
arbitrary number of diffusion calculations at each iteration
in terms of the graph structure. We consider both one- and
two-state estimators, give explicit expressions for the cost,
and calculate the limiting cost as the number of diffusion
calculations per iteration approaches infinity.

For the feedback design which is not robust to the initial
conditions, it is shown that the cost of the one-state estimator
decreases as the number of diffusion calculations increases
while the cost of the two-state estimator is independent
of the number of diffusion calculations. Furthermore, the
limiting cost for the one-state estimator as the number of
diffusion calculations approaches infinity is identical to that
of the two-state estimator. Designing the estimators to be
robust to initial conditions decreases the performance for
any finite number of intermediate diffusion calculations, but
the performance is the same as the equivalent non-robust
estimator in the limit as the number of diffusion calculations
approaches infinity.

The rest of the paper is organized as follows. Section II
sets up the average consensus problem. Section III designs
the optimal one-state and two-state feedback estimators using
an arbitrary number of intermediate diffusion calculations
and gives the associated cost of each estimator. The feed-
forard estimators are designed in Section IV, and conclusions
are given in Section V.

II. AVERAGE CONSENSUS

To setup the average consensus problem, consider a group
of N agents each having a local scalar input signal u;(k)
which may or may not change at each iteration k. Each
agent runs an estimator which takes in its local input along
with information from its neighbors to produce a local scalar
output signal y; (k). The goal of each estimator is to have
its output signal yig\l;:) track the global average of all the
local inputs, 1/N >"." | u;(k). We model the communication
topology as a weighted undirected graph G. Define the
adjacency matrix of G to be A = [a;;] € RY*YN where
a;; = aj; > 0 if agents ¢ and j can communicate and
zero otherwise (with a;; = 0). The neighbors of agent i,
denoted N;, is the set of agents with which agent i can
communicate. The degree of agent ¢, denoted deg(i), is the
number of agents in N;. Define the N x 1 vectors 1 and
On of all ones and zeros, respectively. Then the Laplacian
matrix is L = diag(Aly) — A which is positive semidefinite
and satisfies L1y = Op. The algebraic connectivity of the
graph is the second smallest eigenvalue of L, denoted Apip.
The graph is connected if and only if Ay, > 0.

If the graph topology is known, then the weights a;; can
be chosen to optimize system performance [13]. When the
graph is unknown, however, it is often useful to choose

a weighting scheme which bounds the eigenvalues of the
Laplacian. For example, the decentralized weighting scheme
a;; = 1/[deg(i) + deg(j)] restricts the eigenvalues of L to
the interval [0, 1] which allows us to use Ayax = 1 when the
graph is unknown [14].

We now define several properties of average consensus
estimators. For simplicity, we assume we have a single
estimator design and that each agent runs a local copy of
this estimator. We stack the local scalar inputs u; and outputs
y; into vectors u and y, each of which can depend on the
discrete time variable k.

Definition 1 (Exact): An estimator is said to achieve exact
average consensus when for any constant input u, the output
y(k) converges to &1y Zfil u; as k — oo.

Definition 2 (Internally stable): An estimator is said to be
internally stable when for any initial internal states and any
bounded inputs wu(-), all internal states remain bounded in
forward time.

Definition 3 (Robust to initial conditions): An estimator
is said to be robust to initial conditions when the limit of
y(k) as k — oo does not depend on the initial internal states.

(a) Full system

(b) Separated system (m =1,...,N)

Fig. 1: Block diagram of a general feedback average consen-
sus estimator. The diagram is shown with » = 3 variables
communicated per iteration, but the ellipses indicate how to
generalize the diagram for general 7.

A useful way to characterize average consensus estimators
is using their block diagram. Properties of the estimator
can be easily identified based on the structure of the block
diagram (see [10] for details). Specifically, for the estimator
in Figure 1 we have the following properties as shown in



Figure 2:

« To be exact, the estimator must contain an integrator.

o To be internally stable, the output must pass through
the Laplacian before reaching any integrator.

o To be robust to initial conditions, any integrator states
must pass through the Laplacian before reaching the

output.
1
-« L 1 L je—
2
Robust to Exact Internally
initial conditions stable

Fig. 2: Properties of a feedback estimator based on the
structure of the block diagram.

