
T
echnological advances in ad hoc networking and the 
availability of low-cost reliable computing, data stor-
age, and sensing devices have made scenarios pos-
sible where the coordination of many subsystems 
extends the range of human capabilities. Smart grid 

operations, smart transportation, smart health care, and sens-
ing networks for environmental monitoring and exploration 
in hazardous situations are just a few examples of such net-
work operations. In these applications, the ability of a network 

system to (in a decentralized fashion) fuse information, com-
pute common estimates of unknown quantities, and agree on 
a common view of the world is critical. These problems can be 
formulated as agreement problems on linear combinations of 
dynamically changing reference signals or local parameters. 
This dynamic agreement problem corresponds to dynamic 
average consensus, which, as discussed in “Summary,” is the 
problem of interest of this article. The dynamic average con-
sensus problem is for a group of agents to cooperate to track 
the average of locally available time-varying reference signals, 
where each agent is capable only of local computations and 
communicating with local neighbors (see Figure 1).
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CENTRALIZED SOLUTIONS HAVE DRAWBACKS
The difficulty of the dynamic average consensus problem 
is that the information is distributed across the network. A 
straightforward solution, termed centralized, to the dynamic 
average consensus problem is to gather all of the informa-
tion in a single place, perform the computation (in other 
words, calculate the average), and then send the solution 
back through the network to each agent. Although simple, 
the centralized approach has numerous drawbacks: 1) the 
algorithm is not robust to failures of the centralized agent 
(if the centralized agent fails, then the entire computation 
fails), 2) the method is not scalable because the amount of 
communication and memory required on each agent scales 
with the size of the network, 3) each agent must have a 
unique identifier (so that the centralized agent counts each 
value only once), 4) the calculated average is delayed by an 
amount that grows with the size of the network, and 5) the 
reference signals from each agent are exposed over the 
entire network (which is unacceptable in applications 
involving sensitive data). The centralized solution is fragile 
due to the existence of a single failure point in the network. 
This can be overcome by having every agent act as the cen-
tralized agent. In this approach, referred to as flooding, 
agents transmit the values of the reference signals across 
the entire network until each agent knows each reference 
signal. This may be summarized as first do all communica-
tions and then do all computations. While flooding fixes 
the issue of robustness to agent failures, it is still subject 
to many of the drawbacks of the centralized solution. 
Although this approach works reasonably well for small-
size networks, its communication and storage costs scale 
poorly in terms of the network size and may incur, depend-
ing on how it is implemented, costs of order ( )O N2  per 
agent (for instance, this is the case if each agent maintains 
which neighbors it has or has not sent each piece of infor-
mation to). This motivates the interest in developing dis-
tributed solutions for the dynamic average consensus 
problem that involve only local interactions and decisions 
among the agents.

CHALLENGES WITH DYNAMIC PROBLEMS
The static version of the dynamic average consensus prob-
lem (commonly referred to as static average consensus) is 
the familiar problem in which agents seek to agree on a spe-
cific combination of fixed quantities. The static problem has 
been extensively studied in the literature [1]–[4], and several 
simple and efficient distributed algorithms exist with exact 
convergence guarantees. Given its mature literature, a natu-
ral approach to address the distributed solution of the 
dynamic average consensus problem in some literature has 
been to zero-order sample the reference signals and use a 
static average consensus algorithm between sampling times 
(for example, see [5] and [6]). If this was a practical approach, 
it would mean that there is no need to worry about design-
ing specific algorithms to solve the dynamic average consensus 

problem because we could rely on the algorithmic solutions 
available for static average consensus.

However, this approach does not work because it would 
essentially need a static average consensus algorithm that 
is able to converge infinitely fast. In practice, some time is 
required for information to flow across the network, and 
hence the result of the repeated application of any static 
average consensus algorithm operates with some error 
whose size depends on its speed of convergence and how 
fast inputs change. To illustrate this point better,  we have 
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Summary

T his article addresses the dynamic average consen-

sus problem and the distributed coordination algo-

rithms available to solve it. Such a problem arises in sce-

narios with multiple agents, where each one has access to a 

time-varying signal of interest (for example, a robot sensor 

sampling the position of a mobile target of interest or a dis-

tributed energy resource taking a sequence of frequency 

measurements in a microgrid). The dynamic average con-

sensus problem consists of having the multiagent network 

collectively compute the average of the set of time-varying 

signals. Reasons for pursuing this objective are numerous 

and include data fusion, refinement of uncertainty guar-

antees, and computation of higher-accuracy estimates, 

all enabling local decision making with network-wide ag-

gregated information. Solving this problem is challenging 

because the local interactions among agents involve only 

partial information, and the quantity that the network seeks 

to compute is changing as the agents run their routines. 

The article provides a tutorial introduction to distributed 

methods that solve the dynamic average consensus prob-

lems, paying special attention to the role of network con-

nectivity and incorporating information about the nature 

of the time-varying signals, the performance tradeoffs re-

garding convergence rate, steady-state error and memory 

and communication requirements, and algorithm robust-

ness against initialization errors.
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FIGURE 1 A group of communication agents, each endowed with a 
time-varying reference signal.
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the following numerical example. Consider a process described 
by a fixed value plus a sine wave whose frequency and 
phase are changing randomly over time. A group of six 
agents with the communication topology of a directed ring 
monitors this process by taking synchronous samples, each 
according to

u ( ) ( ( ( ) ( ) ( ))) , ,sinm a m t m m b m2 Zi i i
0!~ z= + + + $

where ai  and bi  are fixed unknown error sources in the 
measurement of agent , , .i 1 6f! " ,  To reduce the effect 
of measurement errors, after each sampling, every agent 
wants the average of the measurements across the net-
work before the next sampling time. For the numerical 
simu lations, the values ~ ( , . ), ~ ( , ( / ) ),N N0 0 25 0 2 2~ z r  
with ( , )N pn  indicating a Gaussian distribution with mean  
n  and variance p, are used. The sampling rate is set to 0.5 Hz 
( t 2D =  s). For the simulation under study, . , ,a a1 1 11 2= =  

. , . , . , , . , ,a a a a b b0 9 1 05 0 96 1 0 55 13 4 5 6 1 2= = = = = - =

. , . , . ,b b b0 6 0 9 0 63 4 5= =- =-  and .b 0 46 = . To obtain the 
average, the folllowing two approaches are used: 1) at every 

sampling time m, each agent initializes the standard static 
discrete-time Laplacian average consensus algorithm

( ) ( ) ( ( ) ( )), , , ,x k x k a x k x k i N1 1i i
ij

j

N
i j

1
f!d+ = - -

=

" ,/

by the current sampled reference values u( ) ( )x m0i i=  and 
implements it with an admissible time step d  until just before 
the next sampling time ;m 1+  2) at time ,m 0=  agents start 
executing a dynamic average consensus algorithm [more 
specifically, strategy (S15), which is described in detail later]. 
Between sampling times m and ,m 1+  the reference input 
u ( )ki  implemented in the algorithm is fixed at u ( ),mi  where k 
is the communication time index. Figure 2 compares the 
tracking performance of these two approaches. It is observed 
that the dynamic average consensus algorithm, by keeping a 
memory of past actions, produces a better tracking response 
than the static algorithm initialized at each sampling time 
with the current values. This comparison serves as motiva-
tion for the need to specifically design distributed algorithms 
that take into account the particular features of the dynamic 
average consensus problem.
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FIGURE 2 A comparison of performance between a static average consensus algorithm reinitialized at each sampling time versus a 
dynamic average consensus algorithm. The solid lines: red curves (respectively, blue curves) represent the time history of the agree-
ment state of each agent generated by the Laplacian static average consensus approach [respectively, the dynamic average consensus 
of (S15)]; :#  sampling points at ;m tD  :&  the average at ;m tD  :+  the average of reference signals at .kd  The dynamic consensus algo-
rithm very closely tracks the average over time as the static consensus does not have enough time between sampling times to converge. 
This trend is preserved even if the frequency of the communication between the agents increases. In these simulations, 1a b= =  in 
(S15). (a) Static algorithm; three communications in [ , ] .t m m 1! +  (b) Static algorithm; 20 communications in [ , ] .t m m 1! +  (c) Dynamic 
algorithm; three communications in [ , ] .t m m 1! +  (d) Dynamic algorithm; 20 communications in .[ , ]t m m 1! +
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OBJECTIVES AND ARTICLE ROAD MAP
The objective of this article is to provide an overview of 
the dynamic average consensus problem that serves as a 
comprehensive introduction to the problem definition, its 
applications, and the distributed methods available to 
solve them. This article was motivated by the fact that, in 
the literature, many works exist that have dealt with the 
problem. However, there is not a tutorial reference that 
presents, in a unified way, the developments that have 
occurred over the years. “Summary” encapsulates the 
contents of the article, emphasizing the value and utility 
of its algorithms and results. The primary intention, rather 
than providing a full account of all of the available lit-
erature, is to introduce, in a tutorial fashion, the main 
ideas behind dynamic average consensus algorithms, 
the performance tradeoffs considered in their design, 
and the requirements needed for their analysis and con-
vergence guarantees.

The article first introduces the problem definition and 
a set of desired properties expected from a dynamic aver-
age consensus algorithm. Next, various applications of 
dynamic average consensus in network systems are 
presented, including distributed formation, distributed 
state estimation, and distributed optimization problems. 
It is not surprising that the initial synthesis of dynamic 
average consensus algorithms emerged from a careful 
look at static average consensus algorithms. The section 
“A Look at Static Average Consensus Leading up to the 
Design of a Dynamic Average Consensus Algorithm” pro-
vides a brief review of standard algorithms for the static 
average consensus and then builds on this discussion to 
describe the first dynamic average consensus algorithm. 
Various features of these initial algorithms are elaborated 
on, and their shortcomings are identified. This sets the 
stage in the section “Continuous-Time Dynamic Average 
Consensus Algorithms” to introduce various algorithms 
that address these shortcomings. The design of continu-
ous-time algorithms for network systems is often moti-
vated by the conceptual ease for design and analysis, 
rooted in the relatively mature theoretical basis for the 
control of continuous-time systems. However, the imple-
mentation of these continuous-time algorithms on cyber-
physical systems may not be feasible due to practical 
constraints, such as limited interagent communication 
bandwidth. This motivates the section “Discrete-Time 
Dynamic Average Consensus Algorithms,” which spe-
cifically discusses methods to accelerate the conver-
gence rate and enhance the robustness of the proposed 
algorithms. Because the information of each agent takes 
some time to propagate through the network, it is expected 
that tracking an arbitrarily fast average signal with zero 
error is not feasible unless agents have some a priori infor-
mation about the dynamics generating the signals. This 
topic is addressed in the “Perfect Tracking Using A Priori 
Knowledge of the Input Signals” section, which takes 

advantage of knowledge of the nature of the reference sig-
nals. Many other topics exist that are related to the dynamic 
average consensus problem not explored in this article. 
Several intriguing pointers for such topics are in “Further 
Reading.” Throughout the article, unless otherwise noted, 
network systems are considered whose communication 
topology is described by strongly connected and weight-
balanced directed graphs. In only a few specific cases, the 
discussion focuses on the setup of undirected graphs, and 
these are explicitly mentioned.

