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Abstract— The block diagram for a general average consen-
sus estimator is developed and we show how this can be used
to easily identify properties of the estimator. This structure is
then used to design average consensus estimators which achieve
exact average consensus for constant inputs, are robust to initial
conditions and switching graph topologies, and are internally
stable. Additionally, the estimators have the optimal worst-
case asymptotic convergence rate over the set of connected
undirected graphs whose weighted Laplacian matrices have
nonzero eigenvalues in a known interval [λmin, λmax].

Two designs are presented. The first is a modification
of the polynomial filter estimator proposed by Kokiopoulou
and Frossard [1] which is the optimal estimator having only
one state variable. The proposed design is robust to initial
conditions, but not robust to switching graph topologies. The
second design uses root locus techniques to obtain higher-
dimensional estimators in closed-form which are robust to both
initial conditions and switching graph topologies. Plots of the
worst-case asymptotic convergence factor of each estimator are
given as a function of the ratio λmin/λmax.

I. INTRODUCTION

We consider the dynamic average consensus problem
where each agent in a network uses communication with its
network neighbors along with a local estimator to calculate
the average input of all the agents [2], [3], [4], [5], [6].
Many applications in the decentralized control of multi-
agent systems require average consensus estimators which
are reliable and converge quickly.

In this paper we design average consensus estimators
which have zero steady-state error for constant inputs even
when the underlying communication network changes (such
as the addition/removal of agents or dropped packets). Ad-
ditionally, the estimators are designed to converge quickly
for a large set of communication graphs characterized by
their connectivity. A block diagram for a general estimator is
developed and simple conditions on the block diagram deter-
mine properties of the estimator such as exactness, internal
stability, robustness to initial conditions, and robustness to
switching graph topologies.

We show that the worst-case asymptotic convergence
factor is a monotonically non-increasing function of the ratio
λmin/λmax where λmin and λmax are bounds on the nonzero
eigenvalues of the weighted Laplacian. Therefore, the design
of optimal estimators is composed of two problems: 1)
choose the edge weights in a distributed manner to maximize
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λmin/λmax, and 2) design the estimator to guarantee the de-
sired properties for any connected undirected weighted graph
having Laplacian eigenvalues in the interval [λmin, λmax]. In
this paper we focus on a version of the second problem: given
λmin and λmax, design an estimator which provides exact
average consensus for constant inputs, is internally stable, is
robust to initial conditions and switching graph topologies,
and optimizes the worst-case asymptotic convergence rate.

Two design approaches are given. The first design is a
modification of the polynomial filter estimator proposed by
Kokiopoulou and Frossard [1]. The estimator in [1] is shown
not to be robust to initial conditions, but a simple modifi-
cation of the block diagram produces an estimator which
is robust to initial conditions. Both estimators, however, are
not robust to switching graph topologies. To overcome this
difficulty, we present a different design which uses root
locus methods to obtain higher-dimensional estimators which
are robust to both initial conditions and switching graph
topologies. The cost of having both properties, however, is a
slower convergence rate. Plots of the worst-case asymptotic
convergence factor normalized by the amount of communi-
cation required to implement the estimator are given for each
estimator as a function of the ratio λmin/λmax.

Much research has been done on optimizing the conver-
gence rate of average consensus estimators [7], [8]. However,
most work focuses on the static consensus problem in
which the inputs appear only through the initial conditions.
Although any static consensus estimator can be easily con-
verted to a dynamic one in which the inputs appear in the
state update equations themselves, the resulting estimators
are inherently not robust to initialization errors [9]. Elwin
et al. [10] optimize the worst-case performance of robust
dynamic average consensus estimators by applying numerical
global optimization solvers, but no guarantees are given of
finding the global optimum. Two-dimensional estimators are
designed in [11] which are robust to both initial conditions
and switching network topologies and are guaranteed to be
globally optimal, but closed-form solutions are not given
and the design method is not suitable for higher-dimensional
estimators.

The rest of the paper is organized as follows. Section II
sets up the average consensus problem. Section III gives the
block diagram structure of an average consensus estimator
and shows how the properties of the estimator can easily
be determined from the diagram. Sections IV and V give
two estimator designs; the first uses the polynomial filter
approach and the second uses root locus techniques. The
designs are compared in Section VI, and conclusions are
given in Section VII.



