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Abstract— Time-varying optimization problems arise in a va-
riety of engineering applications. The available information
about how the problem changes in time dictates the types of
algorithms that are applicable to a particular problem as well
as the types of convergence guarantees that may be proven.
In this paper, we explore the fundamental properties shared
by the entire class of gradient-based optimization algorithms
for time-varying optimization. By casting the design of such
algorithms as an output regulation problem for dynamical
systems, we provide necessary and sufficient conditions for
the existence of an algorithm that asymptotically tracks an
optimizer of the problem of interest. When these conditions
hold, we provide a design procedure to construct such an
algorithm. As a fundamental limitation, we show that any
algorithm that achieves exact tracking needs to incorporate
an internal model of the temporal variation, which we refer to
as the internal model principle of time-varying optimization.

I. INTRODUCTION

Time-varying optimization arises in many engineering prob-
lems where parameters evolve over time [1]. Applications
include optimal power flow with renewables, robotic obstacle
avoidance, model predictive control, video feature extraction,
high-resolution MRI, and real-time industrial optimization;
see [1, Sections IV–V] and references therein.
The algorithms available to solve a time-varying optimization
problem depend on the available information about how
the problem changes in time. For instance, suppose one
has access to the optimization problem at each point in
time, but has no foreknowledge as to how the problem will
change at the next iteration. In this case, any method from
static optimization (e.g., [1], [2]) may be applied directly
to the problem at each point in time; unfortunately, such
algorithms can only achieve convergence to a neighborhood
of an optimizer, where the size of the neighborhood depends
on the convergence properties of the algorithm as well as
how quickly the problem varies in time [3].
The variability of the optimization problem, however, is not
always entirely unknown (see, e.g., [4], [5]). Instead, suppose
one has access to an oracle for the optimization problem
(such as the gradient of the objective function) along with
a model for how the optimization problem varies in time.
In this case, the algorithm may exploit this information
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to asymptotically track an optimizer. This is the approach
proposed in [6] for discrete-time problems and [7] for
continuous-time ones. In [6], the algorithm has access to the
gradient of the objective function along with knowledge of
the poles of the z-transform of the time-varying parameter.
Based on the internal model principle, for quadratic prob-
lems, this model of the time variation is then incorporated
in the algorithm to achieve exact asymptotic tracking of
the optimal trajectory. Preliminary observations on inter-
nal models for time-varying optimization have appeared
in our previous work [7], which is limited to continuous-
time optimization problems. This paper focuses on discrete-
time methods, which align more closely with traditional
optimization approaches [2], [4], yet inherently introduce
new challenges and require distinct forms of characterization.
In this paper we study time-varying optimization problems
in discrete time, and we pose the following questions:

1) What is the minimal amount of information needed
to design an algorithm that asymptotically tracks an
optimizer of a time-varying optimization problem?

2) When these conditions hold, how does one design such
an algorithm?

To address these questions, we cast the analysis and design of
a time-varying optimization algorithm as a nonlinear output
regulation problem [8], which can be studied using tools
from center manifold theory for maps [9]–[11]. Our main
contributions are as follows:

1) We provide necessary and sufficient conditions for a
discrete-time gradient-based algorithm to asymptoti-
cally track an optimizer of a time-varying optimization
problem (Theorems 2 and 3).

2) We provide a design procedure to construct such an
algorithm (Algorithm 1). The algorithm consists of an
observer for the temporal variability combined with a
function that zeros the gradient (see Definition 2).

We show that: i) when the dependence between the op-
timization problem and temporal variability is known or
measurable, exact asymptotic tracking can be achieved with-
out knowledge of how the problem changes with time (see
Thm. 1), and ii) when the dependence between the opti-
mization problem and the temporal variability is unknown,
asymptotic tracking can be achieved only if the algorithm
has knowledge of how the problem changes with time
(see Thm. 2). As a result, the algorithm must embed an
internal model of the temporal variation—a feature we term
the discrete-time internal model principle of time-varying
optimization, akin to its counterpart in control theory [12].
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The rest of the paper is organized as follows. We begin by
formulating the problem in §II. We consider the special case
of parameter feedback optimization in §III, followed by the
general case of dynamic feedback in §IV. Simulation results
are presented in §V, and §VI summarizes our conclusions.