In the block diagram, multiplying a signal = by L is
implemented on agent 7 by taking a weighted average of
the difference between neighbors as follows,

(L;L')Z = Z (lij(fﬂi — (L’j).

JEN;

To simplify the design, we separate the system using
the eigenvalues of the Laplacian matrix. For undirected
graphs, the Laplacian is symmetric and can be diagonalized
as D = QTLQ where D = diag(\1,...,A\n), Q =
[ ... qn] € RY*N is orthogonal, and \,, are the
eigenvalues of L. Without loss of generality, we can assume
A =0and ¢q; =15/ V'N. To get the separated system, we
multiply the input u(z) by ¢ so that the output is ¢’ y(z).
The output of the full system can then be recovered using

N
y(2) = Q"Qy(2) = alal y(2)] + Y amlamy(2)] (D)

which is the sum of the output of the separated system
in the consensus direction (m = 1) and the disagreement
directions (m = 2,..., N). This transformation diagonalizes
the Laplacian blocks so that the system can be analyzed
for each eigenvalue of the Laplacian separately, and then
the results combined using equation (1). The resulting block
diagram is shown in Figure 1b.

Note that the Laplacian can be scaled by any positive con-
stant without loss of generality since this can be accounted
for by scaling the gains of h;(z) and g; in the block diagram
in Figure 1. Therefore, we scale the Laplacian by Ap.x so
that the scaled Laplacian has maximum eigenvalue one and
minimum eigenvalue A, := Apin/Amax- This is useful in
presenting the results so that the estimator designs depend
only on the single parameter A,.

IT1I. FEEDBACK ESTIMATOR DESIGN

We want to design estimators with the fastest convergence
rate normalized by the amount of communicated variables
per iteration. Both the exponential convergence rate and the
number of communicated variables per iteration depend only
on the characteristic polynomial of the estimator. Therefore

we can design the characteristic polynomial and then use
the block diagram to obtain an estimator with the desired
characteristic polynomial.

Let F'(z, A) be the characteristic polynomial of the average
consensus estimator using the separated system where A is
an eigenvalue of L. Let n be the order of F'(z,\) which is
the number of internal state variables on each agent. Then
we want to design F'(z, \) to minimize « such that all roots
of F(z,\) are inside the circle of radius o centered at the
origin of the complex plane for all A € {0} U [\, 1]. For
the estimator to be exact for constant inputs, we need the
estimator to contain a model of the input in the consensus
direction, meaning that F'(z, \) has a root at z = 1 when
A = 0. Therefore we need F'(1,0) = 0.

Define « to be the worst-case asymptotic convergence
factor of the estimator for all connected undirected weighted
graphs whose nonzero Laplacian eigenvalues lie in the inter-
val [\, 1]. The error then decreases as a*. If we allow for
an arbitrary amount of communication during each iteration,
then o can be made arbitrarily small, but the estimator
may still take a long time to converge because of the large
communication cost of each iteration. To take this into
account, we define the normalized worst-case asymptotic
convergence factor to be </« where d is the number of
sequential diffusion calculations per iteration. We can now
state the problem to be solved.

Problem 1: Given X, € (0, 1], design an estimator which
is exact, internally stable, and robust to initial conditions
for all connected undirected weighted graphs whose nonzero
Laplacian eigenvalues lie in the interval [\, 1]. Furthermore,
the estimator should have the minimum normalized worst-
case asymptotic convergence factor over all such graphs.

We first consider estimators which are not robust to initial
conditions, and then show how to modify the design to
achieve robustness to the initial conditions.

A. Non-robust to initial conditions

1) n = 1: For an estimator with one state, the character-
istic polynomial is

F(z,A) =z =p(}) 2)

where p(\) is a polynomial in A and the number of sequential
diffusion calculations per iteration is given by the degree of
p(A). In this case F'(z,\) has a single root at p()), so we
want to choose p(\) to have minimum absolute value on the
interval [\, 1]. Chebyshev polynomials of the first-kind are
known to have the minimax property meaning that they have
the smallest maximum absolute value on the interval [—1, 1].
As shown in [12], the solution is simply a shifted and scaled
Chebyshev polynomial of the first-kind. Therefore, we have

2 1+ A
_(_1\d _ r
p(N) = (1) aTd(l_ATA 1_A7_)



where Ty(+) is the d" Chebyshev polynomial of the first-
kind. Choosing « such that F'(1,0) = 0 gives

(=1)?
7 (1)
The convergence factor is given by «, so the estimation error
decreases as o*. To normalize by the number of sequential
diffusion calculations per iteration we take the d™ root of
a where d is the degree of p(\). In the limit as d — oo,
the cost of the estimator is given by the following theorem
which is proved in the appendix.