II. DYNAMIC AVERAGE CONSENSUS

Consider a group of N agents, each having a local scalar
input signal ui. Each agent runs an estimator which takes
in its local input along with information from its neighbors
to produce a local scalar output signal yi. The goal of each
estimator is to have its output yi track the global average of
all the local inputs. We model the communication topology as
a weighted undirected graph G. Define the adjacency matrix
of G to be A = [aij ] ∈ RN×N where aij = aji > 0 if agents
i and j can communicate and zero otherwise (with aii = 0).
The neighbors of agent i, denoted Ni, is the set of agents
with which agent i can communicate. The degree of agent
i, denoted deg(i), is the number of agents in Ni. Define the
N×1 vectors 1N and 0N of all ones and zeros, respectively,
and IN as the N × N identity matrix. Then the Laplacian
matrix is L = diag(A1N )−A which is positive semidefinite
and satisfies Lv = 0N where v = 1N/

√
N . The algebraic

connectivity of the graph is the second smallest eigenvalue
of L, denoted λmin. The graph is connected if and only if
λmin > 0.

If the graph topology is known, then the weights aij can
be chosen to optimize system performance [12]. When the
graph is unknown, however, it is often useful to choose
a weighting scheme which bounds the eigenvalues of the
Laplacian. For example, the decentralized weighting scheme
aij = 1/[deg(i) + deg(j)] restricts the eigenvalues of L to
the interval [0, 1] which allows us to use λmax = 1 when the
graph is unknown [9].

We now define several properties of average consensus
estimators. For simplicity, we assume we have a single
estimator design, and that each agent runs a local copy of
this estimator. We stack the local scalar inputs ui and outputs
yi into vectors u and y, each of which can depend on the
discrete time variable k.

Definition 1 (Exact): An estimator is said to achieve exact
average consensus when for any constant input u, the output
y(k) converges to 1

N 1N
∑N
i=1 ui as k →∞.

Definition 2 (Internally stable): An estimator is said to be
internally stable when for any initial internal states and any
bounded inputs u(·), all internal states remain bounded in
forward time.

Definition 3 (Robust to initial conditions): An estimator
is said to be robust to initial conditions when the limit of
y(k) as k →∞ does not depend on the initial internal states.

Definition 4 (Ergodic): Suppose the input u is constant,
and suppose the weighted communication graph changes at
each time step according to some random process. Here
we assume only that the expected graph is connected and
undirected; the graph at each time step need not be connected
nor satisfy the above symmetry assumption aij = aji. Let Lk
denote the resulting Laplacian at time k, and assume Lk is
i.i.d. and independent of the input and any initial states. Then
we call an estimator ergodic when for any sufficiently small
nonzero variance of the Laplacian process Lk, the output
process y(k) is asymptotically mean ergodic, meaning that its
time average converges to its statistical average as k →∞.

For one-hop estimators in which agents communicate only
with their one-hop neighbors at each time step, the statistical
average of the output y(k) is the output of the estimator
when the switching Laplacian Lk is replaced by its expected
value. For multi-hop estimators in which higher powers of
the Laplacian appear, the statistical average of the output
y(k) is the output of the estimator when each power of Lk
is replaced by its expected value. If an ergodic estimator is
exact under these expected Laplacian powers, then under the
switching Laplacian a local low-pass filter can be applied
to each local output to obtain the exact global average.
Conditions for an estimator to be ergodic are given in [13].

These properties of the estimator may depend on the
graph; for example, typically an estimator can be exact only
for connected graphs, and typically an estimator can be
internally stable only for graphs whose Laplacian eigenvalues
satisfy a known upper bound. We now state the problem to
be solved in this paper.

Problem 1: Given λmin and λmax with 0 < λmin ≤ λmax,
design an estimator which is exact, internally stable, robust
to initial conditions, and ergodic for all connected undirected
weighted graphs whose nonzero Laplacian eigenvalues lie in
the interval [λmin, λmax]. Furthermore, the estimator should
have the optimal worst-case asymptotic convergence rate
over all such graphs.

III. BLOCK DIAGRAM

To design average consensus estimators which solve Prob-
lem 1, we first characterize the block diagram of average
consensus estimators and show how the properties of the
estimator relate to the block diagram. Bai et al. [6] give the
block diagram for the generalized PI estimator in which each
agent has n internal state variables and two variables are
communicated with neighboring agents at each iteration. We
generalize this to estimators which communicate a general
number of variables to neighboring agents at each iteration.