II. PROBLEM FORMULATION

We consider the time-varying optimization problem:

min
x∈Rn

f(x, θk), (1)

where k ∈ N≥0 denotes time or iteration, and f : Rn×Θ→
R, with Θ ⊆ Rp, is a loss function that is parametrized by
the time-varying parameter vector θ : N≥0 → Θ. We make
the following assumption on the loss function.
Assumption 1 (Properties of the objective function). The
map x 7→ f(x, θ) is convex and x 7→ ∇xf(x, θ) is Lipschitz
continuous in Rn, for each θ ∈ Θ. □

Convexity and smoothness are standard assumptions for
this class of problems [13]. In (1), the parameter θk is
used to model the temporal variability of the problem. We
will require that θk belongs to a certain class of temporal
variabilities, as specified next.
Assumption 2 (Class of temporal variabilities). There exists
a smooth (i.e., C∞) vector field s : Θ → Θ and initial
condition θ0 ∈ Θ such that θk satisfies

θk+1 = s(θk), (2)

for all k ∈ N≥0. Moreover, θ = 0 is an equilibrium of (2)
and the trajectories of (2) are bounded. □

Assumption 2 defines the class of temporal variations con-
sidered. It is a mild assumption, requiring only that θk
is deterministic, sufficiently smooth, and exhibits bounded
trajectories. We stress that, a priori, we do not assume that
s(θ) nor θ0 are known (see Problem 1 below). In line
with [14], we will call (2) the exosystem.
For simplicity of the presentation, we assume that Θ is some
neighborhood of the origin of Rp. We put no restrictions
on the size of this neighborhood (which is, e.g., allowed to
be the entire space Θ = Rp), and thus on the size of θk.
Moreover, there is no restriction with asking that Θ contains
the origin because, if θk takes values in the neighborhood
of any other point, such a point can be shifted to the origin
through a time-invariant change of variables.
We are interested in designing an optimization algorithm that
computes and tracks a critical trajectory x⋆k of (1), which is
defined1 implicitly as:

0 = ∇xf(x
⋆
k, θk), ∀k ∈ N≥0. (3)

Moreover, we will denote by x⋆◦ ∈ Rn a point such that2

0 = ∇xf(x
⋆
◦, 0), (4)

and assume that x⋆◦ ∈ Rn is locally unique.

1Existence of a critical trajectory can be ensured under standard assump-
tions on the optimization; for example, coercivity of the cost [15].

2We stress that x⋆
k and x⋆

◦ are distinct quantities. While x⋆
k is a sequence,

x⋆
◦ is a constant vector.

In line with the existing literature [1], [13], [16]–[18], we
focus on gradient-type algorithms to solve (1); that is,
algorithms that have access to oracle evaluations of:

(k, x) 7→ ∇xf(x, θk). (5)

More precisely, we consider the class of optimization al-
gorithms described by a dynamic state zk ∈ Z ⊆ Rnc ,
nc ∈ N>0. The algorithm generates a sequence of points
xk ∈ Rn (called exploration signal) and has access to
functional evaluations yk = ∇xf(xk, θk) of (5) at these
points (called gradient feedback signal). Mathematically, the
optimization algorithm is described by:

zk+1 = Fc(zk, yk), xk = Gc(zk), (6a)

together with the gradient-feedback signal:

yk = ∇xf(xk, θk), (6b)

where Fc : Z ×Rn → Z and Gc : Z → Rn are functions to
be designed. In the remainder, we refer to (6) as a dynamic
gradient-feedback optimization algorithm. We will assume
that the functions Fc(z, y) and Gc(z) are such that3

Fc(z
⋆
◦ , 0) = z⋆◦ , x⋆◦ = Gc(z

⋆
◦), (7)

for some z∗◦ ∈ Z locally unique. This ensures that the
optimization algorithm (6) has an equilibrium at z = z⋆◦ ,
with corresponding gradient feedback signal equal to zero.
The dynamics of the optimization algorithm (6), coupled
with the time-variability generator (2), have the form:

zk+1 = Fc(zk, yk), (8a)
θk+1 = s(θk), (8b)
yk = ∇xf(Gc(zk), θk). (8c)

Definition 1 (Exact asymptotic tracking). We say that (8)
asymptotically tracks a critical trajectory of (1) with respect
to initializations in the set Θ◦ ⊆ Θ if, for each initial
condition (z0, θ0) with z0 in some neighborhood of z⋆◦ and
θ0 ∈ Θ◦, the solution of (8) satisfies yk → 0 as k →∞. □

In practice, the initial condition θ0 to the exosystem (2) may
not be known; Definition 1 accounts for such uncertainty by
allowing θ0 to be anywhere in the set Θ◦. We also stress
that the tracking notion of Definition 1 is of local nature;
the reason being that we allow for optimizations that admit
multiple local minima and exosystems that are nonlinear and
whose trajectories can have arbitrary asymptotic behaviors
(converge to equilibrium points, limit cycles, chaotic motion,
etc.). We are now ready to make our objective formal.
Problem 1 (Minimal knowledge for asymptotic tracking).
Consider the class of optimization algorithms (6). Determine
the minimal necessary knowledge (beyond (5)) concerning
the exosystem and the optimization problem, needed to
design an algorithm as in (6) that tracks a critical trajectory
of (1) with respect to initializations in some set Θ◦. In
addition, provide a method to design Fc(z, y), Gc(z), and
nc, requiring the minimal necessary knowledge. □