REQUIRED MATHEMATICAL BACKGROUND AND 
AVAILABLE RESOURCES FOR IMPLEMENTATION
Graph theory plays an essential role in the design and 
performance analysis of dynamic consensus algorithms. 
“Basic Notions from Graph Theory” provides a brief over-
view of the relevant graph theoretic concepts, definitions, 
and notations in this article. Dynamic average consensus 
algorithms are linear time-invariant (LTI) systems in which 
the reference signals of the agents enter the system as an 
external input, in contrast to the (Laplacian) static average 
consensus algorithm, where the reference signals enter as 
initial conditions. Thus, in addition to the internal stability 
analysis (which is sufficient for the static average consen-
sus algorithm), the input-to-state stability (ISS) of the al -
gorithms must be assessed. A brief overview of the ISS 
analysis of LTI systems is provided in “Input-to-State Sta-
bility of Linear Time-Invariant Systems.” All of the algo-
rithms described can be implemented using such modern 
computing languages as C and Matlab. Matlab provides 
functions for the simple construction, modification, and 
visualization of graphs.

DYNAMIC AVERAGE CONSENSUS:  
PROBLEM FORMULATION
Consider a group of N agents where each agent is capable of 
1) sending and receiving information with other agents, 2) 
storing information, and 3) performing local computations. 
For example, the agents may be cooperating robots or sen-
sors in a wireless sensor network. The communication 
topology among the agents is described by a fixed digraph 
(see “Basic Notions from Graph Theory”). Suppose that 
each agent has a local scalar reference signal, denoted 
u ( ) : [ , )t 0 Ri "3  in continuous time and u ( ) :k N Ri "  in 
discrete time. This signal may be the output of a sensor 
located on the agent, or it could be the output of another 
algorithm that the agent is running. The dynamic average 
consensus problem then consists of designing an algorithm 
that allows individual agents to track the time-varying 
average of the reference signals, given by

u u
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For discrete-time signals and algorithms, for any variable p 
sampled at time ,tk  the shorthand notation p(k) or pk  is used 
to refer to ( ).p tk  For reasons specified later, the design of dis-
tributed algorithms is of specific interest, meaning that to 
obtain the average, the policy that each agent implements 
depends only on its variables (represented by ,Ji  which 
includes its own reference signal) and those of its out-neigh-
bors (represented by { } ).I j j N i

out!

In continuous time, a driving command ( ( ),c J ti i  { ( )} )I tj
j N i

out!  
R!  is sought for each agent { , , }i N1 f!  such that (with an 

appropriate initialization) a local state ( )x ti  (which is referred 
to as the agreement state of agent i) converges to the average 
u ( )tavg  asymptotically. Formally, for

 continuous time: ( ( ), { ( )} ),    { , , },x c J t I t i N1i i i j
j N i

out f!= !o

 (1)

Further Reading

Numerous works have studied the robustness of dynamic 

average consensus algorithms against a variety of distur-

bances and sources of error present in practical scenarios. 

These include fixed communication delays [S1], additive input 

disturbances [S2], time-varying communication graphs [S3], 

and driving command saturation [19]. Variations of the dy-

namic average consensus problems explore scenarios where 

the algorithm design depends on the specific agent dynamics 

[S4], [S5], [71] or incorporates different agent roles, such as in 

leader–follower networks of mobile agents [15], [S6], [S7].

When dealing with directed agent interactions, a common 

assumption in solving the average consensus problem is that 

the communication graph is weight balanced, which is equiv-

alent to the graph consensus matrix :W I L= -  being doubly 

stochastic. In [S8], it is shown that calculating an average over 

a network requires either explicit or implicit use of either 1) the 

out-degree of each agent, 2) global node identifiers, 3) random-

ization, or 4) asynchronous updates with specific properties. In 

particular, the balanced assumption is necessary for scalable, 

deterministic, synchronous algorithms. In general, agents may 

not have access to their out-degree (for example, agents that 

use local broadcast communication). If each agent knows its 

out-degree, however, then distributed algorithms may be used 

to generate weight-balanced and doubly stochastic digraphs 

[S9], [S10]. 

Another approach is to explicitly use the out-degree in the 

algorithm by having agents share their out-weights and use 

them to adjust for the imbalances in the graph. This approach 

is referred to as the push-sum protocol and has been applied to 

the static average consensus problem (see [S11]–[S14]). Both 

of these approaches of dealing with unbalanced graphs require 

each agent to know its out-degree. Furthermore, when com-

munication links are time varying, these approaches work only 

if the time varying graph remains weight balanced (see [19] and 

[S15]). If communication failures caused by limited communi-

cation ranges or external events, such as obstacle blocking, 

destroy the weight-balanced character of the graph, then it is 

still possible to solve the dynamic average consensus problem 

if the expected graph is balanced [S3]. Another set of works has 

explored the question of how to optimize the graph topology 

to endow consensus algorithms with better properties. These 

include designing the network topology in the presence of ran-

dom link failures [S16] and optimizing the edge weights for fast 

consensus [S17], [7].
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with proper initialization if necessary, u( ) ( )x t ti avg"  as 
.t " 3  The driving command ci  can be a memoryless 

function or an output of a local internal dynamics. Note 
that, by using the out-neighbors, the convention is made 
that information flows in the opposite direction speci-
fied by a directed edge (there is no loss of generality in 
doing it so, and the alternative convention of using in-
neighbors instead would also be equally valid).

Dynamic average consensus can also be accomplished 
using discrete-time dynamics, especially when the time-
varying inputs are sampled at discrete times. In such a 
case, a driving command is sought for each agent { , , }i N1 f!  
so that

discrete time: ( ) ( ( ), { ( )} ),  { , , },x t c J t I t i N1 i
k

i i
k

j
k j1 N i

out f!= !+

 (2)

under proper init ial izat ion if necessary, accompli-
shes u( ) ( )x t ki

k
avg"  as .tk " 3  Algorithm 1 illustrates 

how a discrete-time dynamic average consensus algo-
rithm can be executed over a network of N communicat-
ing agents.

Also, consider a third class of dynamic average consen-
sus algorithms in which the dynamics at the agent level 
are in continuous time, but the communication among the 
agents, because of the restrictions of the wireless commu-
nication devices, takes place in discrete time:

continuous time–discrete time:
 ( ) ( ( ), { ( )} ), { , , },x t c J t I t i N1 i i i j

k
j

j Nj i
out f!= !o  (3)

such that u( ) ( )x t ti avg"  as .t " 3  Here, t Rk
j
j !  is the k thj  

transmission time of agent j, which is not necessarily 

Basic Notions From Graph Theory

The communication network of a multiagent cooperative sys-

tem can be modeled by a directed graph, or digraph. Here, 

we briefly review some basic concepts from graph theory follow-

ing [S18]. A digraph is a pair ( , ),G V E=  where , ,N1V f= " , 
is the node set and VE V#3  is the edge set. An edge from 

,i jto  denoted by ( , ),i j  means that agent j  can send informa-

tion to agent i . For an edge ( , ) ,i j iE!  is called an in-neighbor 

of ,j  and j  is called an out-neighbor of .i  We denote the set of 

out-neighbors of each agent .i by N i
out  A graph is undirected if 

( , )i j E!  any time ( , )j i E!  (see Figure S1). 

A weighted digraph is a triplet ( , , ),AG V E=  where ( , )V E  

is a digraph and A RN N! #  is a weighted adjacency matrix 

with the property that ( , ) ,a i j a0 0if andEij ij2 ! =  otherwise. 

A weighted digraph is undirected if a aij ji=  for all , .i j V!  

The weighted out-degree and weighted in-degree of a node 

i  are, respectively, ( )i ad j
N

ji1
out R= =  and ( ) .i ad j

N
ji1

in R= =  Let 

( )max id d
{ , , }

max
i N1

out out=
f!

 denote the maximum weighted out-de-

gree. A digraph is weight balanced if, at each node ,i V!  

the weighted out-degree and weighted in-degree coincide 

(although they might be different across different nodes). 

The out-degree matrix Dout  is the diagonal matrix with en-

tries ( ),idD ii
out out=  for all .i V!  The (out-) Laplacian matrix 

is .L D Aout= -  Note that .01L N =  A weighted digraph G  is 

weight balanced if and only if .01 LN =<  Based on the structure 

of ,L  at least one of the eigenvalues of L  is zero and the rest 

of them have nonnegative real parts. Denote the eigenvalues 

of , , , ,i N1byL i f!m " ,  where 01m =  and ( ) ( ),i j0 0#m m  for 

.i j1  For strongly connected digraphs, ( ) .N 1rank L = -  For 

strongly connected and weight-balanced digraphs, denote 

the eigenvalues of ( ) ( ) /2Sym L L L= + <  by , , ,N1 fm mt t  where 

,0 and i j1 #m m m=t t t  for .i j1  For strongly connected and 

weight-balanced digraphs,

 ( ) ,I R0 Sym L R IN21 # #m m<t t  (S1)

where R R ( )N N 1! # -  satisfies / /N N1 11 1    R RN N =
<^ ^h h6 6@ @

/ / .N N1 11 1    R R IN N N=
<^ ^h h6 6@ @  Note that for connected 

graphs, ( ,)Sym L L=  and consequently ,i im m= t  for all .i V!

Intuitively, the Laplacian matrix can be viewed as a diffu-

sion operator over the graph. To illustrate this, suppose each 

agent i V!  has a scalar variable .x Ri !  Stacking the vari-

ables into a vector ,x  multiplication by the Laplacian matrix 

gives the weighted sum

 [ ] ( ),a x xLx i ij
j

i j

V

= -
!

/  (S2)

where aij  is the weight of the link between agents .i jand
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FIGURE S1 Examples of directed and undirected graphs. (a) 
Strongly connected, weight-balanced digraph. (b) Connected 
graph  with unit edge weights. 
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synchronous with the transmission time of other agents in 
the network.

