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Abstract— We consider the distributed average tracking
problem where a group of agents estimates the global average
of bandlimited signals using only local communication. An
estimator is designed to solve this problem with minimal error.
Previous discrete-time designs are limited to tracking signals
which either are constant, are slowly varying, have a known
model (or frequency), or consist of a single unknown frequency
which can be estimated. In contrast, we propose a feedforward
design which is capable of tracking the average of arbitrary
bandlimited signals. The communication graph is assumed to
be connected and symmetric with non-zero weighted Laplacian
eigenvalues in a known interval, although simulations show that
the performance degrades gracefully as these assumptions are
violated. Our design also provides the estimate of the average
without delay and is robust to changes in graph topology.

I. INTRODUCTION

The distributed average tracking problem consists of a
group of agents where each agent uses local communication
with its network neighbors along with a local estimator to
estimate the average input of all the agents. The input signals
are assumed to be time-varying with a known band limit.
Many applications in the decentralized control of multi-
agent systems require estimators which solve the distributed
average tracking problem and are robust to changes in the
communication network [1], [2], [3], [4], [5].

Robustness to changes in network topology is an important
property of a distributed estimator, as network changes can
occur due to

« mobile agents with range-limited communication,
o dropped packets,

« agent failure, and

« addition of agents to the network.

Distributed average tracking is sometimes referred to as
the average consensus problem, which has been studied
extensively [6], [7], [8], [9]. Most average consensus esti-
mators, however, are designed for inputs which are either
constant or slowly varying. We use the term distributed
average tracking to refer to the average consensus problem
when the input is time-varying.

The simplest average consensus estimator is given by [10]

Th+1 = (I - ka)Ik (1)
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where L is the graph Laplacian, u = x( is the vector of
inputs, and y, = x, is the output. In the limit as £ — oo, yx
converges to the mean of w. This estimator does not solve
the distributed average tracking problem, however, because
the input enters the system only as the initial condition. The
estimator calculates the average of the inputs, but is incapable
of tracking the average of a time-varying input.

As a first step to tracking time-varying inputs, the average
consensus estimator in (1) was modified so that the input
enters as the input of a dynamical system, not as the initial
state. Examples are the P and PI estimators [11]. Since the
input is no longer the initial state, estimators are referred
to as robust to initial conditions if the steady-state value is
independent of the initial state. In this case, the estimator can
track slowly-varying inputs and can recover from changes in
graph topology after a transient without any reinitialization.
These estimators are restricted to slowly-varying inputs,
however, since they are designed to track constant inputs
with zero steady-state error.

The estimators in [12] and [13] solve the discrete-time
dynamic average tracking problem, but the estimators are
not robust to the initial conditions. The systems must be
initialized correctly when agents enter or leave the network
which is not always possible in realistic scenarios.

To accommodate arbitrarily fast time-varying inputs with
a known model (or frequency), the internal model estimator
was introduced [9]. The internal model of the input is
placed in the feedback loop causing the estimator to have
zero steady-state error. Although this estimator can track
arbitrarily fast time-varying signals, the model of the input
must be known a priori to design the estimator, and no
guarantees of steady-state error are given if the input does
not identically match the model. In the case when the signal
frequency is unknown, it was shown that the frequency can
be estimated and the estimate used in the internal model
estimator [14]. This method can achieve zero steady-state
error, but the signal must be composed of a single frequency.

The internal model estimator can track the global average
after changes in the graph, but only after a transient. The
size of the transient can be reduced by applying a lowpass
post-filter [15], although it is unclear how the filter should
be designed to minimize the transient.

All previously mentioned estimators for distributed aver-
age tracking use feedback designs. In this paper, we design
a discrete-time feedforward estimator to solve the distributed
average tracking problem. The input signals are assumed
to be arbitrary bandlimited signals with a known cutoff
frequency, which can be achieved using lowpass input filters.



The output of each agent tracks the global average of all
input signals with bounded error and no delay, i.e., the
estimate of the global average is known on each agent at
every iteration and it approximates the average of the inputs
at that time instant. The communication graph is assumed
to be connected and undirected at each iteration with known
bounds on the non-zero eigenvalues of the Laplacian matrix.
The graph is allowed to change at each iteration without
affecting the performance of the estimator, so long as the
graph satisfies the assumptions at each iteration. It is also
shown through simulations that the performance degrades
gracefully as the assumptions on the graph are violated.