3Notice that this is without loss of generality since Fc(z, y) and Gc(z)
are to be designed and x⋆

◦ is known through (4).
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III. THE PARAMETER-FEEDBACK PROBLEM

In many practical cases, having access to functional evalua-
tions as in (5) (and hence to the signal yk) is a byproduct of
having access to both the function ∇xf(x, θ) and knowledge
or measurements of θk. In this section, we analyze this
scenario (hence, we will assume that ∇xf(x, θ) and θk are
known at each k). We anticipate that the results derived in
this section will also serve as an intermediate step to tackle
the more challenging problem where only oracle evaluations
of (5) are available, which is the focus of Section IV.
When the algorithm has access to both θk at each k and
to the function ∇xf(x, θ), the measurements yk do not
provide additional information. Hence, the algorithm (6) can
be replaced by the algebraic relationship4:

xk = Hc(θk), (9)

where Hc : Θ → Rn is a mapping to be designed; we will
require that Hc is of class C0 and, in line with (7), that
x⋆◦ = Hc(0) (cf. (7)). Because of the explicit dependence
on θk, we will refer to (9) as a static parameter-feedback
optimization algorithm. Our objective is to design the map
Hc so that the composition of (2), (6b), and (9):

yk = ∇xf(Hc(θk), θk), θk+1 = s(θk), (10)

tracks, with zero asymptotic error, a critical trajectory of (1).
Solvability of the static parameter-feedback problem will
depend on the existence of a function that zeros the gradient.
Definition 2 (Mapping zeroing the gradient). A mapping
Hc : Θ→ Rn zeros the gradient at the point θ ∈ Θ if

0 = ∇xf(Hc(θ), θ). (11)

Moreover, Hc zeros the gradient on a set Θ◦ ⊆ Θ if (11)
holds for all θ ∈ Θ◦. □

The following definition is instrumental.
Definition 3 (Limit point and limit set). A point θω ∈ Θ is
called a limit point with respect to the initialization θ◦ ∈ Θ
if there exists a sequence {ki}i∈N≥0

, with ki → ∞ as
i→∞, such that the trajectory of (2) with θ0 = θ◦ satisfies
θki
→ θω as i→∞. Let Ω(θ◦) denote the set of all

limit points (i.e., for all sequences {ki}i∈N≥0
) of (2) with

respect to the initialization θ◦. Given Θ◦ ⊆ Θ, the set
Ω(Θ◦) := ∪θ◦∈Θ◦Ω(θ◦) is called the limit set with respect
to initializations in Θ◦ [19]. □

Intuitively, Ω(Θ◦) denotes the set of all limit points (equilib-
ria, limit cycles, etc.) that can be reached by the exosystem
when initialized at points in Θ◦. Notice also that, by As-
sumption 2, Ω(Θ◦) is contained in some neighborhood of
the origin of Rp. For example, if the exosystem (2) is linear
and the origin is a Lyapunov stable equilibrium, then Ω(Θ◦)
is some neighborhood of the origin, whose radius depends
on the radius of the initialization set Θ◦. The following result
characterizes all parameter-feedback optimization algorithms
that achieve asymptotic tracking of a critical trajectory.

4While one could consider a dynamic optimization algorithm of the form
zk+1 = Fc(zk, θk) and xk = Gc(zk), we will prove in Theorem 1 that
a dynamic structure is unnecessary.

Theorem 1 (Parameter-feedback algorithm characterization).
Let Assumptions 1–2 hold, and let Θ◦ ⊆ Θ. The parameter-
feedback algorithm (10) asymptotically tracks a critical tra-
jectory of (1) with respect to initializations in Θ◦ if and only
if the mapping Hc(θ) zeros the gradient on Ω(Θ◦). □

Proof. (Only if) Suppose yk → 0 as k → ∞ for initializa-
tions θ0 ∈ Θ◦; we will show that Hc zeros the gradient on
Ω(Θ◦). By Assumption 2, the trajectories of (2) are bounded,
and thus, by the Bolzano–Weierstrass theorem, there exists
an increasing subsequence {ki}i∈N≥0

such that the trajectory
θki

converges to some limit point θω ∈ Ω(θ0) as i → ∞.
Then,

lim
i→∞

yki
= lim

i→∞
∇xf(Hc(θki

), θki
) = ∇xf(Hc(θω), θω),

(12)

where the second equality follows from the continuity of the
gradient (Assumption 1) and that of Hc. Since yk → 0 as
k → ∞, the left-hand side of (12) is zero, which implies
that Hc zeros the gradient on θω . Since this holds for any
limit point θω ∈ Ω(Θ◦), Hc zeros the gradient on Ω(Θ◦).
(If) Suppose θ0 ∈ Θ◦ and that Hc zeros the gradient on
Ω(Θ◦). The right-hand side of (12) is then zero, which
implies the existence of a sequence ki such that yki

→ 0
as i→∞. Since this holds for any limit point θω ∈ Ω(Θ◦),
any convergent subsequence of yk converges to zero. More-
over, yk is bounded due to Lipschitz continuity of the
gradient, so yk also converges to zero as k →∞. By iterating
the reasoning for all θ0 ∈ Θ◦, it follows that yk → 0 for all
initializations θ0 ∈ Θ◦, and thus the statement follows.