The consideration of simple dynamics of the form in (1)–
(3) is motivated by the fact that the state of the agents does 
not necessarily correspond to some physical quantity but, 
instead, to some logical variable on which agents perform 
computation and processing. Agreement on the average is 

also of relevance in scenarios where the agreement state is a 
physical state with more complex dynamics, for example, 
the position of a mobile agent in a robotic team. In such 
cases, this discussion can be leveraged by, for instance, 
having agents compute reference signals that are to be 
tracked by the states with more complex dynamics. See 
“Further Reading” for a list of relevant literature on dynamic 
average consensus problems for higher-order dynamics. 
Given the drawbacks of centralized solutions, several desir-
able properties when designing algorithmic solutions to the 
dynamic average consensus problem are identified:

 » scalability, so that the amount of computations and 
resources required on each agent does not grow with 
the network size

 » robustness to the disturbances present in practical sce-
narios, such as communication delays and packet 
drops, agents entering/leaving the network, and 
noisy measurements

Input-to-State Stability of Linear Time-Invariant Systems

For a linear time-invariant (LTI) system

 , ,  ,x Ax Bu x uR R
. n m! != +  (S3)

the solution for t R 0! $  can be written as

 ( ) ( ) ( ) .t 0e e dx x Bu( )t tt

0

A A x x= + x-#  (S4)

For a Hurwitz matrix ,A  by using the bound

 , ,te e Rt t
0

A # !l $
m-  (S5)

for some , ,R 0!l m 2  an upper bound on the norm of the trajec-

tories of (S4) is established as

( ) ( ) ( )t 0e e dx x B u( )t t t

0
# l l x x+m m x- - -#

 ( ) ( ) , .sup t0e x
B

u Rt

t0
06# !l

m
l

x+
# #

$
m

x

-  (S6)

The bound shows that the zero-input response decays to zero 

exponentially fast, whereas the zero-state response is bound-

ed for every bounded input, indicating an input-to-state stabil-

ity behavior. Note that the ultimate bound on the system state 

is proportional to the bound on the input.

Next, how to compute the parameters , R 0!l m 2  is shown 

in (S5). Recall that [S19, Fact 11.15.5] for any matrix .A Rn n! #  

Therefore,

 . ,te e R( ( ))t t
0

SymA Amax 6# ! $
m  (S7)

where ( ) / ( ).1 2Sym A A A= + <^ h  Therefore, for a Hurwitz matrix 

( )whose SymA A  is also Hurwitz, the exponential bound pa-

rameters can be set to

 ( ( )), .1Sym Amaxm m l=- =  (S8)

A tighter exponential bound of

 , ( ) / ( ) ,P Pmax minm m l v v= =* **  (S9)

can also be obtained for any Hurwitz system matrix A, ac-

cording to [S20, Prop. 5.5.33], from the convex linear matrix 

inequality optimization problem

 ( , ) tubject oargmin sPm m=* *  (S10a)

 , , .2 0 0PA A P P P 2 2# m m+ -<  (S10b)

Similarly, the state of the discrete-time, LTI system

 , ,  x Ax Bu x uR Rk k k k
n

k
m

1 ! != ++  (S11)

with initial condition x Rn
0 !  satisfies the bound

 ( )
( )

,sup1
1

x P
P

x B u
min

max
k

k
k

j k
j0

0
#

v
v

t
t
t

+
-
-

1#
e o  (S12)

where andP R Rn n! !t#  satisfy

 , , .0 0 0A PA P P2 2# $t t-<  (S13)
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 » correctness, meaning the algorithm converges to the 
exact average or, alternatively, a formal guarantee 
can be given about the distance between the esti-
mate and the exact average.

Regarding the last property, to achieve agreement, network 
connectivity must be such that information about the local ref-
erence input of each agent reaches other agents frequently 
enough. As the information of each agent takes some time to 
propagate through the network, tracking an arbitrarily fast 
average signal with zero error is not feasible unless agents 
have some a priori information about the dynamics generating 
the signals. A recurring theme throughout the article is how 
the convergence guarantees of dynamic average consensus 
algorithms depend on the network connectivity and rate of 
change of the reference signal of each agent.

APPLICATIONS OF DYNAMIC AVERAGE  
CONSENSUS IN NETWORK SYSTEMS
The ability to compute the average of a set of time-varying 
reference signals is useful in numerous applications, which 
explains why distributed algorithmic solutions have found 
their way into many seemingly different problems involv-
ing the interconnection of dynamical systems. This section 
provides a selected overview of problems to motivate fur-
ther research on dynamic average consensus algorithms 
and illustrate their range of applicability. Other applications 
of dynamic average consensus can be found in [7]–[13].

Distributed Formation Control
Autonomous networked mobile agents are playing an increas-
ingly important role in coverage, surveillance, and patrolling 

applications in both commercial and military domains. The 
tasks accomplished by mobile agents often require dynamic 
motion coordination and formation among team members. 
Consensus algorithms have been commonly used in the 
design of formation control strategies [14]–[16]. These algo-
rithms have been used, for instance, to arrive at agreement 
on the geometric center of formation so that the formation 
can be achieved by spreading the agents in the desired 
geometry about this center (see [1]). However, most of the 
existing results are for static formations. Dynamic aver-
age consensus algorithms can effectively be used in 
dynamic formation control, where quantities of  interest 
such as the geometric center of the formation change with 
time. Figure 3 depicts an example scenario in which a group 
of mobile agents tracks a team of mobile targets. Each agent 
monitors a mobile target with location .xT

i  The objective 
is for the agents to follow the team of mobile targets by 
spreading out in a prespecified formation, which consists 
of each agent being positioned at a relative vector bi  with 
respect to the time-varying geometric center of the target 
team. A two-layer approach can be used to accomplish 
the formation and tracking objectives in this scenario: a 
dynamic consensus algorithm in the cyber layer that com-
putes the geometric center in a distributed manner and a 
physical layer that tracks this average plus .bi  Note that 
dynamic average consensus algorithms can also be 
employed to compute the time-varying variance of the 
positions of the mobile targets with respect to the geomet-
ric center, and this can help the mobile agents adjust the 
scale of the formation to avoid  collisions with the target 
team. Examples of the use of dynamic consensus algorithms 

Cyber Layer

Physical Layer
Cyber Layer Computes

1
N ∑

N

i = 1

xT (t )i

Mobile Agent i Monitors Target i to Take Measurement xT (t )i

1
N ∑

N

i = 1

xT (t ) + bii
Objective: xi →

xi : Location of Agent i
1
N ∑

N

i = 1

xT (t )i
bi : Relative Location of Agent i w.r.t to

FIGURE 3 A two-layer consensus-based formation for tracking a team of mobile targets. The larger triangle robots are the mobile agents, 
and the smaller round robots are the mobile moving targets. The physical layer shows the situational distribution of the mobile agents 
and the moving targets. The cyber layer shows which mobile agent has a computational capability and the interagent communi-
cation topology.
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in this two-layer approach with multiagent systems with 
first-order, second-order, or higher-order dynamics can be 
found in [17]–[19].

Distributed State Estimation
Wireless sensors with embedded computing and commu-
nication capabilities play a vital role in provisioning real-
time monitoring and control in many applications, such as 
environmental monitoring, fire detection, object tracking, 
and body area networks. Consider a model of the process of 
interest given by

( ) ( ) ( ) ( ) ( ),k k k k k1x A x B ~+ = +

where x Rn!  is the state, ( )kA Rn n! #  and ( )kB Rn m! #  
are known system matrices, and Rm!~  is the white 
Gaussian process noise with [ ( ) ( )] .E k k 0Q 2~ ~ =<  
L e t  the measurement model at each sensor stat ion 

{ , , }i N1 f!  be

( ) ( ) ( ) ,k k k1 1 1z H xi i io+ = + + +

where z Ri q!  is the measurement vector, H Ri q n! #  is the 
measurement matrix, and Ri q!o  is the white Gaussian 
measurement noise with [ ( ) ( ) ] .E k k 0Ri i i 2o o =<  If all of 
the measurements are transmitted to a fusion center, a 
Kalman filter can be used to obtain the minimum vari-
ance estimate of the state of the process of interest as 
(see Figure 4):

 » propagation stage

 ( ) ( ) ( ),k k k1x A x+ =- -t t  (4a)
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,k k k k k k k1 1P A P A B Q B+ = + + <<- -  (4b)
 ( ) ( ) ,k k1 1Y P 1+ = +- - -  (4c)
 ( ) ( ) ( );k k k1 1 1y Y x+ = + +- - -t  (4d)

 » update stage

 ( ) ( ) ( ) ( ), { , , },k k k k i N1 1 1 1 1Y H R Hi i i i1 f!+ = + + +< -  
 ( ) ( ) ( ) ( ),   { , , },k k k k i N1 1 1 1 1y H R zi i i i1 f!+ = + + +< -  

 ( ) ( ) ( ) ,k k k1 1 1P Y Yi

i

N

1

1

+ = + + ++ -

=

-

e o/  

 ( ) ( ) ( ) ( ) .k k k k1 1 1 1x P y yi

i

N

1
+ = + + + ++ + -

=

t e o/  

Despite its optimality, this implementation is not desir-
able in many sensor network applications due to the exis-
tence of a single point of failure at the fusion center and the 
high cost of communication between the sensor stations 
and the fusion center. An alternative that has previously 
gained interest [5], [20]–[23] is to employ distributed algo-
rithmic solutions that have each sensor station maintain a 
local filter to process its local measurements and fuse them 
with the estimates of its neighbors. Some work [20], [24], 
[25] employs dynamic average consensus to synthesize dis-
tributed implementations of the Kalman filter. For instance, 
one of the early solutions for distributed minimum vari-
ance estimation has each agent maintain a local copy of the 
propagation filter (4) and employ a dynamic average con-
sensus algorithm to generate the coupling time-varying 
terms ( / ) ( )N k1 1yi

i
N

1R +=  and ( / ) ( ).N k1 1Yi
N i

1R +=  If agents 
know the size of the network, then they can duplicate the 
update equation locally.