Theorem 1: For the non-robust one-state estimator, the
limit of the normalized worst-case convergence factor as

the number of sequential diffusion calculations per iteration
approaches infinity is

lim o L= VA

d=s 00 - 14+ VN
Note that for d = 1, we have

11—\
d _ T
\/a_1+/\r

which is the same as that of the optimal estimator found
in [5] and whose block diagram is shown in Figure 3a. By
increasing the number of intermediate diffusion calculations
stored, not only does the convergence factor « decrease, but it
also decreases when normalized for the extra communication.
Therefore, using more intermediate diffusion calculations
increases the convergence rate for the one-state estimator.

2) n = 2: The two-state estimator has the characteristic
polynomial

o=

F(z,0) = 22+ p1(\)z + po(N). 3)

The roots of F(z, \) are inside a circle of radius « if and
only if

m o +po(N)  pi(N)

0< H = 2
o? p1()\) LR tfz()(}\)

(see Lemma 1 in [9]). This condition is equivalent to the two
conditions

[Po(N)] < o

(] < ),

Setting po(\) = o2, we need |p1()\)| < 2. Once again, the

optimal solution is given by a shifted and scaled Chebyshev
polynomial,

2 1+A
_ (_1)d+1 _ r
p1(A) = (-1) 204Td<1_>\r)\ 1_>\T>.

Choosing « such that F'(1,0) = 0 gives
0= F(1,0) = 1 + (—1)2aTy(z,) + o
where x, = —(14 A;)/(1 — \;.). Solving for « gives

o= (=1)"Ty(z,) — /T3 (z,) — 1

1k
)\maxz -1

(a) n =1, d = 1 non-robust

1 k22
Amax (2 — @2)(z — 1)

(b) n = 2, d = 1, non-robust

y(2)
1 ks J
L )‘r2nax2 -1 L
(¢c) n =1, d = 2, robust
u(z) !J(i)
+_
1 k3z
|
N DTN R TERl i

(d) n =2, d = 2, robust

Fig. 3: Block diagrams of feedback estimators. The parame-
ters are k; = 2/(1+\,) and ky = 2/(1+A2). Each estimator
has n state variables and performs d sequential diffusion
calculations per iteration. The normalized asymptotic con-
vergence factor is given in Table I.

which can be simplified using the following theorem whose
proof is given in the appendix.

Theorem 2: For the two-state estimator, the normalized
worst-case convergence factor is

o=tV
1+
for all d > 1.

Note that the performance of the two-state estimator is
always better than that of the one-state estimator, and the
performance of the one-state estimator approaches that of
the two-state estimator as the number of sequential diffusion
calculations per iteration approaches infinity for the one-state
estimator.

Since it does not benefit the two-state estimator to use any
additional diffusion calculations, the optimal use of memory
is to use the two-state estimator with only one diffusion
calculation per iteration. The block diagram for this estimator
is shown in Figure 3b.

B. Robust to initial conditions

The estimators designed in the previous subsection are
not robust to initial conditions. To see this, note that the



integrator state in Figures 3a and 3b is observable from
the output without going through the Laplacian, so the
initial conditions affect the steady-state output (see [10]
for details). We now show how to modify the non-robust
designs to achieve robustness. The resulting estimators are
sub-optimal, but their performance approaches that of the
non-robust estimators in the limit as the number of sequential
diffusion calculations per iteration approaches infinity. Since
the performance of the robust estimators cannot be better
than that of the equivalent non-robust estimators, this shows
that the proposed robust estimators are optimal in the limit.

In the characteristic polynomial, we need z — 1 to factor
out of the zero-order A term for the estimator to be exact.
To be both internally stable and robust to initial conditions,
z — 1 must also factor out of the first-order A\ term. This
allows for a Laplacian block before and after the integrator
in the block diagram as described in Section II. Therefore,
we need 2£(1,0) = 0 for the estimator to be robust to initial
conditions.