II. DISTRIBUTED AVERAGE TRACKING

Consider a group of N agents where each agent has a
local scalar input signal. The input at time k£ on agent ¢ is
denoted u} . Each agent runs an estimator using its own local
input along with information from its neighbors to produce a
local scalar output signal y! . The distributed average tracking
problem is for the output of each agent to track the global
average of the inputs. We define the error on agent i at time
k to be the absolute difference between the output of the
agent and the global average at the same time instant,
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The communication topology is modeled as a weighted
undirected graph G. Define the adjacency matrix of G to be
A = [a;;] € RN*N where a;; = aj; > 0 if agents i and
7 can communicate and zero otherwise (with a;; = 0). The
neighbors of agent 4, denoted N, is the set of agents with
which agent ¢ can communicate. The number of agents in
N is the degree of agent 4, denoted deg(s). Define the N x 1
vectors 1 and Op of all ones and zeros, respectively, and
as the N x N identity matrix. Then the Laplacian matrix is
L = diag(A1ly)— A which is symmetric positive semidefinite
and satisfies L1y = Op.

Let Amin and Apax With 0 < Apin < Apax denote lower
and upper bounds on the non-zero eigenvalues of L so that
the eigenvalues of L are in {0} U [Amin, Amax]- The graph is
connected if and only if the zero eigenvalue has multiplicity
one. We can decompose the Laplacian as L = VAV where
V = [vi,...,on], A = diag(\i,...,An), and VVT =
VTV =1 Fori = 1,...,N, v; is an eigenvector of L
with eigenvalue ;.

The weights a;; can be chosen to optimize the convergence
rate when the graph topology is known [16]. When the
graph is unknown, however, it is often useful to choose
a weighting scheme which bounds the eigenvalues of the
Laplacian. For example, the decentralized weighting scheme
a;; = 1/[deg(i) 4 deg(j)] restricts the eigenvalues of L to
the interval [0, 1] which allows us to use Ap.x = 1 when the
graph is unknown [17].

Dynamic estimators are often referred to as robust if they
are robust to the initial conditions. In this case, changes in
the graph topology can cause a transient in the estimate
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of the average, but the global average is recovered once
the transient decays. If the graph topology changes quickly
enough, the estimator remains in the transient state and
cannot track the global average. We now define a stronger
robustness property. Estimators with this property can track
the average even when the graph topology changes quickly.

Definition 1 (Robust to changes in graph topology): Let

L be a set of graph Laplacians. Consider implementing an
estimator in the following two scenarios:

1) The graph is fixed with Laplacian L € L.

2) The graph is allowed to change at each iteration with
the graph Laplacian at time k given by Lj where Lj, €
Lfork=12...

An estimator is said to be robust to changes in graph
topology when the steady-state error using the worst-case
sequence of graphs in (2) is equal to the steady-state error
using the worst-case constant graph in (1).

III. FEEDFORWARD ESTIMATOR DESIGN

Instead of using feedback as in equation (1), we propose
the use of feedforward estimators to solve the distributed
average tracking problem. As a first approach, consider
the estimator shown in Figure la which simply applies
the consensus matrix I — k,L to the input n times. Each
iteration requires time since multiplication by L requires
communication among neighbors, so there is a delay of 1/z
between each iteration. This design works well for any inputs
(not just bandlimited inputs) and is robust to changes in
graph topology. The drawback, however, is that the output
is delayed by n steps from the input, so achieving a better
estimate requires more delay.

To fix the delay, we could replace 1/z with a filter f(z)
as shown in Figure 1b. The frequency response of the filter
f(2) should be designed to approximate unity for inputs with
frequencies in [—6,, 8.] where 6, is the cutoff frequency of
the input signals. Then the transfer function approximates
(I — k,L)" in [—6.,0.]. We could choose f(z) = 1,
but this results in an n-hop estimator. In this case, each
iteration would require n rounds of communication to be
done sequentially since the result of each round is needed
for the next. This is due to Laplacian blocks being directly
connected in the block diagram without any delay between
them. To prevent this, we require f(z) to be strictly proper so
that there is no direct feedthrough between Laplacian blocks.
The estimator can then be implemented in one-hop meaning
that each agent can broadcast all of its information in a single
packet at each iteration. This fixes the delay problem, but the
estimator is not robust to changes in graph topology.