Distributed Unconstrained Convex Optimization
The control literature has introduced numerous distrib-
uted algorithmic solutions [26]–[33] to solve unconstrained 
convex optimization problems over networked systems. In 
a distributed unconstrained convex optimization problem, 
a group of N communicating agents, each with access to a 
local convex cost function : , { , , },f i N1RRi n " f!  seeks 

Communication

Range

Sensing Zone

Smart Camera Node

Smart Camera
Node N

Smart Camera
Node 2

Smart Camera
Node 1

(y1, Y1)

(y2, Y2)

(yN, YN)

Fusion Center

Optimal Estimate = f (∑yi, ∑Yi)

Neighbors

FIGURE 4 A networked smart camera system that monitors and estimates the position of moving targets.
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to determine the minimizer of the joint global optimiza-
tion problem

 ( )argmin N f1x xi

i

N

1
=*

=

/  (5)

by local interactions with their neighboring agents. This 
problem appears in network system applications, such as 
multiagent coordination, distributed state estimation over 
sensor networks, or large-scale machine-learning prob-
lems. Some of the algorithmic solutions for this problem 
are developed using agreement algorithms to compute 
global quantities that appear in existing centralized algo-
rithms. For example, a centralized solution for (5) is the 
Nesterov gradient descent algorithm [34] described by

 ( ) ( ) ,kk k N f1 1x y y
i

N
i

1
dh+ = -

=

e ^ ^ hho/  (6a)

 ( ) ( ) ,k k N f k1 1v y y
k i

N
i

1
d

a

h
+ = -

=

e ^ ^ hho/  (6b)

 ( ) ( ) ( ) ( ),k k k1 1 1 1y x vk t1 1a a+ = - + + ++ +  (6c)

where ( ), ( ), ( ) ,0 0 0x y v Rn!  and { }k k 0a 3
=  are defined by 

an arbitrarily chosen ( , )0 10 !a  and the update equation 
( ) ,1k k k1

2
1

2
a a a= -+ +  where k 1a +  always takes the unique solu-
tion in (0, 1). If all , { , , },f i N1i f!  are convex, differentiable, 
and have L-Lipschitz gradients, then every trajectory ( )k kx7  of 
(6) converges to the optimal solution x*  for any ( / ).L0 11 1h

Note that in (6), the cumulative gradient term ( / )N1 i
N

1R =
( ( ))f kyid  is a source of coupling among the computations 

performed by each agent. It does not seem reasonable to 
halt the execution of this algorithm at each step until the 
agents have determined the value of this term. Instead, 
dynamic average consensus can be employed in conjunc-
tion with (6): the dynamic average consensus algorithm 
estimates the coupling term, and this estimate is employed 
in executing (6), which in turn changes the value of the 
coupling term being estimated. This approach is taken in 
[33] to solve the optimization problem (5) over connected 
graphs and is also pursued in other implementations of 
distributed convex or nonconvex optimization algorithms 
(see, for instance, [35]–[39]).

Distributed Resource Allocation
In optimal resource allocation, a group of agents works 
cooperatively to meet a demand in an efficient way (see 
Figure 5). Each agent incurs a cost for the resources 
it provides. Let the cost of each agent { , , }i N1 f!  be 
modeled by a convex and differentiable function : .f R Ri "  
The object ive is to meet the demand d R!  so that 
the total cost ( ) ( )f f xx i

N i i
1R= =  is minimized. Each agent 

{ , , },i N1 f!  therefore, seeks to find the ith element of x*  
given by

 ( ),argmin f xx i i

i

N

1
x RN=* !

=

/   .x x d 0subject to N1 g+ + - =

x1

x3

x2

x1 + x2 + x3 + x4 + x5 = d

x4
x5

FIGURE 5 A network of five generators with connected undirected topology works together to meet a demand of x x x x dx1 2 3 4 5+ + + + =  
in a manner in which the overall cost ( )f xi

i i
1

5R =  for the group is minimized.
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This problem appears in many optimal decision-making 
tasks, such as optimal dispatch in power networks [40], 
[41], optimal routing [42], and economic systems [43]. For 
instance, the group of agents could correspond to a set of 
flexible loads in a microgrid that receive a request from a 
grid operator to collectively adjust their power consump-
tion to provide a desired amount of regulation to the bulk 
grid. In this demand-response scenario, xi  corresponds to 
the amount of deviation from the nominal consumption of 
load i, the function fi  models the amount of discomfort 
caused by deviating from it, and d is the amount of regula-
tion requested by the grid operator.

A centralized algorithmic solution is given by the popu-
lar saddle point or primal-dual dynamics [44], [45] associ-
ated to the optimization problem,

 ( ) ( ) ( ) , ( ) ,t x t x t d 0 RN1 g !n n= + + -o  (7a)

 ( ) ( ( )) ( ),   { , , },  ( ) .x t f x t t i N x1 0 Ri i i id f! !n=- -o  (7b)

If the local cost functions are strictly convex, then every tra-
jectory ( )t tx7  converges to the optimal solution .x*  The 
source of coupling in (7) is the demand mismatch that 
appears in the right-hand side of (7a). However, the dynamic 
average consensus can be employed to estimate this 
quantity online and feed it back into the algorithm. This 
approach is taken in [46] and [47]. This can be accomplished, 
for instance, by having agent i use the reference signal 

( ) /x t d Ni -  (this assumes that every agent knows the 
demand and number of agents in the network, but other 

reference signals are also possible) in a dynamic consensus 
algorithm coupled with the execution of (7).

A LOOK AT STATIC AVERAGE CONSENSUS LEADING 
UP TO THE DESIGN OF A DYNAMIC AVERAGE 
CONSENSUS ALGORITHM
Consensus algorithms to solve the static average con-
sensus problem have been studied since [48]. The com-
monality in their design is the idea of having agents 
start their agreement state with their own reference 
value and adjust it based on some weighted linear feed-
back, which takes into account the difference between 
their agreement state and their neighbors’. This leads to 
algorithms of the form

 continuous time: ( ) ( ( ) ( )),x t a x t x ti
ij

j

N
i j

1
=- -

=

o /  (8a)

 discrete time: ( ) ( ) ( ( ) ( )),x k x k a x k x k1i i
ij

j

N
i j

1
+ = - -

=

/  (8b)

for { , , },i N1 f!  with u( )x 0i i=  constant for both algo-
rithms. Here, [ ]aij N N#  is the adjacency matrix of the com-
munication graph (see “Basic Notions from Graph Theory”). 
By stacking the agent variables into vectors, the static aver-
age consensus algorithms can be written compactly using a 
graph Laplacian as

 Lcontinuous time: ( ) ( ),t tx x
.
=-  (9a)

 Ldiscrete time: ( ) ( ) ( ),k k1x I x+ = -  (9b)

with u( ) .0x =  When the communication graph is fixed, this 
system is LTI and can be analyzed using standard time-
domain and frequency-domain techniques in control. Spe-
cifically, the frequency-domain representation of the static 
average consensus algorithm output signal is given by

 L Lcontinuous time: ( ) [ ] ( ) [ ] ( ),s s s s0X I x I U1 1= + = +- -

 (10a)
 Ldiscrete time: ( ) [ ( )] ( ),  z z zX I I U1= - - -  (10b)

where ( )sX  and ( ),sU  respectively, denote the Laplace 
transform of ( )tx  and u,  while ( )zX  and ( ),zU  respectively, 
denote the z-transform of Xk  and u.  For static signals, 

u( )sU =  and u( ) .zU =

The block diagram of these static average consensus algo-
rithms is shown in Figure 6. The dynamics of these algorithms 
consists of a negative feedback loop, where the feedback term 
is composed of the Laplacian matrix and an integrator [ /s1  
in continuous time and /( )z1 1-  in discrete time]. For the 
static average consensus algorithms, the reference signal 
enters the system as the initial condition of the integrator 
state. Under certain conditions on the communication graph, 
the error of these algorithms can be shown to converge to 
zero, as stated next.

1
s IN

L

x(t )

x(0)

−

(a)

1
z – 1 IN

x0

xk

L

−

(b)

FIGURE 6 A block diagram of the static average consensus algorithms 
(9). The input signals are assigned to the initial conditions, that is, 

( ) u0x =  (in continuous time) or ux0 =  (in discrete time). The feed-
back loop consists of the Laplacian matrix of the communication 
graph and an integrator [ /s1  in continuous time and / ( )z1 1-  in dis-
crete time]. (a) Continuous time. (b) Discrete time. 
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Theorem 1: Convergence Guarantees of the  
Continuous-Time and Discrete-Time Static Average 
Consensus Algorithms (8) [1]
Suppose that the communication graph is a constant, 
strongly connected, and weight-balanced digraph and 
that the reference signal ui  at each agent { , , }i N1 f!  is a 
constant scalar. Then the following convergence results 
hold for the continuous-time and discrete-time static aver-
age consensus algorithms (8):

 » continuous time: As t " 3 , every agreement state 
( ), { , , }x t i N1i f!  of the continuous-time static aver-

age consensus algorithm (8a) converges to uavg  with 
an exponential rate no worse than ,2mt  the smallest 
nonzero eigenvalue of L( ).Sym

 » discrete time: As k " 3, every agreement state ,x ik
i !

{ , , }N1 f  of the discrete-time static average consensus 
algorithm (8b) converges to uavg  with an exponential 
rate no worse than ( , ),0 1!t  provided that the Lapla-
cian matrix satisfies L / .N 11 1IN N N 2 1t = - - <  

Note that, given a weighted graph with Laplacian matrix 
L,  the graph weights can be scaled by a nonzero constant 
R!d  to produce a scaled Laplacian matrix Ld  (see “Basic 

Notions from Graph Theory”). This extra scaling parame-
ter can then be used to produce a Laplacian matrix that sat-
isfies the conditions in Theorem 1.

A First Design for Dynamic Average Consensus
Because the reference signals enter the static average con-
sensus algorithms (8) as initial conditions, they cannot 
track time-varying signals. Looking at the frequency-
domain representation in Figure 6 of the static average 
consensus algorithms (8), it is clear that what is needed 
instead is to continuously inject the signals as inputs 
into the dynamical system. This allows the system to nat-
urally respond to changes in the signals without any need 
for reinitialization. This basic observation is made in [49], 
resulting in the systems shown in Figure 7.

More precisely, [49] argues that considering the static 
inputs as a dynamic step function, the algorithm

u

u u

L u( ) ( ) ( ), ( ) ( ),
( ) ( ), { , , },
t x t t x

t t i N

0 0
1h

x
. . i i

i i f!

=- + =

=

in which the reference value of the agents enters the dynam-
ics as an external input, results in the same frequency repre-
sentation (10a) [here, ( )th  is the Heaviside step function]. 
Therefore, convergence to the average of reference values is 
guaranteed. Based on this observation, [49] proposes one of 
the earliest algorithms for dynamic average consensus:

 u( ) ( ( ) ( )) ( ), { , , },x t a x t x t t i N1i
ij

j

N
i j i

1

.
f!=- - +

=

o /  (11a)

 u( ) ( ).x 0 0i i=  (11b)

Using a Laplace-domain analysis, [49] shows that, if each 
input signal u , { , , },i N1i f!  has a Laplace transform with 

all poles in the left-half plane and at most one zero pole 
(such signals are asymptotically constant), then all of the 
agents implementing (11) over a connected graph track 
u ( )tavg  with zero error asymptotically. As shown later, the 
convergence properties of (11) can be described more com-
prehensively using time-domain ISS analysis.