1) n = 1: For a robust estimator with one state, the
characteristic polynomial is still given by equation (2), except
that we now have the extra robustness condition p’(0) = 0.
For low degree polynomials, we can solve for the optimal
solution. For example, when p()\) is degree two (the lowest
possible degree for robustness), we have p(\) = 1 + paA?

with p(\;) = « and p(1) = —a. Solving these equations
gives
2 1— A2
= - a =
2= e 1+ A2

which gives the estimator shown in Figure 3c. This design
method is infeasible for high-order polynomials. The optimal
solution is no longer given by Chebyshev polynomials since
they do not satisfy the robustness condition. To handle the
extra condition, we multiply a Chebyshev polynomial by a
linear term and use the extra degrees of freedom from the
linear term to satisfy the robustness condition. This allows
us to analyze the performance of higher-order estimators.
Assume that p(\) is of the form

2 1+ A
A) =a(A—b)Ty A— .
PO = a7 (252 1)
For robustness, we need p’(0) = 0 which implies that

b=Ty 1(xy)/Ty_1(2r) <0 where z, = —(1+ \,)/(1 —
Ar). To be exact, we need p(0) = 1 which gives a =
T} (x.)/T3 | (z,). The worst-case asymptotic conver-
gence factor is then

a=p(1)| = (-1)*'p(1) = (-1)"a(l —b)
_ ey - T;Hm)}
Ty—1(zy) Ty1(z) .

This expression is simplified in the limit in the following
theorem whose proof is provided in the appendix.

Theorem 3: For the robust one-state estimator, the limit of
the normalized worst-case convergence factor as the number

0.8
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Fig. 4: Normalized worst-case asymptotic convergence fac-

tors of the estimators in Table I where v(x) = (1—z)/(14+x).

TABLE I: Normalized worst-case asymptotic convergence
factor /o where v(z) = (1 —x)/(1 + ).

Non-robust Robust
| d=1 d—ooo | d=2 d—ooo
n=1 v(Ar) v(vVAr) n=1 v(A2)  v(vAr)
n=2 | WA oA =2 | VAl (/A

of sequential diffusion calculations per iteration approaches
infinity is

1— VA,
lim /o = — .
Jim Vo=

2) n = 2: The design of the two-state robust estimator is
similar to that of the two-state non-robust estimator except
for the additional robustness condition, p/(0) + pj(0) = 0.
Once again we choose pg()\) = o? and

2 1+ A
pl()\) fa()\—b)Td_l (1_/\T>\ 1_/\T> .

Enforcing the conditions for the estimator to be exact and
robust gives

T (z, Ty_1(z,
a=(1+a? 271( )7 b— (f 1(55).
Tq_i(zr) Ty 4 (xr)
The asymptotic convergence factor « is then chosen so that

(1) = 20

Theorem 4: For the robust two-state estimator, the limit of
the normalized worst-case convergence factor as the number
of sequential diffusion calculations per iteration approaches
infinity is

. 1—VA
lim Va=——-L.
d—oo 1+ \//\,,‘ )
The results for both non-robust and robust estimators
with one and two states are summarized in Table I with
the normalized convergence factors plotted in Figure 4 and



block diagrams shown in Figure 3. Note that the non-robust
estimators achieve better performance for small values of d,
but their performance is the same in the limit as d — oo.

IV. FEEDFORWARD ESTIMATOR DESIGN

The second estimator design uses memory to track time-
varying signals whose frequencies lie below some cut-off
frequency with small steady-state error. The model of the
input signal is unknown in this case, only an upper-bound
on the frequency is required. Instead of the steady-state
error being zero, the error is now finite although it can be
made arbitrarily small by increasing the amount of memory
required to implement the estimator. We solve the following
problem.

Problem 2: Given A, € (0,1] and 6. € [0,7), design
an estimator which has minimum steady-state error for
all connected undirected weighted graphs whose nonzero
Laplacian eigenvalues lie in the interval [\, 1] and all inputs
whose frequencies are upper-bounded by 6.

Consider the transfer function of an estimator F'(z, )
using the separated system. We want the estimator to pass
through all signals in the consensus direction (A = 0)
unchanged while attenuating all signals in the disagreement
directions (A € [\, 1]) for any signal with frequencies
below the cut-off frequency 6. Therefore, we want to choose
F(z,\) to solve

min max ‘F (ej‘g,)\)’ s.t.
F o aer,1]
O€[—0..0.]