Intuitively, the theorem states that the parameter-feedback
algorithm asymptotically tracks a critical trajectory if and
only if the mapping Hc zeros the gradient on the limit set
of the exosystem. We can thus conclude the following.
Solution to Problem 1 with θk measurable: There exists a
parameter-feedback algorithm (9) that achieves exact asymp-
totic tracking if and only if there exists a mapping Hc(θ) that
zeros the gradient on the limit set Ω(Θ◦). When this holds,
the minimal knowledge needed to design such an algorithm
is the parameter θk at each iteration k and the gradient
function ∇xf(x, θ). Moreover, a procedure to design such
an algorithm is to first determine the limit set Ω (Θ◦) and
then find a mapping Hc(θ) that zeros the gradient on the
limit set, in which case such an algorithm is (9). □
Remark 1 (Knowledge of Ω(Θ◦)). Designing a parameter-
feedback algorithm as in (9) can be accomplished without
exact knowledge of the limit set Ω(Θ◦). Indeed, it follows
from the boundedness of the trajectories (cf. Assumption 2)
and the sufficiency part of the proof of Theorem 1 that if Hc

zeros the gradient on some subset of Rp containing Ω(Θ◦),
then the choice (9) ensures that yk → 0 as k →∞. □

We conclude this section by illustrating the design procedure
for parameter-feedback algorithms on a quadratic problem.
Example 1. Consider an instance of (1) with quadratic cost
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and time-variability that depends linearly on θk:

f(x, θk) =
1
2x

TRx+ xTQθk, (13)

with R = RT ∈ Rn and Q ∈ Rn×p. Notice that (13) admits
a critical point for arbitrary θk if and only if ImQ ⊆ ImR,
in which case x⋆k is unique. In this case, designing an
optimization algorithm amounts to finding xk such that we
regulate to zero the signal: yk = ∇xf(xk, θk) = Rxk+Qθk.
Applying Theorem 1 requires finding a linear transformation
Hc(θ) = Hcθ,Hc ∈ Rn×p, such that 0 = (RHc+Q)θ for all
θ in some neighborhood of the origin. Using ImQ ⊆ ImR,
we can choose Hc = −R†Q, where R† is the pseudo-inverse
of R; this choice for Hc(θ) zeros the gradient globally in Rp.
By substituting into (10), we have yk = RHcθk +Qθk = 0
for all k ∈ N≥0. Namely, the gradient is identically zero at all
times. Interestingly, this behavior originates for two reasons:
(i) θk is measurable at each k, and (ii) Hc(θ) obtained for
this particular problem zeros the gradient on the entire Rp

(not just some limit set of the trajectories of θ). When one of
these two properties fails (as in Section IV, shortly below),
this behavior can no longer be expected. □
Remark 2 (Existence of a mapping that zeros the gradi-
ent). The implicit function theorem [20] provides sufficient
conditions for the existence of a function Hc that zeros the
gradient. Under Assumptions 1 and 2, for instance, there
exists a function that zeros the gradient on a neighborhood
Θ◦ of the origin of Rp if, for some neighborhood X◦ of x◦,

(i) the loss function f is C1 on X◦ ×Θ◦,

(ii) x 7→ f(x, θ) is C2 on X◦ for each θ ∈ Θ◦, and
(iii) the Hessian ∇2

xxf(x, θ)|x=x⋆
◦,θ=0 is positive definite.

Beyond existence of such a mapping, the implicit function
theorem also provides the linearization of such a function
about the origin; see [20, Ch. 9]. □

IV. THE DYNAMIC GRADIENT-FEEDBACK PROBLEM

In the previous section, we analyzed algorithms based on
the assumption that the gradient evaluations yk are derived
from explicit knowledge of the function ∇xf(x, θ) and the
signal θk. In this section, we relax these assumptions and
require only that yk is available through oracle evaluations
of (5). For this reason, we will shift our attention back to the
general class of dynamic gradient-feedback algorithms (6).