The block diagram of the estimator used throughout this
paper is shown in Figure 1a which shows the full system
including all agents. The transfer functions are given by

H`(z) = h`(z)IN , ` = 1, . . . , r

G` = g`IN , ` = 1, . . . , r − 1

where h`(z) and g` are implemented on each agent, g`
are constant gains, and r is the number of L blocks. The
number of internal state variables on each agent, n, is
equal to the sum of the number of states in h`(z) for
` = 1, . . . , r. If either n = 1 or h`(z) is strictly proper
for ` = 1, . . . , r, then the estimator can be implemented
with r variables transmitted to one-hop neighbors at each
iteration. Multiplying a signal x by L is implemented on
each agent by taking a weighted average of the difference
between neighbors as follows,

(Lx)i =
∑
j∈Ni

aij(xi − xj).



To do the design, we use the separated system shown
in Figure 1b. For undirected graphs, the Laplacian is sym-
metric and can be diagonalized as D = QTLQ where
D = diag(λ1, . . . , λN ), Q =

[
q1 . . . qN

]
∈ RN×N is

orthogonal, and λm are the eigenvalues of L. Without loss
of generality, we can assume λ1 = 0 and q1 = 1N/

√
N . To

get the separated system, we multiply the input u(z) by qTm
so that the output is qTmy(z). The output of the full system
can then be recovered using

y(z) = QTQy(z) = q1[qT1 y(z)] +

N∑
m=2

qm[qTmy(z)] (1)

which is the sum of the output of the separated system in the
consensus direction (m = 1) and the disagreement directions
(m = 2, . . . , N ).
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Fig. 1: Block diagram of an average consensus estimator.
The diagram is shown with r = 3 communication states,
but the ellipses indicate how to generalize the diagram for
general r.

Lemma 1: The transfer function of the separated system
in Figure 1b is

qTmy(z)

qTmu(z)
=

1

F (z, λm)
(2)

where

F (z, λm) = 1 +

r∑
`=1

f`(z)λ
`
m (3)

f`(z) = g`
∏̀
j=1

hj(z), ` = 1, . . . , r (4)

with gr = 1.
We make the following assumption throughout the paper

which excludes algebraic loops in Figure 1.
Assumption 1: The transfer functions f`(z) for ` =

1, . . . , r are either strictly proper or identically zero.
The following theorem characterizes the properties of the

estimator based on the structure of the block diagram.
Theorem 1: Given a Laplacian matrix corresponding to a

connected undirected weighted graph, assume that transfer
function (2) has all poles strictly inside the unit circle for all
λm ∈ eig(L)\{0}. Then the estimator in Figure 1 is

1) exact if and only if h`(z) has a pole at z = 1 for some
` = 1, . . . , r,

2) internally stable if and only if for all ` = 1, ...r, h`(z)
has no poles strictly outside the unit circle and no
repeated poles on the unit circle,

3) robust to initial conditions if and only if h1(z) is stable,
and

4) ergodic if robust to initial conditions and h1(z) is
strictly proper.

Proof: The proof, omitted for brevity, relies on analyz-
ing the separated system in the consensus direction (λ1 = 0)
and the disagreement directions (λm > 0 for m = 2, . . . N )
and combining the results using equation (1).

Theorem 1 shows that the properties of the estimator
depend on how the model of the input appears in the block
diagram. Specifically, we have the following properties as
shown in Figure 2:

• To be exact, the estimator must contain an integrator.
• To be internally stable, the output must pass through

the Laplacian before reaching any integrator.
• To be robust to initial conditions, any integrator states

must pass through the Laplacian before reaching the
output.

• To be ergodic, it is sufficient that the estimator is robust
to initial conditions and any state passed through the
Laplacian is filtered by a strictly proper transfer function
before reaching the output.

Internally
stableinitial conditions

Robust to ExactErgodic

L
1

z − 1
L

1

z − p

Fig. 2: Properties of the estimator based on the structure of
the block diagram.

Definition 5: The worst-case asymptotic converge factor
of the estimator in Figure 1 is defined as

α = max{α1, α2} (5)



where

α1 = max
λ∈[λmin,λmax],z∈C

|z| subject to 0 = F (z, λ) (6)

α2 = max
z∈C
|z| subject to 0 = d(z). (7)

and h1(z) = n(z)/d(z).
Definition 6: Given the estimator in Figure 1 which re-

quires K variables to be transmitted to neighboring agents
during each iteration, the normalized worst-case asymptotic
converge factor is defined as α̃ = K

√
α.