F(z,0)=1. (4

A simple design is to choose F'(z,A) = p(\) where p()\)
is a polynomial in A, that is, the estimator does not have
any internal states. Problem (4) is then the same polynomial
minimax problem as in the case of the one-state feedback
estimator design, and the solution is given by the Chebyshev
polynomial

pon= v (20~ K2

where

_ (=

o 1+,
7 (-£x)

is the level of attenuation and d is the degree of the estimator.

The block diagram for such an estimator is shown in Figure
S5a where

p(\) =1 +p1)\(1 +poA[1 + psA(.. .)]).

A recursive version of this estimator is given in [12].

This simple design has a drawback, however. The output is
a d" degree polynomial in \, so all d diffusion calculations
must be performed sequentially before the output can be cal-
culated. Since the output is not calculated until the iteration
is complete, the estimate is for the previous iteration. While
this may be allowable in certain applications, we would like
the estimate to be a function of only the current internal
state variables (and not the Laplacian) so that the estimate

- F
s, 1) )
9[- 0..0.]

u(z)

+
[ == I
+
Ll po = A
(a) No internal states, F'(z, A) = p(\)
u(z) y(z)
+
n o A P f(R)
+
—» D2 > A
(b) n internal states, F'(z,\) = 1+ f(2)[p(\) — 1]
u(z) y(2)
+

m A P f(2)
+
Lol Do o A [ f(2)

(c) dn internal states, F'(z,\) = p(Af(z))

Fig. 5: Block diagrams of feedforward estimators.

is for the current iteration. To separate the output from the
Laplacian, we introduce a strictly proper transfer function
between the Laplacian blocks and the output in the block
diagram as shown in Figure 5b. The output is then only
a function of the internal states on each agent and the local
input. Ideally, we would like f(e’?) =1 for all § € [—0,,0,]
so that we recover the performance of the stateless estimator.
This cannot be achieved exactly since f(z) must be strictly
proper, so we design 1 — f(z) to be a highpass filter with
cut-off frequency 6. Then f(e’?) ~ 1 for all € [0, 0.].
The attenuation of the estimator can then be increased both
by using a higher-degree polynomial p(\) and by using a
higher-order filter f(z).

The estimators in Figures 5a and 5b both require d
diffusion calculations per iteration which must be done
sequentially (the result of the first calculation is needed for
the second, and so on). Instead, we would like to perform
all d diffusion calculations simultaneously so that each agent
can send all of the required information in a single broadcast
packet. To do this, we need a strictly proper transfer function
between each Laplacian block in Figure 5b. Inserting the
same filter f(z) after each Laplacian block (not just the
last one) produces the estimator shown in Figure Sc. To
implement the estimator, each agent now has dn internal state
variables where 7 is the order of f(z). The transfer function
of the estimator is given by p(Af(z)). As the order of the
filter increases, f(e’?) approaches unity for 6 € [—0,,0,] so
that

i 30| —
Ay [P OSED)] =8
0€[—0.,0.]

where [ is given by equation (5).



Therefore, the estimator in Figure Sc

« achieves the same performance as the stateless estimator
in Figure 5a in the limit as the order of f(z) approaches
infinity,

« estimates the average of the current iteration, and

« can transmit all transmission variables in a single packet
at each iteration.

V. CONCLUSIONS

We have designed two types of average consensus esti-
mators. The first design tracks constant input signals with
zero steady-state error. It is shown that using two internal
state variables and one diffusion calculation per iteration
achieves the optimal asymptotic convergence rate when nor-
malized for the number of sequential diffusion calculations
per iteration. The second design tracks frequency-bounded
input signals with small steady-state error. The steady-state
error can be made arbitrarily small by adding more internal
state variables on each agent, the estimate is for the current
average of the inputs, and all transmission variables can be
sent in a single packet to neighboring agents at each iteration.
Furthermore, the two estimator designs have the ability to be
combined in series to obtain the benefits of both estimators.

APPENDIX

We now provide proofs to the theorems involving the
normalized convergence factors. To prove Theorem 1, we
need the following lemma.

Lemma 1: For x > 0, limg_,o {/cosh(dz) = e®.

Proof: Since z > 0, we can upper bound cosh(dz) by

dx —dx dx dx
cosh(dx) = ¢ te < £ te el
2 2
Since e~ % > (), a lower bound is
1
Eedm < cosh(dz).