The design in Figure 1b filters both the consensus and
disagreement directions. Since we only require a strictly
proper filter between consecutive Laplacian blocks, we could
also place the filter directly after each Laplacian block as in
Figure 1c. A benefit of this design is that it can handle any
signals (not only bandlimited signals) which are common
to all agents since the consensus direction is a straight wire
from the input to the output. This estimator also has no delay
at the output, but is still not robust to changes in graph
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(a) Estimator consisting of n steps of standard average consensus.
The estimator is robust to changes in graph topology, but the output
is delayed from the input by n iterations.
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(b) Estimator with the filter f(z) in both the consensus and
disagreement directions. The output is not delayed, but the estimator
is not robust to changes in graph topology.
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n times

(c) Estimator with the filter f(z) only in the disagreement direc-
tions. The output is not delayed, but the estimator is not robust to
changes in graph topology.

n times

(d) Estimator where the filter h(z) = [zf(2)]™ is implemented
before passing through the graph Laplacian. The output is not
delayed and the estimator is robust to changes in graph topology.

Fig. 1: Block diagrams of the proposed feedforward estima-
tors. Each marked section is repeated in series n times.

topology. When the graph is fixed, however, simulations
in Section IV indicate that this design can achieve smaller
steady-state error compared to the other designs.

To see why the estimators in Figures 1b and lc are not
robust to changes in graph topology, consider implementing
the estimators on a switching graph. Changes in the graph
cause the eigenvalues to change, and random changes in the
eigenvalues create high-frequency components in the signal
after passing through the Laplacian. These high-frequency
components are not in the passband of f(z) and are therefore
amplified when filtered through f(z) (see Section III-A)
causing the error to be large.

We can make an estimator with the same transfer function
as that in Figure 1b which is robust to changes in graph
topology by applying the filter f(z) before the signal passes
through the Laplacian as shown in Figure 1d. After the pre-
filter [z f(z)]™, the rest of the estimator is identical to that in

Figure 1a which works for any inputs (not just bandlimited
inputs) and is robust to changes in graph topology. The
problem with the estimator in Figure la was that the output
was delayed, but this is offset in the estimator in Figure 1d by
the pre-filter. Therefore, we propose the estimator in Figure
1d to solve the distributed average tracking problem without
delay and over graphs with changing topology.

The filter f(z) is not a standard lowpass filter, although
we give a design procedure in Section III-A. For now, we
assume that we know the maximum deviation of f(e7%) from
unity for 6 € [—6,,0.], given by

= 1-— 79 2
0:= max [L—f()], 2)
and the infinity norm of f(z),
1 fllc = max_[£(e’)]. (3)
oc[—m,m)

The transfer function from the input to the output of the
estimator in Figure 1d is

H(z, L) = [(I = kyL) f(2)]" =V [(I = kpA) f(2)]" VT,
and the transfer function from the input to the error is
Hen(2, L) = viof = V[ =k f ()" VT (4
where v; = 1y/ V/'N. The singular values of He(z,L) are

1= f"(2), A=0
7= {— (0= kNS A€ D A

The maximum singular value of the error transfer function
is defined as

o 6)

Omax ‘= max
AE{0}U[Amin, Amax)
O€[—0c,0c]
where the non-zero graph eigenvalues are viewed as an
uncertain parameter A and the frequencies of the input
signal are viewed as an uncertain parameter 6. This is the
maximum singular value over both the consensus direction
and disagreement directions. The error of the estimator can

be bounded using om,x and the size of the input,

llelloe < llellz < omaxllull2 < VNowaxulloo. — (7)

To minimize the error, we want to minimize op,. The
following lemma gives an upper-bound on op,x. The proof
is omitted for brevity.