Lemma 2: The worst-case asymptotic convergence factor
α is a monotonically non-increasing function of the ratio
λmin/λmax.

Proof: Omitted for brevity.
Note that this paper focuses on exactness for constant

inputs. The case for time-varying inputs is similar where
the integrator is replaced by the model of the input; see [6]
for details.

IV. POLYNOMIAL FILTER DESIGN
One design method proposed by Kokiopoulou and

Frossard [1] uses a polynomial filter to shape the spectrum of
the Laplacian. The design in [1] is given as a static estimator.
An equivalent dynamic estimator, however, is not robust to
initial conditions. Using the block diagram of the estimator,
we propose a simple modification to make the estimator
robust to initial conditions.

The polynomial filter design applies a polynomial pr of
degree r to the Laplacian to minimize the convergence factor.
The static polynomial filter algorithm is given by

xk+1 = pr(L)xk

where x0 = u and

pr(L) = I + p1L
(
I + p2L

[
I + p3L(. . .)

])
.

Note that the standard static consensus algorithm uses the
choice p1(L) = I−L. Using the separated system, this may
be written as a scalar polynomial in λ,

pr(λ) = 1 + p1λ
(

1 + p2λ
[
1 + p3λ(. . .)

])
,

where λ ∈ eig(L). The characteristic polynomial of the
separated system has a single root at pr(λ). Figure 3a gives
the block diagram of an equivalent dynamic estimator with
the same characteristic polynomial. The estimator is not
robust to initial conditions since the integrator state does
not pass through the Laplacian before reaching the output.
To make the estimator robust to initial conditions, we add a
Laplacian block after the integrator as shown in Figure 3b.

The polynomial filtering problem can be stated as follows.
Problem 2: Given λmin, λmax, and r, solve

α = min
pr

max
λ∈[λmin,λmax]

|pr(λ)|

where pr(λ) is a polynomial of degree r of the form

pr(λ) =

1 + p1λ
(

1 + p2λ
[
1 + p3λ(. . .)

])
, Figure 3a

1 + p1λ
2
(

1 + p2λ
[
1 + p3λ(. . .)

])
, Figure 3b.
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Fig. 3: Block diagram of polynomial filter estimators.

To implement the polynomial filter estimator, the state
must be averaged with neighboring agents r times with each
result stored locally on each agent. After r iterations, each
agent then applies the polynomial pr to the stored values and
updates its current estimate (see [1] for details). Therefore,
r consensus iterations are needed in order to perform a
single update iteration, so the optimal normalized worst-case
asymptotic convergence factor can be found by solving the
following problem.

Problem 3: Given λmin and λmax, solve

α̃ = min
r

r
√
α

where α is the solution to Problem 2.
The solution to the non-robust version of Problem 2 is

shown in [14] to be given by shifted and scaled Chebyshev
polynomials of the first-kind. Furthermore, the solution to
Problem 3 for both the robust and non-robust estimators is
α̃ = (1−

√
λmin/λmax)/(1+

√
λmin/λmax) which is achieved

in the limit as r → ∞. This is plotted as a function of the
ratio λmin/λmax in Figure 6.

Neither estimator in Figure 3 is ergodic. The estimator in
Figure 3a is not robust to initial conditions and therefore not
ergodic. Theorem 1 contains only a sufficient condition for
ergodicity, so ergodicity of the estimator in Figure 3b cannot
be proven since h1(z) = 1 is not strictly proper. Simulations
indicate, however, that the estimator is not ergodic. In the



next section, higher-dimensional estimators are designed
which are both robust to initial conditions and ergodic.

V. ROOT LOCUS DESIGN
From Section III, we see that the closed-loop poles of

the estimator in Figure 1 are the solutions to 0 = F (z, λ)
where F (z, λ) is given by equation 3. To simplify the design,
we assume r = 2 with h1(z) and h2(z) strictly proper
and g1 = 1. The estimator can then be implemented using
only two transmission variables, so the normalized worst-
case asymptotic convergence rate is α̃ =

√
α. Equation (3)

then becomes

F (z, λ) = 1 + λh1(z) [1 + λh2(z)] . (8)

For the estimator to be exact, internally stable, robust to
initial conditions, and ergodic, we need h1(z) to be stable,
h2(z) to have a pole at z = 1, and h2(z) to have no poles
strictly outside the unit circle or repeated poles on the unit
circle. To solve Problem 1, we need to design h1(z) and
h2(z) with the given restrictions such that α is minimized
where α is given by equation (5).