Using the squeeze theorem on the inequalities

1

—=e* < {/cosh(dx) < e”

V2

gives that limg_, o, {/cosh(dz) = e*. [ |
We now give the proof for Theorem 1.

Proof: [Theorem 1] Define =, = —(1 4+ A,.)/(1 — A,).
Using the fact that Ty(z) = (—1)%cosh(dcosh™(z)) for
r < —1,

1

V(=1 Ta(x)
B 1

- limg_s e </cosh (d coshfl(—xr)) '

lim /o=
d— 00

limg 00

Note that 2, < —1 since 0 < A, < 1, so cosh™ " (—z,) > 0.
Then we can apply Lemma 1 to obtain

1
lim Vo =

d—o0 ecosh™! (=)’

Using cosh™!(z) = In[z 4+ v/2% — 1] and simplifying gives

1
: d _ —
dlinolo \/a o eln[—a:T-&- x2—1] o
1—VA
14+ VA

which completes the proof. [ ]
The proof of Theorem 2 is given below.
Proof: [Theorem 2] Similar to the proof of Theorem
1, define z, = —(1 + A.)/(1 — A) and use the fact that
Ty(z) = (—=1)%cosh(d cosh™*(z)) for z < —1 to write

1
—z,+ /22— 1

a=(—1)"Ty(z,) — \/T3(x,) — 1

= cosh(d cosh™*(—z,)) — \/COSh2(d cosh™(—z,)) — 1.

Using the common identities cosh?(x) — 1 = sinh?(z) and
cosh(z) — sinh(z) = e™* gives

o = cosh(d cosh™ (—z,.)) — sinh(d cosh ™ (—z,.))
_ efdcoshfl(fzr)

Once again using cosh™ ' () = In[z + /22 — 1] and simpli-
fying gives

— — 2_ — 2_1]—49
a=e dn[—xz,++/x2—1] :eln[( Trt+4/22—1]

1 1—va\*
T (cap a2 oD (Hﬁ)

which completes the proof. [ ]
The following Lemma is needed for the proof of Theorem
3.
Lemma 2: For |x| > 1,

g Ty(z)
A AT T ©

Proof: Letc=+v2z?2—1and a =x+c Then 1/a =
x —c and |a| < 1. Then we can write T;(z) and T)(x) as

d —d d —d
a” +a a” —a

Taking the logarithm of the left-hand side of (6), we have

Ty(x)
T!(z) log {1 — Td(z)]
. d 14 _ ol Tal=) |
dl;rr;olog L Ty(x) dhﬁlgo d
d —d
7d—>oo d

Using L’Hopital’s rule, this gives

1—a*?—4da’? log(a)

. 1+a27)2 . 1/c
lim o = lim =
d—o0 — %ZZ;Z:Z d—oo —d/c

Since log(0) = 1 and the log(-) function is continuous, this
gives the result. [ ]



Proof: [Theorem 3] Splitting the limit to be evaluated,
we have

_1)d—1 |: Td’, (xr)
lim Vo= lim { ( 1-— !
d—o0 f d—o0 Td_l(l‘7-) Td_l(ﬂir)
d—1 d—1
d
= lim
d— o0

where Theorem 1 provides the solution to the limit of the
first expression while Lemma 2 gives that the limit of the
second expression is equal to one, so

1—A
lim Vo= —"=.
im o o

d—o0

|
Proof: [Theorem 4] To calculate the asymptotic con-
vergence of the robust two-state estimator, we compare the
performance to that of the robust one-state estimator. Let
a1 and a9 be the asymptotic convergence factor of the
robust one-state and two-state estimators, respectively. The
one-state estimator requires a polynomial which satisfies
p(0) = 1 and p(\) < « for all A € [A.,1]. For the
two-state estimator, we need a polynomial which satisfies
p(0) = 14 a? and p(\) < 2a for all X € [\, 1]. Therefore,
we have as = 2a31/(1 + of). In the limit, this gives

lim

lm @A — lim
e VT 1 a? d—oo

d— o0 d—o0

\d/Oq = lim \d/ 1.
d— o0

Therefore, the normalized asymptotic convergence factor of
the robust two-state estimator is the same as that of the robust
one-state estimator as the number of diffusion calculations
per iteration approaches infinity. [ ]
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