Define the tracking error of agent i  by

u( ) ( ) ( ), { , , }.e t x t t i N1i i avg f!= -

To analyze the system, the error is decomposed into the 
consensus direction (the direction )1N  and the disagree-
ment directions (the directions orthogonal to ).1N  To this 
end, define the transformation matrix R/ N1 1T N= ^ h6 @ 

Rwhere R ( )N N 1! # -  is such that T T TT= =<<  ,IN  and con-
sider the change of variables

 .
e

e
e

T e
:N

1

2
= = <r
r

r
; E  (12)

In the new coordinates, (11) takes the form

  ,e 01 =ro   u( ) ( ( ) ( )),e t
N

x t t1 j j

j

N

1 0 0
1

0= -
=

r /  (13a)

R LR R u,e e
.

: :N N2 2=- +< <ro r  R( ) ( ),t te x:N2 0 0= <r  (13b)

where t0  is the initial time. Using the ISS bound on the 
trajectories of LTI systems (see “Input-to-State Stability of 
Linear Time-Invariant Systems”), the tracking error of 

FIGURE 7 A block diagram of the continuous-time dynamic average 
consensus algorithms (11) and (16). Whereas the reference signals 
are applied as initial conditions for the static consensus algorithms, 
the reference signals are applied here as inputs to the system. 
Although both systems are equivalent, system (a) is in the form (3) 
and explicitly requires the derivative of the reference signals, and 
system (b) does not require differentiating the reference signals. (a) 
Dynamic average consensus algorithm (11). (b) Dynamic average 
consensus algorithm (16). 
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each agent { , , }i N1 f!  while implementing (11) over a 
strongly connected and weight-balanced digraph is seen 
in (14), shown at the bottom of the page, for all [ , )t t0 3! , 
where 2mt  is the smallest nonzero eigenvalue of L( ) .Sym  
[Here, INP = -^ ( / )N1 1 1N N

<h is used.]
The tracking error bound (14) reveals several inter-

esting facts. First, it highlights the necessity for the spe-
cial initialization u( ) ( )x t tj

N j
j
N j

1 10 0R R== =  [(11b) satisfies 
this initialization condition]. Without it, a fixed offset 
from perfect tracking is present regardless of the type 
of reference input signals. Instead, it is expected that a 
proper dynamic consensus algorithm should be capable 
of perfectly tracking static reference signals. Next, (14) 
shows that (11) renders perfect asymptotic tracking not 
only for reference input signals with decaying rate but 
also for unbounded reference signals whose uncom-
mon parts asymptotically converge to a constant value. 
This is due to the ISS tracking bound depending on 

u( ( / ) ) ( )N1 1 1I
.

N N N< <x- <  rather than on u( ) .
.
< <x  Note that 

if the reference signal of each agent { , , }i N1 f!  can be 
written as u u u( ) ( ) ( ),t t ti i= + t  where u( )t  is the (possibly 
unbounded) common part and u ( )tit  is the uncommon 
part of the reference signal, then

u û

û

u( ) ( ( ) ( ))

( ) .

N N t t

N t

1 1

1

1 1 1 1 1

1 1

I I

I

. .
N N N N N N N

N N N

x- = - +

= -

< <

<

o

o

`

`

`j

j

j

This demonstrates that (11) properly uses the local knowl-
edge of the unbounded but common part of the reference 
dynamic signals to compensate for the tracking error that 
would be induced due to the natural lag in diffusion of 
information across the network for dynamic signals. Finally, 
the tracking error bound (14) shows that as long as the 
uncommon part of the reference signals has a bounded 
rate, then (11) tracks the average with some bounded error. 
For convenience, the convergence guarantees of (11) are 
summarized in the following result.

Theorem 2: Convergence of (11) Over a Strongly 
Connected and Weight-Balanced Digraph
Let G  be a strongly connected and weight-balanced 
digraph. Let

u( ) ( ) .sup N t1 1 1I
[ , )

.

t
N N N 31x c- =

3

<

!x

` j

The trajectories of (11) are then bounded and satisfy

 u| ( ) ( )|
( )

, { , , },lim x t t i N1
t

i

2

avg 3
f# !

m

c
-

"3 t  (15)

provided u( ) ( ) .x t tj
N j

j
N j

1 0 1 0R R== =  The convergence rate to 
this error bound is no worse than ( ) .Re 2m  Moreover, 

( )x tN
j

j
1R ==  u ( ) [ , ) .t t tforN

j
j

1 0 3!R =  
The explicit expression (15) for the tracking error per-

formance is of value for designers. The smallest nonzero 
eigenvalue 2mt  of the symmetric part of the graph Laplacian 
is a measure of connectivity of a graph [50], [51]. For highly 
connected graphs (those with large ),2mt  it is expected that 
the diffusion of information across the graph is faster. 
Therefore, the tracking performance of a dynamic average 
consensus algorithm over such graphs should be better. 
Alternatively, when the graph connectivity is low, the 
opposite effect is expected. The ultimate tracking bound 
(15) highlights this inverse relationship between graph 
connectivity and steady-state tracking error. Given this 
inverse relationship, a designer can decide on the commu-
nication range of the agents and the expected tracking per-
formance. Various upper bounds of 2mt  that are a function 
of other graph invariants (such as graph degree or the net-
work size for special families of the graphs [51], [52]) can be 
exploited to design the agents’ interaction topology and 
yield an acceptable tracking performance.

Implementation Challenges and Solutions
Next, some of the features of (11) are discussed from an imple-
mentation perspective. First, note that although (11) tracks 
u ( )tavg  with a steady-state error (15), the error can be made 
infinitesimally small by introducing a high gain R 0!b 2  to 
write L  as L.b  By doing this, the tracking error becomes 

u| ( ) ( )| ( ( )/ ), { , , } .lim x t t i N1t
i

2
avg 3 f# !c bm-"3

t  However, 
for scenarios where the agents are first-order physical systems 

( ),x c ti i=o  the introduction of this high gain results in an 
increase of the control effort ( ) .c ti  To address this, a balance 
between the control effort and tracking error margin can be 
achieved by introducing a two-stage algorithm in which an 
internal dynamics creates the average using a high-gain 
dynamic consensus algorithm and feeds the agreement state 
of the dynamic consensus algorithm as a reference signal to 
the physical dynamics. This approach is discussed further in 
the section “Controlling the Rate of Convergence.”

A concern that may exists with (11) is that it requires 
explicit knowledge of the derivative of the reference sig-
nals. In applications where the input signals are measured 
online, computing the derivative can be costly and prone to 
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error. The other concern is the particular initialization con-
dition requiring u( ) ( ) .x t ti

N
i
Ni i

1 0 1 0R R== =  To comply with this 
condition in a distributed setting, agents must initialize 
with u( ) ( ) .x t ti i

0 0=  If the agents are acquiring their signal ui  
from measurements or the signal is the output of a local 
process, any perturbation in u ( )ti 0  results in a steady-state 
error in the tracking process. Moreover, if an agent (agent 

)N  leaves the operation permanently at any time ,tr  then 
xi

N i
1
1R =
-  is no longer equal to ui

N i
1
1R =
-  after .tr  Therefore, the 

remaining agents (without reinitialization) carry over a 
steady-state error in their tracking signal.

Interestingly, all of these concerns except for the one 
regarding an agent’s permanent departure can be resolved 
by a change of variables, corresponding to an alternative 
implementation of (11). Let up xi i i= -  for { , , } .i N1 f!  
Equation (11) may then be written in the equivalent form

( ) ( ( ) ( )), ( ) , { , , },p t a x t x t p t i N0 1i
ij

j

N
i j j

j

N

1 1
0 f!= - =

= =

o / /  (16a)

 u( ) ( ) ( ) .x t t p ti i i= -  (16b)

Doing so eliminates the need to know the derivative of 
the reference signals and generates the same trajectories 

( )t x ti7  as (11). We note that the initialization condi-
tion ( )p t 0i

N i
1 0R ==  can be easily satisfied if each agent 

{ , , }i N1 f!  starts at ( ) .p 0 0i =  Note that this requirement is 
mild because pi  is an internal state for agent i  and, there-
fore, is not affected by communication errors. This ini-
tialization condition, however, limits the use of (16) in 
applications where agents join or permanently leave the net-
work at different points in time. To demonstrate the robust-
ness of (16) to measurement disturbances, note that any 
bounded perturbation in the reference input does not 
affect the initialization condition but, rather, appears as 
an additive disturbance in the  communication channel. In 
particular, observe the following:
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As seen in (17a), if u( ) ( ),x t ti
N i

i
N i

1 0 0!R R=  then ( )x ti
N i

1 !R =  
u ( )ti

N iR  persists in time. Therefore, if the perturbation on 
the reference input measurement is removed, then (11) still 
inherits the adverse effect of the initialization error. Instead, 
as (17b) shows for the case of the alternative algorithm (16), 

( )p t 0i
N i

1R ==  is preserved in time as long as the algorithm 
is initialized such that ( ) ,p t 0i

N i
1 0R ==  which can be easily 

done by setting ( )p t 0i
0 =  for { , , } .i N1 f!  Consequently, 

when the perturbations are removed, then (16) recovers the 

convergence guarantee of the perturbation-free case. Fol-
lowing steps similar to the ones leading to the bound (14), 
the effect of the additive bounded reference signal measure-
ment perturbation on the convergence of (16) is summarized 
in the next result.

Lemma 1: Convergence of (16) Over a Strongly 
Connected and Weight-Balanced Digraph in the 
Presence of Additive Reference Input Perturbations
Let G  be a strongly connected and weight-balanced 
digraph. Suppose w ( )ti  is an additive perturbation on the 
measured  reference input signal u ( ) .ti  Let (sup I[ , )t N< -3!x  

u( / ) ) ( ) ( )N t1 1 1
.

N N 31<x c=<  and ( )( / )sup N1 1 1I[ , )t N N N< -3
<

!x  
w( ) ( ) .t
.