Solving 0 = F (z, λ) is a quadratic root locus problem
which has been studied in [15]. However, instead of viewing
the problem as a quadratic root locus, we do the design
as two nested linear root locus problems. For fixed λ̄, the
closed-loop poles of the system are on the h1-locus

0 = 1 + λh1(z)
[
1 + λ̄h2(z)

]
(h1-locus)

when λ = λ̄. To design the h1-locus, we need the roots of

0 = 1 + λ̄h2(z) (h2-locus)

which is a root locus in the parameter λ̄. Using the decom-
position h2(z) = n(z)/d(z), we see that

1 + λ̄h2(z) =
d(z) + λ̄n(z)

d(z)
=

closed-loop poles
open-loop poles

,

so the closed-loop poles of the h2-locus become open-loop
zeros in the h1-locus, and open-loop poles of the h2-locus
remain open-loop poles in the h1-locus.

To design the estimator, we first choose h2(z) such that the
closed-loop poles are inside a circle of radius α < 1 centered
at the origin of the complex plain, keeping in mind that the
closed-loop poles become the open-loop zeros of the h1-
locus. Then we choose h1(z) such that the h1-locus remains
inside the α-circle for all λ ∈ [λmin, λmax]. Conditions from
locations on the root loci are used to solve for α and the gains
of h1(z) and h2(z). Then the estimator is the solution to
Problem 1 where α is the worst-case asymptotic convergence
factor.

We will need the following definitions. The discriminant
of F (z, λ) with respect to λ is

r(z) = h1(z) [h1(z)− 4h2(z)] . (9)

Also, define the ratio λ0 = λmin/λmax and define the
coefficients of F (z, λmax) as

F (z, λmax) =

n∑
j=0

cjz
j . (10)

We now use the developed root locus technique to solve
Problem 1 for n = 2 and n = 4.
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(c) h2-locus, λ = (λmin+λmax)/2
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(d) h1-locus, λ = (λmin+λmax)/2
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(f) h1-locus, λ = λmax

Fig. 4: Root locus plots for n = 2 with λ0 = 0.1 (small
λmin/λmax case). The dashed circle has radius α. ×’s are
open-loop poles, ©’s are open-loop zeros, and �’s are
closed-loop poles at the given value of λ.

A. Case: n = 2

We can parameterize h1(z) and h2(z) as

h1(z) =
kp

z − γ
, h2(z) =

kI
z − 1

.

Since the poles of h1(z) must lie in the α-circle, we must
have γ ∈ [−α, α]. To design the h2-locus, we choose the
gain kI such that the pole is at z = α when λ̄ = λmin as
shown in Figure 4a. Therefore, we have

0 = 1 + λminh2(α) (11)

which gives

kI =
1− α
λmin

.



The h1-locus has relative degree one, so the closed-loop
pole approaches z = −∞ along the negative real axis as
λ→∞. To stabilize the pole for the largest ratio λmin/λmax,
we choose γ = α. Two conditions are needed to solve for
kp and α. The root loci are shown for small λ0 in Figure
4. Due to the shape of the locus, the closed-loop poles
can only exit the α-circle at z = −α or when the closed-
loop poles are complex conjugates with magnitude α. From
Vieta’s formulas, we use c0/c2 = α2 to force the closed-
loop poles to be on the α-circle when λ = λmax. For small
λ0, we use 0 = r(−α) to prohibit the poles from crossing
the point z = −α more than once. For large λ0, however,
the pole leaves the α-circle before λ = λmin, so we force it
back inside the α-circle at λ = λmin using 0 = F (−α, λmin).
Therefore, the conditions are

0 = α2 − c0
c2

0 =

{
r(−α), λ0 small
F (−α, λmin), λ0 large.

We can solve the conditions for both the small and large λ0
cases, and then use the condition 0 = r(−α) = F (−α, λmin)
to find the transition point between the two solutions. This
gives

kp =
1

λmax

α(1− α)λ0
α+ λ0 − 1

α =

{
α0, 0 < λ0 ≤ 3−

√
5

α1, 3−
√

5 < λ0 ≤ 1

where

α0 =
λ20 − 8λ0 + 8

8− λ20

α1 =

√
(1− λ0)(5λ20 − λ30 + 4)− λ0 + λ20

2(λ20 + 1)
.