A. Characterization of gradient-feedback algorithms

We begin with the following instrumental characterization.
Theorem 2 (Gradient-feedback algorithm characterization).
Suppose Assumptions 1–2 hold, assume that Fc(z, y) and
Gc(z) are such that the equilibrium z = z⋆◦ of

zk+1 = Fc(zk,∇xf(Gc(zk), 0)) (14)

is locally exponentially stable. The gradient-feedback opti-
mization algorithm (8) asymptotically tracks a critical trajec-
tory of (1) with respect to initializations in Θ◦ if and only if
there exists a C2 mapping z = σ(θ) with σ(0) = z⋆◦ , defined

on Ω(Θ◦), which satisfies:

σ(s(θω)) = Fc(σ(θω), 0), (15a)
0 = ∇xf(Gc(σ(θω)), θω), (15b)

for all limit points θω ∈ Ω(Θ◦). □

Proof. (Only if) The coupled dynamics (8) have the form:

zk+1 = (Ac +BcRM)zk +BcQθk + χ(zk, θk),

θk+1 = Sθk + ψ(θk), (16)

for some mappings χ(z, θ) and ψ(θ) that vanish at the
fixed point along with their first-order derivatives, where the
following matrices are Jacobians evaluated at the fixed point:

Ac =

[
∂Fc

∂z

]
(z,y)=(z⋆

◦ ,0)

, Bc =

[
∂Fc

∂y

]
(z,y)=(z⋆

◦ ,0)

,

R =

[
∂∇xf

∂x

]
(x,θ)=(x⋆

◦,0)

, M =

[
∂Gc

∂z

]
z=z⋆

◦

,

Q =

[
∂∇xf

∂θ

]
(x,θ)=(x⋆

◦,0)

, S =

[
∂s

∂θ

]
θ=0

. (17)

By assumption, the eigenvalues of the matrix Ac + BcRM
are located in the open unit disk. Then by [9, Thm. 6], (16)
has a center manifold at (z⋆◦ , 0), which is the graph of a
mapping z = σ(θ) with σ(θ) satisfying (see [9, Eq. (2.8.4)])

σ(s(θ)) = Fc(σ(θ),∇xf(Gc(σ(θ)), θ)). (18)

This proves that (15a) holds. The proof that (15b) holds fol-
lows by iterating the (Only if) part of the proof of Theorem 1.
(If) We now prove that (15) implies yk → 0. Suppose there
exists a C2 mapping z = σ(θ) such that (15) holds for all
θω ∈ Ω(Θ◦). It follows from (15) that the graph of σ (i.e.,
(σ(θ), θ)) is a center manifold for the coupled dynamics (8).
Moreover, by5 [9, Lem. 1], this manifold is locally attractive,
meaning that zk → σ(θk) as t → ∞. Then, the fulfillment
of (15b) guarantees that the right-hand side of (12) satisfies
yk → 0. The conclusion then follows by iterating the (If)
part of the proof of Theorem 1.

The two conditions in (15) fully characterize the class
of optimization algorithms that achieve exact asymptotic
tracking. In other words, an algorithm of the class (6) tracks
a critical trajectory if and only if, for some mapping σ, the
composite function Gc ◦σ zeros the gradient on the limit set
of the exosystem (see (15b)), and the controller Fc(z, y) is
algebraically related to the exosystem s(θ) as given by (15a).
Notice that, by combining (15b) with Theorem 1,

xk = Gc(σ(θk)) := Hc(θk) (19)

is a parameter-feedback algorithm for (1) (cf. (9)).
Remark 3 (The internal model principle). We interpret (15a)
as the (discrete-time) internal model principle of time-
varying optimization, as it expresses the requirement that

5Notice that attractivity of the center manifold is proven for ordinary
differential equations in [9, Lem. 1]; a proof of the discrete-time counterpart
follows by using an analogous reasoning.
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any optimization algorithm that achieves asymptotic tracking
must include an internal model of the exosystem. □
Remark 4 (Tracking accuracy vs internal model fidelity). In
general, the tracking accuracy of the optimization algorithm
will depend on the fidelity of the internal model as well as
the asymptotic behavior of the exosystem. This property is
discussed in detail in [7, §5] for quadratic problems. We
stress that this is not a limitation of our approach, but of
any algorithm seeking exact tracking of a critical trajectory.
In this sense, the internal model principle from Theorem 2
(see also Remark 3) provides a fundamental limitation that
should be carefully considered when designing optimization
algorithms for time-varying problems. □

It is important to note that, by Theorem 2, the exosystem
state θ and that of the optimization z must be related, in the
limit set of the exosystem, by the relationship:

zk = σ(θk). (20)

Intuitively, (20) is interpreted as the existence of a change
of coordinates between the state of the exosystem and that
of the optimization algorithm.
Remark 5 (Special cases). An important special case is
obtained when σ(θ) is the identity operator; in this case, the
internal model condition (15a) simplifies to s(θ) = Fc(θ, 0),
which states that the controller vector field Fc(z, y) must
coincide with that of the exosystem s(θ) on the limit set
of y and the exosystem. In this case, (20) gives zk = θk,
meaning that the controller state zk and that of the exosystem
θk coincide on the limit set. □