31<x ~=  Then, the trajectories of (16) are bounded 
and satisfy
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provided ( ) .p t 0N
j

j
1 0R ==  The convergence rate to this error 

bound is no worse than ( ) .Re 2m  Moreover, ( )p t 0j
N j

1R ==  for 
[ , ) .t t0 3!  
The perturbation wi  in Lemma 1 can also be regarded as 

a bounded communication perturbation. Therefore, (16) [and 
similarly (11)] is considered naturally robust to bounded 
communication error.

From an implementation perspective, it is also desirable 
that a distributed algorithm is robust to changes in the com-
munication topology that may arise as a result of unreliable 
transmissions, limited communication/sensing range, net-
work rerouting, or the presence of obstacles. To analyze this 
aspect, consider a time-varying digraph A( , ( ), ( )),t tG V E v  
where the nonzero entries of the adjacency matrix A( )t  
are uniformly lower and upper bounded [in other words, 
a ( ) , ,t a aij ! r6 @  where ( , ) ( ),a a j i t0 if E1 # !r  and a 0ij =  oth-
erwise]. Here, : [ , ) { , , }m0 1P"3 fv =  is a piecewise con-
stant signal, meaning that it has only a finite number of 
discontinuities in any finite time interval and is constant 
between consecutive discontinuities. Intuitively, consensus 
in switching networks occurs if there is occasionally enough 
flow of information from every node in the network to every 
other node.

Formally, an admissible switching set Sadmis  is a set of 
piecewise constant switching signals : [ , )0 P"3v  with 
some dwell time tL  (in other words, ,t t t 0k k L1 2 2-+  for all 

, , ),k 0 1 f=  such that
 » A( , ( ), ( ))t tEG V v  is weight balanced for .t t0$

 » The number of contiguous, nonempty, uniformly 
bounded time intervals [ , ), , , ,t t j 1 2i ij j 1 f=+  starting 
at ,t ti 01 $  with the property that A( , ( ), ( ))t tG V Et

t
i

i

j

j 1, v
+  

is a jointly strongly connected digraph, goes to infin-
ity as .t "3

When the switching signal belongs to the admissible 
set ,Sadmis  [19] shows that there always exists R 0!m 2  and 
R 1!l $  such that , .te e RR L R t

0< < # !l $
m- -<

v  Implementing 
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the change of variables (12), it is shown that the trajectories of 
(16) satisfy (14), with 2mt  replaced by m  and ( )tx 0< <P  and 

u( )
.

< <xP  being multiplied by .l  This statement is formalized 
as follows.

Lemma 2: Convergence of (11) Over Switching Graphs
Let the communication topology be A( , ( ), ( ))t tG V E v  where 

.Sadmis!v  Let u( / ) ( ) ( ) .sup N t1 1 1I[ , )
.

t N N N 31< <x c- =3
<

!x ^ h  
The trajectories of (11) are bounded and satisfy
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provided u( ) ( ) .x t tj
N j

j
N j

1 0 1 0R R== =  The convergence rate to 
this error bound is no worse than .m  Moreover, we have 

( )x tj
N j

1R ==  u ( ) [ , ) .t t tforj
N j

1 0 3!R =   

Example: Distributed Formation Control Revisited
We revisit one of the scenarios discussed in the “Applica-
tions of Dynamic Average Consensus in Network Systems” 
section to illustrate the properties of (11) and its alternative 
implementation (16). Consider a group of four mobile 
agents (depicted as the triangle robots in Figure 8) 

whose communication topology is described by a fixed, 
connected, undirected ring. The objective of these agents is 
to follow a set of moving targets (depicted as the round 
robots in Figure 8) in a containment fashion (that is, ensuring 
that they are surrounded as they move around the environ-
ment). Let
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(18)

be the horizontal position of the set of moving targets (each 
mobile agent tracks one moving target). The term ( / )t 20 2  in 
the reference signals (18) represents the component with an 
unbounded derivative that is common to all agents.

To achieve their objective, the group of agents seeks to com-
pute on the fly the geometric center ( ) ( / ) ( )Nx t x t1 N

T l T
l

1R= =r  
and the associated variance ( ( ) ( ))( / ) x t x tN1 N

l
l

T1
2R -= r  de -

termined by the time-varying position of the moving targets. 
The agents implement two distributed dynamic average con-
sensus algorithms: one for computing the center and the other 
for computing the variance (as shown in Figure 9). To illustrate 
the properties discussed in this section, consider that agent 4 
(the green triangle in Figure 8) leaves the network 10 s after the 

(a) (b) (c)

FIGURE 8 A simple dynamic average consensus-based containment and tracking of a team of mobile targets. (a) The triangle robots 
cooperatively want to contain the moving round robots by making a formation around the geometric center of the round robots that they 
are observing. At (b) (after, for example, 10 s from the start of the operation), one of the triangle robots leaves the team. At (c) (after, for 
example, 20 s from the start of the operation), a new triangle robot joins the group to take over tracking the abandoned round robot.
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FIGURE 9 A group of N  mobile agents uses a set of dynamic consensus algorithms to asymptotically track the geometric center 
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beginning of the simulation. After 10 s, a new agent, labeled 5 
(the red triangle in Figure 8), joins the network and starts mon-
itoring the target that agent 4 was in charge of. For simplicity, 
the simulation is focused on the calculation of the geometric 
center. For this computation, agents implement (16) with refer-
ence input u ( ) ( ),t x ti

T
i=  { , , , } .i 1 2 3 4!  Figure 10 shows the 

algorithm performance for various operational scenarios. As 
forecast by the discussion of this section, the tracking error 
vanishes in the presence of perturbations in the input signals 
available to the individual agents and switching topologies, 
and it exhibits only partial robustness to agent arrivals, depar-
tures, and initialization errors, with a constant bias with 
respect to the correct average. Additionally, it is worth noticing 

in Figure 10 that all of the agents exhibit convergence with the 
same rate.

The introduction of (16) serves as preparation for a 
more in-depth treatment of the design of dynamic average 
consensus algorithms. This includes a discussion of the 
issues of correct initialization [the steady-state error depends 
on the initial condition ( )0x  or ,]x0  adjusting the conver-
gence rate of the agents, and the limitation of tracking 
(with zero steady-state error) only constant reference 
signals (and therefore with small steady-state error for 
slowly time-varying reference signals). To improve clar-
ity, continuous-time and discrete-time strategies are dis-
cussed separately.
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FIGURE 10 A performance evaluation of dynamic average consensus algorithms (11) and (16) for a group of four agents with reference 
inputs (18) for a tracking scenario described in Figure 8. In the simulation in plot (a), the agents are using (16). As guaranteed in Lemma 1 
[under proper initialization ( ) , { , , , }]p i0 0 1 2 3 4i !=  during the time interval [0,10] s, the agents are able to track ( )x tT

avg  with a small error. 
The challenge presents itself when agent 4 leaves the operation at .t 10 s=  Because after agent 4 leaves ( ) ,p 10 0i

i
1

3 !R =
+  the remain-

ing agents fail to follow the average of their reference values, which now is ( / ) .u1 3 l
l

1
3R =  Similarly, even with initialization of ( )p 20 05 =  

for the new agent 5, because ( ) ( ) ( ) ( ) ,p p p p20 20 20 20 01 2 3 5 !+ + +  the agents track the average / ) ( )( x t1 4 l T
l

1
4R =  with a steady-state 

error. In the simulation in plot (b), the agents are using (16), and at time interval [ , ] ,0 10 s  agent 1’s reference input is subject to a mea-
surement perturbation according to u ( ) ( ) ( ),wt x t tT

1 1 1= +  where ( ) ( )cosw t t41 =-  at [ , ],t 0 2!  and [ , ]t 3 5!  and ( )w t 01 =  at other times. 
As guaranteed by Lemma 1, despite the perturbation, including the initial measurement error of u ( ) ( ) ,x0 0 4T

1 1= -  (16) has robustness 
to the measurement perturbation and recovers its performance after the perturbation is removed. A large perturbation error was used, 
so that its effect is observed more visibly in the simulation plots. In the simulation in plot (c), the agents are using (11). Agent 1’s reference 
input has an initial measurement error of u ( ) ( ) .x0 0 4T

1 1= -  Because the measurement error directly affects the initialization condition of 
the algorithm, it fails to preserve ( ) ( ).ux t tl

l
l

l
1

4
1

4R R== =  As a result, the effect of initialization error persists, and the algorithm maintains a 
significant tracking error. In the simulation in plot (d), the agents are using (16) [similar results are also obtained for (11)]. The network 
communication topology is a switching graph, where the graph topology at different time intervals is shown on the plot. Because the 
switching signal v  belongs to ,Sadmis  as predicted by Lemma 2, the trajectories of the algorithm stay bounded, and once the topology 
becomes fully connected, the agents follow their respective dynamic average closely. (a) Agent departure and arrival. (b) Perturbation 
of input signals. (c) Initialization error. (d) Switching topology.
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CONTINUOUS-TIME DYNAMIC AVERAGE  
CONSENSUS ALGORITHMS
This section discusses various continuous-time dynamic 
average consensus algorithms and their performance and 
robustness guarantees. Table 1 summarizes the arguments of 
the driving command of these algorithms in (1) and their spe-
cial initialization requirements. Some of these algorithms, 
when cast in the form of (1), require access to the derivative of 
the reference signals. Similar to (11), however, this require-
ment can be eliminated using alternative implementations.