Lemma 1: Consider the estimator in Figure 1d with &, =
2/(Amin + Amax )- For all bandlimited input signals with cutoff
frequency 6. and all connected undirected graphs with non-
zero Laplacian eigenvalues in [Apmin, Amax), the maximum
singular value of the error transfer function He(z, L) in (4)
is bounded by

1—=X1"
Umaxgmax{(l+5)"l, {(1+5)1+>\r] } (8)
where 4 is given by (2) and A, = Amin/Amax-
Note that . is a function of § (how close f(z) ap-
proximates unity in [—6,,0.]), A, (the ratio of Laplacian



eigenvalues), and n (the size of the estimator). To minimize
the error, we want to design f(z) to minimize oy,,x. However,
this optimization causes a large transient due to the initial
conditions (see the simulations in Section IV). Implementing
the estimator on a computer with finite precision introduces
quantization noise. If the transient becomes too large, the
input cannot be distinguished from the quantization noise so
the estimator cannot track the signal. To fix this issue, we
upper-bound ||H|| by a constant HT** depending on the
precision of the arithmetic used to implement the estimator
which ensures that the transient due to the initial conditions
is not too large. A bound on the infinity norm of the estimator
H(z, L) is

1Hlloo = max [f"(e’)] < ||fl|%. ©)

oel—m,m]

Problem 1: Given bounds on the non-zero eigenvalues of
the Laplacian, the cutoff frequency of the inputs, and the
maximum allowable gain of the estimator, choose the size
of the estimator and the pre-filter to minimize the worst-case
gain from the input to the error subject to the gain from the
input to the output not exceeding the maximum allowable
gain. That is, solve

H]lci(n) Omax St || H||oo < HZ. (10)

A. Design of f(z)

The design of the feedforward estimator requires a filter
f(2) with the following properties:

o f(z) is strictly proper

o f(e’?) =1 for 6 € [-0,.,0.].
We need the filter to approximate unity in both magnitude
and phase in the passband, so a standard lowpass filter cannot
be used. Instead, we set

(1)
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Fig. 2: Bode plot of g(z) (blue) and f(z) (green) with m = 8,
e =104, and . = 7/4. The vertical line indicates 6.

where g(z) is a filter to be designed which approximates
zero in the passband. Then lim, . f(z) = 0 so f(z)
is strictly proper. To minimize the distance from unity,
g(z) is chosen to be a Type II Chebyshev highpass filter
which equioscillates in the stopband (which is [—6,, 6.]). The
transfer function of the Type II Chebyshev highpass filter is
obtained as follows. First, the corresponding continuous filter
G(s) is obtained. The continuous filter is the unique stable
filter with frequency response

€T (w/wo)
14 e2T? (w/wo)

where T,, is the degree m Chebyshev polynomial of the
first-kind, wqo is the cutoff frequency, and € is a design
parameter. The s-plane poles are the left-half plane roots
of the denominator of (12), and the zeros are the roots of
the numerator with multiplicity one. These are given by
P, = jwgcos(b; — jvy) and Z; = jwgcos(h;) for i =
1,...,m where 6; = w(2i — 1)/(2m), v = asinh(1/e€)/m,
and j = /—1 is the imaginary unit. The z-plane poles
and zeros are then obtained using the bilinear transform,
pi=2+P)/(2—F) and z; = (2+ Z;)/(2— Z;). The gain
is chosen such that the transfer function is unity at z = —1,
so K =[[i~, (14 z;)/(1+4 p;). Since the bilinear transform
warps the frequencies, we take wg = 2tan(f./2) so that
the cutoff frequency of the discrete filter is 6.. The transfer
function of the discrete Type II Chebyshev highpass filter is
then

G(jw)| = (12)

g(2) = K[

. (13)
= 7P

The magnitude of the filter response oscillates between 0
and €/+/1 + €2 in the stopband, so

€

a 19| = ———. 14
b IREX, l9(”) = == — (14)
Then f(z) is given by
z - 2
f(z):1—%=1—1_[7. (15)

P
i=1 pi

Example Bode plots of g(z) and f(z) are given Figure 2.
Note that f(z) is strictly proper and approximates unity in
the passband with maximum error

. 1 €
8= 1— f(e)] = = ——. 16
Geglgfeﬂ Je )| K14 €2 (16)

Since ||g|loc = 1, a bound on the infinity norm of f(z) is
[|fllc < 1+ 1/K. The optimization problem in equation

(10) then becomes

min max{(l +6)" -1, {(1 +5)1 - Ar]n}

n,m,e 1+ A,
1 n
L1+ = < HDM¥,

We now show how to approximate the solution to this
problem. Consider fixing n. Then the objective function is
minimized by making § small, which is equivalent to making

a7
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Fig. 3: Plot of o, as a function of 6. and A, for n =
1,2,...,6.