B. Detectability of the exosystem

While Theorem 2 provides a full characterization of all
gradient-feedback algorithms that achieve tracking, it re-
mains to address under what conditions on the optimization
problem such an algorithm exists. To state our results, for
simplicity, we require that the exosystem description (2) is
non-redundant, in the sense that it does not include states that
do not affect the optimization. To formalize this requirement,
the following technical notion is needed.
Definition 4 (Exponential detectability [21]). The exosys-
tem (2) is called exponentially detectable from the gradient
feedback signal (6b) if there exists a dynamical system

θ̂k+1 = g(θ̂k, yk), (21)

where g is a smooth mapping with g(0, 0) = 0 such that: (i)
if θ̂0 = θ0, then θ̂k = θk for all k ∈ N≥0, and (ii) there exist
an open neighborhood Θ1 of the origin of Rp and positive
constants M and 0 < a < 1 such that, if θ̂0− θ0 ∈ Θ1, then
∥θ̂k − θk∥ ≤ Mak∥θ̂0 − θ0∥ for all k ∈ N≥0. In this case,
(21) is called a local exponential observer [21]. □

In other words, detectability refers to the ability to infer the
internal state of the exosystem from measurements of the
gradient signal yk. We then make the following assumption.
Assumption 3 (Detectability of the exosystem). The ex-
osystem (2) is exponentially detectable from the gradient-
feedback signal (6b). □

Lack of detectability corresponds to situations where certain
modes of θk do not affect the gradient yk, and hence the
critical points. If this were the case, these modes could be
removed from θk without altering the optimization problem.
From a technical standpoint, it can be shown that exponential
detectability is necessary for exact asymptotic tracking [21,
Thm. 4.3]. For this reason, Assumption 3 is without loss of
generality, and is made here for simplicity6.

C. Existence of dynamic gradient-feedback algorithms

We are now able to characterize when there exists a dynamic
gradient-feedback that achieves exact asymptotic tracking.
Theorem 3 (Existence of gradient-feedback algorithms).
Suppose Assumptions 1–3 hold. There exists an algorithm as
in (6a) that achieves exact asymptotic tracking with respect
to some initialization set if and only if there exists a mapping
Hc : Θ→ Rn that zeros the gradient on the limit set of (2)
with respect to some initialization set. □

Proof. (Only if) By Theorem 2, there exists a mapping z =
σ(θ) such that (15b) holds. Then, the gradient condition (11)
holds with Hc(θ) = Gc(σ(θ)).
(If) We will prove this claim by constructing a gradient-
feedback algorithm that achieves yk → 0 as k → ∞. By
Assumption 3, there exists a neighborhood Θ1 of the origin
of Rp and a dynamical system

θ̂k+1 = g(θ̂k, yk), (22)

such that θ̂k → θk exponentially, for any θ̂0 − θ0 ∈ Θ1.
Consider then the optimization algorithm

Fc(z, y) = g(z, y), Gc(z) = Hc(z), (23)

where Hc(z) is as in (11). The claim then follows by
application of Theorem 2 with σ the identity operator.

Interestingly, this result shows that existence of a dynamic
gradient-feedback algorithm is equivalent to that of a static
parameter-feedback one. We thus conclude the following.
Solution to Problem 1 with yk measurable: There exists a
dynamic gradient-feedback algorithm (6) that achieves exact
asymptotic tracking if and only if there exists a mapping
Hc(θ) that zeros the gradient on the limit set Ω(Θ◦). When
this holds, the minimal knowledge needed to design such an
algorithm is the exosystem mapping s(θ) and the gradient
function ∇xf(x, θ). Moreover, a procedure to design such
an algorithm is given in Section IV-D. □

We illustrate the applicability of the results next.
Example 2. Consider the quadratic problem studied in
Example 1, and assume that the exosystem follows the linear
model θk+1 = Sθk for some S ∈ Rp×p. According to
Theorem 3, an optimization algorithm given by

zk+1 = Aczk +Bcyk, xk = Gczk, yk = Rxk +Qθ,

6Note that exponential detectability does not require the gradient to
depend explicitly on the entire exosystem state θk; see the example in §V.
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where Ac ∈ Rnc×nc , Bc ∈ Rnc×n, Gc ∈ Rn×nc , achieves
asymptotic tracking if and only if there exists a linear
transformation Σ ∈ Rnc×p such that

0 = (ΣS −AcΣ)θ, 0 = (RGcΣ+Q)θ, (24a)

for all θ in the limit set of the exosystem. □

D. Design of dynamic gradient-feedback algorithms

Theorem 3 exactly characterizes the existence of a dynamic
gradient-feedback algorithm. In this section, we show that
this process can be accomplished by having access only
to first-order information on the exosystem. We begin by
presenting an instrumental lemma; its statement hinges on
the notation:

Q =

[
∂∇xf

∂θ

]
(x,θ)=(x⋆

◦,0)

, S =

[
∂s

∂θ

]
θ=0

. (25)

Lemma 4 (First-order detectability of exosystem). There is
an exponential observer for the exosystem (2) if and only if
the pair (Q,S) is detectable. □

Proof. The claim follows directly from [21, Cor. 3.4].