Robustness to Initialization  
and Permanent Agent Dropout
To eliminate the special initialization requirement and 
induce robustness with respect to algorithm initialization, 
[53] proposes the following alternative dynamic average 
consensus algorithm:

 ( ) ( ),q t b x xi
ij

j
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i j
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=- -

=

o /  (19a)

 u( ) ( ) ( ) ,x x u a x x b q q
.i i i
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 ( ), ( ) , { , , },q t x t i N1Ri i
0 0 f! !  (19c)

where .R 0!a 2  Here, u
. i  is added to (19b) to allow agents 

to track reference inputs whose derivatives have unbounded 
common components. The necessity of having explicit 
knowledge of the derivative of reference signals can be 
removed by using the change of variables u ,p xi i i= -  

{ , , } .i N1 f!  In (19), the agents are allowed to use two dif-
ferent adjacency matrices, [ ]aij N N#  and [ ] ,bij N N#  so that 
they have an extra degree of freedom to adjust the track-
ing performance of the algorithm. The Laplacian matrices 
associated with adjacency matrices [ ]aij  and [ ]bij  are repre-
sented by, respectively, Lp  (labeled as proportional Lapla-
cian) and LI  (labeled as integral Laplacian). The compact 
representation of (19) is

 L ,q xI
.
=-           (20a)

 u L L u( ) ,qx x x
.

p I
.

a=- - - + +<  (20b)

which also reads as

u uL L L L( ) ( ) ( ) .x tdx x x q
..

t

t
0p I I I

0
a x x=- - - - + +< <#

Using a time-domain analysis similar to that employed 
for (11), the ultimate tracking behavior of (19) is character-
ized. Consider the change of variables (12) and
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to write (20) in the equivalent form

     ,w 01 =o  (22a)
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(22b)

Let the communication ranges of the agents be such that 
they can establish adjacency relations [ ]aij  and [ ]bij  so that 
the corresponding LI  and LP  are Laplacian matrices of 
strongly connected and weight-balanced digraphs. Invok-
ing [53, Lemma 9], matrix A  in (22b) is shown to be Hur-
witz. Therefore, using the ISS bound on the trajectories of 
LTI systems (see “Input-to-State Stability of Linear Time-
Invariant Systems”), the tracking error of each agent 

{ , , }i N1 f!  while implementing (19) over a strongly con-
nected and weight-balanced digraph is
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where ( , )l m  are given by (S5) for matrix A  of (22b) and can 
be computed from (S9). It is shown that both l  and m  
depend on the smallest nonzero eigenvalues of L( )Sym I  

and L( )Sym p  as well as .a  Therefore, the 
tracking performance of (19) depends on 
both the magnitude of the derivative of 
reference signals and the connectivity of 
the communication graph. From this error 
bound, it is observed that, for bounded 
dynamic signals with bounded rate, (19) is 
guaranteed to track the dynamic aver-
age with an ultimately bounded error. 
Moreover, this algorithm does not need 
any special initialization. The robustness 
to initialization can be observed on the 
block diagram representation of (19), 

Algorithm (11) (19) (24) (25) 

( )J ti { ( ), ( )}ux t t
.i { ( ), ( ), )}u(x t v t ti i { ( ), ( ), ( ),
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  ), ( )}u( u
x t v t

t t
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i i
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j N i

out! { ( )}x tj
j N i

out! { ( ), ( )}x t v tj j
j N i

out! { ( ), ( )}z t v tj j
j N i

out! { ( )}v ti
j N i

out!

Initialization 
requirement 

( ) ( )ux 0 0i i= None None ( )v 0 0j

j

N

1

=
=

/

TABLE 1 The arguments of the driving command in (1) for the reviewed 
continuous-time dynamic average consensus algorithms together with their 
initialization requirements.
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shown in Figure 11(a). For reference, the convergence guar-
antees of algorithm (19) are summarized next.

Theorem 3: Convergence of (19)
Let L LandP I  be Laplacian matrices corresponding to 
strongly connected and weight-balanced digraphs. Let 
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!x  Starting from 
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0 0 !  for any R 0!a 2  the trajectories of algo-
rithm (25) satisfy
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Figure 12 shows the performance of (19) in the distributed 

formation control scenario represented in Figure 8. This plot 
illustrates how the property of robustness to the initializa-
tion error of (19) allows it to accommodate the addition and 
deletion of agents with satisfactory tracking performance.

Although the convergence guarantees of (19) are valid for 
strongly connected and weight-balanced digraphs, from 
an implementation perspective, the use of this strategy over 
directed graphs may not be feasible. In fact, the presence of 
the transposed integral Laplacian LI

<  in (20b) requires each 
agent { , , }i N1 f!  to know not only the entries in row i  but 
also the column i  of LI  and receive information from the cor-
responding agents. However, for undirected graph topolo-
gies, this requirement is satisfied trivially as IL L .I=<

Controlling the Rate of Convergence
A common feature of the dynamic average consensus 
algorithms presented in the “A First Design for Dynamic 
Average Consensus” and “Robustness to Initialization and 
Permanent Agent Dropout” sections is that the rate of conver-
gence is the same for all agents and dictated by network topol-
ogy as well as some algorithm parameters [see (14) and (23)]. 
However, in some applications, the task is not just to obtain the 
average of the dynamic inputs but rather to physically track 
this value, possibly with limited control authority. To allow the 
network to prespecify its desired worst rate of convergence ,b  
[54] proposes dynamic average consensus algorithms whose 
design incorporates two time scales. The first-order-input 
dynamic consensus (FOI-DC) algorithm is described as
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FIGURE 11 A block diagram of continuous-time dynamic average con-
sensus algorithms. These dynamic algorithms naturally adapt to 
changes in the reference signals, which are applied as inputs to the 
system. Continuous-time algorithm (19) is robust to initialization. To see 
why the algorithm is robust, consider multiplying the input signal on the 
left in plot (a) by .1N

<  The output of the integrator block ( / )s1  is multiplied 
by zero (because )1L 0I N =  and therefore does not affect the output. 
Although the output is affected by the initial state of the / ( )s1 a+  block, 
this term decays to zero and therefore does not affect the steady state. 
Also, the requirement of needing the derivative of the input u( )to  can be 
removed by a change of variable. The continuous-time algorithm in 
(25) is not robust to initialization. In this algorithm, the parameter b  
may be used to control the tracking error size, and a  may be used to 
control the rate of convergence. Furthermore, this algorithm is robust 
to reference signal measurement perturbations and naturally pre-
serves the privacy of the input signals against adversaries [19]. (a) 
Continuous-time algorithm (19). (b) Continuous-time algorithm (25). 
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FIGURE 12 The performance of dynamic average consensus algo-
rithm (19) in the distributed formation control scenario of Figure 8. A 
group of four mobile agents acquires reference inputs (18) corre-
sponding to the time-varying position of a set of moving targets. The 
algorithm convergence properties are not affected by initialization 
errors, as stated in Theorem 3. This property also makes it robust to 
agent arrivals and departures. In this simulation, agent 4 leaves the 
network at time t 10 s= , and a new agent 5 joins the network at .t 20 s=  
In contrast to what was observed for (16) and (19) in Figure 10, the 
execution recovers its tracking performance after a transient. 
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The fast dynamics is (24a) and employs a small value 
for .R 0!e 2  The fast dynamics, which builds on the propor-
tional-integral (PI) algorithm (19), is intended to generate 
the average of the sum of the dynamic input and its first 
derivative. The slow dynamics (24b) then uses the signal 
generated by the fast dynamics to track the average of the 
reference signal across the network at a prespecified smaller 
rate .R 0!b 2  The novelty is that these slow and fast dynam-
ics are running simultaneously, and thus, there is no need to 
wait for convergence of the fast dynamics and then take 
slow steps toward the input average.

Similar to the dynamic average consensus algorithm (19), 
(24) does not require any specific initialization. The technical 
approach used in [54] to study the convergence of (24) is based 
on the singular perturbation theory [55, Ch. 11], which results 
in a guaranteed convergence to an e-neighborhood of u ( )tavg  
for small values of .R 0!e 2  Using time-domain analysis, 
information about the ultimate tracking behavior of (19) can 
be made more precise. For convenience, the changes of vari-
ables (12) and (21a) with R L R R u( ) ( )y w T TT
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where .u u( ) ( )tf TT . ..
b= +  Using the ISS bound on the trajec-

tories of LTI systems (see “Input-to-State Stability of Linear 
Time-Invariant Systems”), the tracking error of each agent 

{ , , }i N1 f!  while implementing the FOI-DC algorithm 
with R 0!e 2  is,
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where .e et tA # l m-r  From this error bound, it is observed 
that, for dynamic signals with bounded first and second 
derivatives, the FOI-DC algorithm is guaranteed to track 
the dynamic average with an ultimately bounded error. 
This tracking error can be made small using a small 

.R 0!e 2  Use of small R 0!e 2  also results in dynamics 
(25a) to have a higher decay rate. Therefore, the domi-
nant rate of convergence of the FOI-DC algorithm is 
determined by ,b  which can be prespecified regardless 

of the interaction topology. Moreover, b  can be used to 
regulate the control effort of the integrator dynamics 

( ), { , , }x c t i N1i i f!=o  while maintaining a good tracking 
error via the use of small .R 0!e 2

An Alternative Algorithm for Directed Graphs
As observed, (19) is not implementable over directed graphs 
because it requires information exchange with both in- and 
out-neighbors, and these sets are generally different. In 
[19], the authors proposed a modified proportional and 
integral agreement feedback dynamic average consensus 
algorithm whose implementation does not require the 
agents to know their respective columns of the Laplacian. 
This algorithm is

 a ( ),q x xi
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/  (25c)

{ , , },i N1 f!  where ., R 0!a b 2  Equation (25) in compact 
form can be equivalently written as

u L L u( ) ( ) ( ) ,tx x x x d q
.

t

t
0

.

0
a b ab x x=- - - - - +#

which demonstrates the proportional and integral agree-
ment feedback structure of this algorithm. As was done 
for (11), a change of variables up xi i i= -  can be used to 
write this algorithm in a form whose implementation 
does not require the knowledge of the derivative of the 
reference signals.

Note an interesting connection between (25) and (16). 
Writing the transfer function from the reference input to the 
tracking error state (25), there is a pole-zero cancellation that 
reduces (25) to (11) and (16). Despite this close relationship, 
there are some subtle differences. For example, unlike (11), 
(25) enjoys robustness to reference signal measurement per-
turbations and naturally preserves the privacy of the input 
of each agent against adversaries. Specifically, an adversary 
with access to the time history of all network communica-
tion messages cannot uniquely reconstruct the reference 
signal of any agent [19], which is not the case for (16).

Figure 11(b) shows the block diagram representation of 
this algorithm. The next result states the convergence prop-
erties of (25). See [19] for the proof of this statement, which 
is established using the time-domain analysis implemented 
to analyze the algorithms reviewed so far.

Theorem 4: Convergence of (25) Over Strongly Connected and 
Weight-Balanced Digraphs for Dynamic Input Signals [19]
Let G  be a strongly connected and weight-balanced digraph. 
Let u/ ( ) ( ) .sup N t1 1 1( )I[ , ) NNt N 31<< x c=-3

<
!x o^ h  For any 

, ,R 0!a b 2  the trajectories of (25) satisfy
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, { , , },lim x t t i N1
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c
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"3 t  (26)

provided ( ) .q t 0j
N j

1 0R ==  The convergence rate to the error 
bound is { , ( )} .min Re 2a b m  

The inverse relation between b  and the tracking error in 
(26) indicates that the parameter b  can be used to control 
the tracking error size, and a  can be used to control the rate 
of convergence.