Note that the global optimum for the case n = 2 was
solved numerically in [11]. The root locus design procedure,
however, gives more insight along with giving a closed-form
solution. By comparing solutions, we see that the root locus
design gives the same solution as that of [11], and is therefore
the global optimum.

B. Case: n = 4

We can parameterize h1(z) and h2(z) as

h1(z) = kp
(z − η1)

(z − γ1)(z − γ2)
, h2(z) = kI

(z − η2)

(z − 1)(z − γ3)
.

Using the choices γ1 = γ2 = α, γ3 = α2, and η1 = η2 = 0
gives the root loci in Figure 5. From the h2-locus, we choose
the gain kI using equation (11) which gives

kI =
(1− α)2

λmin
.

The conditions used to solve for kp and α are similar to
those used in the n = 2 case, except for the condition at
λ = λmax. Instead of forcing complex conjugate roots on the

α-circle, we now force there to be two double roots using
the discriminant of the quartic equation (10) (see [16]). This
occurs when the two pairs of complex conjugate roots break
apart on the α-circle. Therefore, the conditions are

0 = 64c34c0 − 16c24c
2
2 + 16c4c

2
2c3 − 16c24c3c1 − 3c42

0 =

{
r(−α), λ0 small
x(−α, λmin), λ0 large

which gives

kp =
(

2− λ0 + 2
√

1− λ0
)
kI

α =

{
α0, 0 < λ0 ≤ 2(

√
2− 1)

α1, 2(
√

2− 1) < λ0 ≤ 1

with

α0 =
2− β + 4(1−

√
2− β)

2 + β

α1 =
1 + β + 2(1−

√
2 + β)

1 + β

where β = 2
√

1− λ0 − λ0. For the n = 4 case, the given
solution is not proven to be globally optimal. However, we
conjecture that the proposed solution is the global optimum.
The normalized worst-case spectral radius of the estimator,√
α, is plotted in Figure 6 as a function of λ0 = λmin/λmax.

VI. COMPARISON

The normalized worst-case asymptotic convergence factor
for each estimator is shown in Figure 6. Both polynomial
filters in Figure 3 have the fastest normalized convergence
rate for all λmin/λmax, but in each case the rate shown is only
achieved in the limit as the number of consensus iterations
per time step approaches infinity (r → ∞). In practice,
only a finite number of consensus iterations can be used at
each time step resulting in slower convergence. Also, both
polynomial filter estimators are not ergodic. The root locus
designs converge slower in general, but are both ergodic. This
shows the trade-off between convergence rate and ergodicity.

From Lemma 2, we have that α is monotonically non-
increasing. Therefore, the general design process is as fol-
lows:

1) Design the Laplacian to maximize λmin/λmax,
2) Design the estimator to have the desired properties.

The first problem can be solved exactly using semidefinite
programming if the graph is known and symmetric [7],
otherwise a weighting scheme can be chosen such as inverse
out-degree weighting [9]. The second problem can be solved
using Figure 6 to choose the estimator based on the desired
worst-case asymptotic convergence factor and other proper-
ties such as robustness to intial conditions and ergodicity.

VII. CONCLUSIONS

We proposed two design methods for constructing average
consensus estimators with optimal worst-case asymptotic
convergence rate that also have other desired properties. The
estimator properties are characterized using the structure of
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(f) h1-locus, λ = λmax

Fig. 5: Root locus plots for n = 4 with λ0 = 0.1 (small
λ0 case). The dashed circle has radius α. ×’s are open-
loop poles,©’s are open-loop zeros, and �’s are closed-loop
poles at the given value of λ.

the block diagram. The one-dimensional polynomial filter
estimator from [1] was shown not to be robust to initial con-
ditions. By modifying the block diagram, a similar estimator
was proposed which is robust to initial conditions. Both
polynomial filters, however, are not ergodic. To obtain both
robustness to initial conditions and ergodicity, estimators of
dimension two and four were designed using root locus
techniques which achieve exact average consensus quickly
and are internally stable, robust to initial conditions, and
ergodic. The n = 4 design is the fastest linear discrete-time
dynamic average consensus estimator we know of which has
all four desired properties.
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