Harnessing this tool, a technique to design dynamic gradient-
feedback algorithms is presented in Algorithm 1. Here, a
linear Luenberger observer is used to estimate the exosystem
state (see line 4), and a parameter feedback algorithm is then
applied to the estimated state to regulate the gradient to zero
– precisely, Gc(z) is designed following the approach of
Theorem 1 (see line 3).

Algorithm 1: Gradient-feedback algorithm design
Data: s(θ), ∇xf(x, θ), Hc(θ) satisfying (15),

Jacobian matrices Q and S in (25)
1 nc ← n;
2 L← any matrix such that S − LQ is Schur stable;
3 Gc(z)← Hc(z);
4 Fc(z, y)← s(z) + L(y −∇xf(Hc(z), z));

Result: Fc(z, y), Gc(z), and nc that solve Problem 1

We illustrate the applicability of this method on a quadratic
problem in the following example.
Example 3. Consider the quadratic problem in Example 2.
Direct application of Algorithm 1 gives: Ac = S, Bc = L,
and Gc = −R†Q, where L is such that S − LQ is Schur
stable; notice that this choice satisfies (24) with Σ = I. □

V. SIMULATION RESULTS

In this section, we illustrate our approach through numerical
simulations. We consider the following instance of (1):

min
x∈R

f(x, θk) :=
1

2

(
x− θ(1)k

)2
+ κ log(1 + eµx), (26)

where f : R × Θ → R,Θ = R2, and we utilized the
vector notation θk = (θ

(1)
k , θ

(2)
k ) (the choice to use Θ = R2

instead of Θ = R1 will be discussed shortly below). Eq. (26)
models a logistic regression problem with a time-varying
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Fig. 1: Simulation results illustrating the behavior of an algorithm syn-
thesized using Algorithm 1 for the problem (26). The proposed algorithm
successfully computes the time-varying optimizer of (26) with exponential
rate of convergence. Absence of a line means that the value of the timeseries
is numerically zero. See Section V for a discussion.

regularization term. Intuitively, an optimizer of (26) is a
point that tracks the time-varying signal θ(1)k , while seeking
to avoid large values of x, which are penalized by the logistic
term. For our experiments, we choose µ = 0.5 and κ = 1.
The function f(x, θ) satisfies Assumption 1; in particular,
the cost is strongly convex in x (since ∇xxf(x, θ) = 1 +

κµ2 exp(µx)
[1+exp(µx)]2 ≥ 1), and thus the optimizer is unique for

each θ. We let θ(1)k = cos(ωk), which can be generated
by a two-dimensional linear exosystem θk+1 = Sθk (hence
the choice Θ = R2). For our simulations, we generate
matrix S by discretizing a continuous-time linear system
with state matrix Sct = [0, 1;−ω2, 0] with ω = 0.2, yielding
S = [0.9801, 0.9933;−0.0397, 0.9801]. Notice that, in this
case, Assumption 3 is satisfied with Θ1 = Θ.

We applied Algorithm 1 with Q = [−1, 0]; we chose L
such that the spectral radius of S − LQ is 0.1. Moreover,
a mapping zeroing the gradient was computed numerically,
yielding Hc(θ) = (0.9819 · θ(1) − 0.2469, 0). From the
simulations, we can conclude the following: from Fig. 1
(bottom), we see that zk → θk exponentially, and thus zk
is a local exponential observer for θk; from Fig. 1 (top), we
see that ∥xk − x⋆k∥ → 0, and thus the algorithm converges
to the time-varying optimizer of (26).
In Fig. 2, we plot the error ∥xk − x⋆k∥ of the algorithm
proposed here and compare it with the prediction-correction
algorithm [3]. Here, we used ω = 0.02. The prediction-
correction algorithm was implemented following [3, Alg. 1]
with stepsize γ = 0.2. Numerically, we are led to con-
clude that, for this problem, our approach outperforms the
prediction-correction algorithm both in convergence rate and
in asymptotic precision. The difference in performance can
be further appreciated by varying the spectral radius of S −
LQ for the exogenous signal observer in the set {0.1, 0.01}
and by varying the horizon of prediction τ ∈ {1, 5} in [3].
As expected, reducing the spectral radius of the observer
and increasing the prediction horizon improve both the rate
of convergence and the asymptotic precision of the two
algorithms. In both cases, however, the prediction-correction
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Fig. 2: Comparison between the approach proposed here (labeled IM for
Internal Model in the plot) and the Prediction Correction (labeled PC
in the plot) algorithm [3, Alg. 1] for the problem (26). In the plot, ρ
denotes the spectral radius of the observer for θ, and τ the horizon of
the prediction step [3]. Even by employing large prediction horizons, the
approach proposed here outperformed [3] for this problem.

method is outperformed by the approach in this work.