€ small and K large, while the constraint only requires K to
be large enough. Therefore, we approximate the solution to
(17) for fixed n by solving

K>_ 1
m,e o - {L/W.Oax -1
Note that K is an increasing function of ¢ and m. The
optimal solution to (18) is obtained as m — oo. This is
not practical, however, since m is the order of the filter
f(2). Therefore, we consider some maximum allowable filter
order Mmmax and set m = mpax. Bisection is then performed
on € to find the e for which the constraint is satisfied with
equality. This approximately solves the optimization problem
(18) for fixed n, and the resulting values of o, are shown
in Figure 3. We solve this problem for n = 1,2, ... and take
the smallest value to be the optimum. The results are shown
in Figure 4.

(18)

IV. SIMULATIONS

The proposed estimator design is simulated using a
500-node undirected geometric random graph. The graph
Laplacian is constructed using inverse degree weighting
and has non-zero eigenvalues in [0.1240,0.5989] so that
Ar = 0.2071. Each input signal is bandlimited with cutoff
frequency 6. = 7/4. The Fourier transform of each input
signal is constructed as follows: random complex values are
assigned to the part of the frequency spectrum corresponding

to 6 € [0,0.], the complex conjugate values are assigned
to € [—6.,0] (so that the input signal is real), and the
spectrum in 6 € [—m, —6,] U [0, 7] is set to zero. The input
signal is then obtained using the inverse Fourier transform.
The degree of f(z) is chosen to be m = 8. Double precision
arithmetic is used, so we take H™® = 2x 103 which ensures
that the transient does not become too large.

The error of the estimator is calculated using the maximum
absolute error over all agents normalized by the maximum
size of the global average,
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Fig. 4: Upper-bound on o, as a function of 6. and A, using
HM™ =2 x 10'3 and myp.x = 8.
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probability 0.1.
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Fig. 6: Output of each agent for the estimator in Fig. 1d
(blue), and the global average of all inputs (green). The time
scale is chosen such that the estimator is in steady-state. The
graph is constant throughout the simulation.

Figure 5 shows the error for each estimator in Figure
1. Packets are dropped independently at each iteration with
probability 0.1 between iterations k£ = 1000 and k£ = 1200.
The output of the estimator in Figure la is delayed, so it
cannot track the average of the time-varying input signals.
The estimators in Figures 1b and 1c achieve small steady-
state error when the graph is constant, but are not robust
to changes in graph topology and have large error whenever
the graph changes. They return to tracking the global average
after the graph returns to being constant, but only after a long
transient. Finally, the estimator in Figure 1d tracks the global
average and is robust to changes in graph topology. The error
is slightly higher when packets are dropped, but this is due
to the graph not satisfying the assumptions at each iteration.
The output of the agents for this estimator compared to the
global average is shown in Figure 6.

One benefit of the estimator in Figure 1d is that the
performance degrades gracefully when the assumptions on
the graph are violated as illustrated in Figure 7. The estimator
is designed using a larger eigenvalue range than that of the
graph to increase the performance when the graph topology
changes. Packets are dropped randomly at each iteration with
probabilities p = 0, 0.25, and 0.5. Due to the dropped pack-
ets, the graph at each iteration can be directed, disconnected,
and/or have eigenvalues outside of the designed range which
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Fig. 7: Steady-state error using the estimator in Figure 1d. At
each iteration, packets are dropped with probability p. The
estimator is designed using Ay, = 0.0248 and A, = 1.

violates the assumptions. Even with the assumptions of the
graph being violated at some iterations, the estimator still
tracks the global average with no more than about 10% error.
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