VI. CONCLUSIONS

We prove a fundamental result for time-varying optimization,
which states that any algorithm that asymptotically tracks a
critical trajectory must embed an internal model of the time
variation. We exploited this result to provide a design proce-
dure to construct algorithms for time-varying optimization.
The proposed approach relies on an exponential observer to
estimate the temporal variability of the problem, combined
with an algorithm design that zeros the gradient. Possible
extensions include the use of other observers to improve
the transient properties of the algorithm, and application of
the methodology to structured time-varying problems arising
from particular applications.

REFERENCES

[1] A. Simonetto, E. Dall’Anese, S. Paternain, G. Leus, and G. B. Gian-
nakis, “Time-varying convex optimization: Time-structured algorithms
and applications,” Proceedings of the IEEE, vol. 108, no. 11, pp. 2032–
2048, 2020.

[2] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms
for online convex optimization,” Machine Learning, vol. 69, no. 2, pp.
169–192, 2007.

[3] A. Simonetto, A. Mokhtari, A. Koppel, G. Leus, and A. Ribeiro, “A
class of prediction-correction methods for time-varying convex opti-
mization,” IEEE Transactions on Signal Processing, vol. 64, no. 17,
pp. 4576–4591, 2016.

[4] A. Simonetto, E. Dall’Anese, J. Monteil, and A. Bernstein, “Person-
alized optimization with user’s feedback,” Automatica, vol. 131, p.
109767, 2021.

[5] G. Bianchin, J. Cortés, J. I. Poveda, and E. Dall’Anese, “Time-varying
optimization of LTI systems via projected primal-dual gradient flows,”
IEEE Transactions on Control of Network Systems, vol. 9, no. 1, pp.
474–486, Mar. 2022.

[6] N. Bastianello, R. Carli, and S. Zampieri, “Internal model-based online
optimization,” IEEE Transactions on Automatic Control, vol. 69, no. 1,
pp. 689–696, 2024.

[7] G. Bianchin and B. Van Scoy, “The internal model principle of time-
varying optimization,” arXiv preprint, Aug. 2024, arXiv:2407.08037.

[8] B. Castillo, S. Di Gennaro, S. Monaco, and D. Normand-Cyrot,
“Nonlinear regulation for a class of discrete-time systems,” Systems
& Control Letters, vol. 20, no. 1, pp. 57–65, 1993.

[9] J. Carr, Applications of centre manifold theory. Springer-Verlag, 1981,
vol. 35.

[10] S. Wiggins, Ordinary Differential Equations: A Dynamical Point of
View. World Scientific, 2023.

[11] G. Osipenko, Center Manifolds. New York, NY: Springer New York,
2011, pp. 48–62.

[12] B. A. Francis and W. M. Wonham, “The internal model principle of
control theory,” Automatica, vol. 12, no. 5, pp. 457–465, 1976.

[13] E. Hazan, “Introduction to online convex optimization,” Foundations
and Trends in Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.

[14] E. Davison, “The robust control of a servomechanism problem for
linear time-invariant multivariable systems,” IEEE Transactions on
Automatic Control, vol. 21, no. 1, pp. 25–34, 1976.

[15] R. K. Sundaram, A first course in optimization theory. Cambridge
university press, 1996.

[16] M. Fazlyab, S. Paternain, V. M. Preciado, and A. Ribeiro, “Prediction-
correction interior-point method for time-varying convex optimiza-
tion,” IEEE Transactions on Automatic Control, vol. 63, no. 7, pp.
1973–1986, 2017.

[17] R. Raveendran, A. D. Mahindrakar, and U. Vaidya, “Fixed-time dy-
namical system approach for solving time-varying convex optimization
problems,” in American Control Conference, 2022, pp. 198–203.

[18] N. Bastianello, R. Carli, and S. Zampieri, “Internal model-based online
optimization,” IEEE Transactions on Automatic Control, vol. 69, no. 1,
pp. 689–696, 2024.

[19] G. D. Birkhoff, Dynamical systems. American Mathematical Society:
New York, 1927.

[20] W. Rudin, Principles of Mathematical Analysis, 3rd ed., ser. Interna-
tional Series in Pure and Applied Mathematics. McGraw-Hill, 1976.

[21] W. Lin and C. I. Byrnes, “Design of discrete-time nonlinear control
systems via smooth feedback,” IEEE Transactions on Automatic
Control, vol. 39, no. 11, pp. 2340–2346, 1994.

7


	Introduction
	Problem formulation
	The parameter-feedback problem
	The dynamic gradient-feedback problem
	Characterization of gradient-feedback algorithms
	Detectability of the exosystem
	Existence of dynamic gradient-feedback algorithms
	Design of dynamic gradient-feedback algorithms

	Simulation results
	Conclusions
	References