DISCRETE-TIME DYNAMIC  
AVERAGE CONSENSUS ALGORITHMS
Although the continuous-time dynamic average consensus 
algorithms described in the previous section are amenable 
to elegant and relatively simple analysis, implementing 
these algorithms on practical cyberphysical systems requires 
continuous communication between agents. This require-
ment is not feasible in practice due to constraints on the com-
munication bandwidth. To address this issue, the discrete-time 
dynamic average consensus algorithms where the commu-
nication among agents occurs only at discrete-time steps 
are studied.

The main difference between continuous-time and 
discrete-time dynamic average consensus algorithms is 
the rate at which their estimates converge to the average 
of the reference signals. In continuous time, the parame-
ters may be scaled to achieve any desired convergence 
rate, whereas in discrete time, the parameters must be 
carefully chosen to ensure convergence. The problem of 
optimizing the convergence rate has received significant 
attention in the literature [56]–[65]. Here, a simple method 
using root locus techniques for choosing the parameters 
to optimize the convergence rate is provided. It is also 
shown how to further accelerate the convergence by 
introducing extra dynamics into the dynamic average 
consensus algorithm.

The convergence rate of four discrete-time dynamic 
average consensus algorithms is analyzed in this section, 
beginning with the discretized version of the continuous-
time algorithm (16). It is then shown how to use extra 
dynamics to accelerate the convergence rate and/or obtain 
robustness to initial conditions. Table 2 summarizes the 
arguments of the driving command of 
these algorithms in (2) and their special 
initialization requirements.

For simplicity of exposition, assume the 
communication graph is constant, con-
nected, and undirected. The Laplacian 
matrix is then symmetric and therefore has 
real eigenvalues. Because the graph is con-
nected, the smallest eigenvalue is ,01m =  
and all other eigenvalues are strictly posi-
tive, that is, .02 2m  Furthermore, assume 
that the smallest and largest nonzero eigen-
values are known (if the exact eigenvalues 

are unknown, it also suffices to have lower and upper bounds, 
respectively, on ) .and N2m m

Nonrobust Dynamic Average Consensus Algorithms
First consider the discretized version of the continuous-time 
dynamic average consensus algorithm in (16) (“Euler Dis-
cretizations of Continuous-Time Dynamic Average Consen-
sus Algorithms” elaborates on the method for discretization 
and the associated range of admissible step sizes). This algo-
rithm has the iterations
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where k RI !  is the step size. The block diagram is pro-
vided in Figure 13(a).

For discrete-time LTI systems, the convergence rate is 
given by the maximum magnitude of the system poles. The 
poles are the roots of the characteristic equation, which for 
the dynamic average consensus algorithm in Figure 13(a) is

L( ) .z k0 I I I= - -

If the Laplacian matrix can be diagonalized, then the system 
can be separated according to the eigenvalues of L  and 
each subsystem analyzed separately. The characteristic equa-
tion corresponding to the eigenvalue Lofm  is then

 .z
k0 1 1
Im= +
-

 (28)

To observe how the pole moves as a function of the Lapla-
cian eigenvalue, root locus techniques from LTI systems 
theory can be used. Figure 14(a) shows the root locus of (28) 
as a function of .m  The dynamic average consensus algo-
rithm poles are then the points on the root locus at gains 

{ , , },i N1fori f!m  where im  are the eigenvalues of the 
graph Laplacian. To optimize the convergence rate, the 
system is designed to minimize ,t  where all poles corre-
sponding to disagreement directions (that is, those orthog-
onal to the consensus direction )1N  are inside the circle 
centered at the origin of radius .t  Because the pole starts at 
z 1=  and moves left as m  increases, the convergence rate is 
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/ None None 

TABLE 2 The arguments of the driving command in (2) for the reviewed 
discrete-time dynamic average consensus algorithms together with their 
initialization requirements.
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Euler Discretizations of Continuous-Time Dynamic Average Consensus Algorithms

The continuous-time algorithms described in the article can 

also give rise to discrete-time strategies. Here, we describe 

how to discretize them so that they are implementable over 

wireless communication channels. This can be done by using 

the (forward) Euler discretization of the derivatives

( )
( ) ( )

,t
k k1

x
x x.

.
d

+ -

where R 0!d 2  is the step size. To illustrate the discussion, we 

develop this approach for (25) over a connected graph topol-

ogy. The following discussion can also be extended to include 

iterative forms of the other continuous-time algorithms studied 

in the article. Using the Euler discretization in (25) leads to
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where u u u( ) ( ) ( ).k k k1i i iD = + -  To implement this iterative form 

at each time step ,k  access to the future value of the reference 

input at time step k 1+  is needed. Such a requirement is not 

practical when the reference input is sampled from a physical 

process or is a result of another online algorithm. This require-

ment can be circumvented using a backward Euler discretiza-

tion, but the resulting algorithm tracks the reference dynamic 

average with one-step delay. A practical solution that avoids 

requiring the future values of the reference input is obtained 

by introducing an intermediate variable ( ) ( ) u ( )z k x k ki i i= -  and 

representing the iterative algorithm (S14) in the form
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  ( ) ( ) u ( ),x k z k ki i i= +  (S15c)

for , , .i N1 f! " ,  Equation (S15) is then implementable without 

the use of future inputs.

The question then is to characterize the adequate step siz-

es that guarantee that the convergence properties of the con-

tinuous-time algorithm are retained by its discrete implemen-

tation. Intuitively, the smaller the step size, the better for this 

purpose. However, this also requires more communication. To 

ascertain this issue, the following result is particularly useful.

Lemma S1 : Admissible Step Size for the Euler Discretized 

Form of Linear Time-Invariant Systems and a Bound on 

Their Trajectories

Consider

, ,tx Ax Bu R
.

0!= + $

and its Euler discretized iterative form

 ( ) ( ) ( ) ( ), ,k k k k1x I A x Bu Z 0!d d+ = + + $  (S16)

where uandx R Rn m! !  are, respectively, state and input 

vectors, and R 0!d 2  is the discretization step size. Let the 

system matrix [ ]aA Rij
n n!= #  be a Hurwitz matrix with eigen-

values ,i i
n

1n =" ,  and the difference of the input signal be bound-

ed, .u 31 1tD  For any ( , )d0!d r  where
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the eigenvalues of ( )I Ad+  are all located inside the until circle 

in the complex plane. Moreover, starting from any ( ) ,0x Rn!  

the trajectories of (S16) satisfy
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k
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~
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 (S18)

where ( , ),0 1!~  and 0R 2!l  such that I A k k#d l~+ . 
The bounds ( , )0 1 and R 0! !~ l 2  in I A k k#d l~+  when 

all the eigenvalues of I Ad+  are located in the unit circle of 

the complex plane can be obtained from the following linear 

matrix inequality optimization problem (see [S21, Theorem 

23.3] for details):

 ( , , ) , subject toargminQ 2~ l ~=  (S19)

 , , ,1 0 1 1I Q I 21 1 2# #
l

~ l

 ( ) ( ) ( ) .1I A Q I A Q I2#d d ~+ + - - -<

Building on Lemma S1, the next result characterizes the 

admissible discretization step size for (S15) and its ultimate 

tracking behavior.

Theorem S2: Convergence of (S15) Over  

Connected Graphs [19]

Let G  be a connected, undirected graph. Assume that the 

differences of the inputs of the network satisfy (max Ik Z 0 < -! $

( / ) ) ( ) .N k1 1 1 uN N 31< cD =<  Then, for any , ,02a b  (S15) over 

G  initialized at ( ) ( )z v0 0and RRi i! !  such that ( )v 0 0i
N j

1R ==  

has bounded trajectories that satisfy
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provided , , ( ) .min0 2 N
1 1 1!d a b m- - -^ h" ,  Here, Nm  is the largest 

eigenvalue of the Laplacian, and ( , )0 1 and R 0! !~ l 2  satisfy 

, .kI R LR Z
k k

0# !d b l~- <
$  

Note that the characterization of the step size requires knowl-

edge of the largest eigenvalue Nm  of the Laplacian. Because such 

knowledge is not readily available to the network unless dedicated 

distributed algorithms are introduced to compute it, [19] provides 

the sufficient characterization , , ( )min0 dmax1 1 1
out!d a b- - -^ h" ,  

along with the ultimate tracking bound
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optimized when there is a pole at z when 2t m m= =  and at 
,z when Nt m m=- =  that is,

.k k0 1 1 0 1 1andI
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I
2m
t

m
t

= +
-

= +
- -

Solving these conditions for k andI t  gives
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N N
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m m
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+
=

+
-

While the previous choice of parameters optimizes the 
convergence rate, even faster convergence can be achieved 
by introducing extra dynamics into the dynamic average 
consensus algorithm. Consider the accelerated dynamic 
average consensus algorithm in Figure 13(c), given by
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 .x u pk
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Instead of a simple integrator, the transfer function in the 
feedback loop now has two poles (one of which is still at 

) .z 1=  To implement the dynamic average consensus algo-
rithm, each agent must track two internal state variables 

) .(p pandk
i

k
i

1-  This small increase in memory, however, can 
result in a significant improvement in the rate of conver-
gence, as discussed next.

Once again, root locus techniques can be used to design 
the parameters to optimize the convergence rate. Figure 14(b) 
shows the root locus of the accelerated dynamic average 

consensus algorithm (29). By adding an open-loop pole at 
z 2t=  and zero at ,z 0=  the root locus now goes around the 
t  circle. Similar to the previous case, the convergence rate is 
optimized when there is a repeated pole at z t=  when 

2m m=  and a repeated pole at z t=-  when .Nm m=  This 
gives the optimal parameter kI  and convergence rate t  
given by

.k 4 andI
N N
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2
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FIGURE 13 A block diagram of discrete-time dynamic average consensus algorithms. The algorithms in (b) and (d) use proportional-integral 
(PI) dynamics to obtain robustness to initial conditions, whereas those in (c) and (d) use extra dynamics to accelerate the convergence rate. 
When the graph is connected and balanced and upper and lower bounds on the nonzero eigenvalues of the graph Laplacian are known, 
closed-form solutions for the parameters that optimize the convergence rate are known (see Theorem 5). (a) The nonrobust, nonaccelerated 
dynamic average consensus algorithm (27). (b) The robust, nonaccelerated, PI dynamic average consensus algorithm (30). (c) The nonro-
bust, accelerated, dynamic average consensus algorithm (29). (d) The robust, accelerated, PI dynamic average consensus algorithm (31).
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FIGURE 14 The root locus design of dynamic average consensus 
algorithms. The dynamic average consensus algorithm poles are 
the points on the root locus at gains im  for { , , },i N1 f!  where im  
are the eigenvalues of the graph Laplacian. To optimize the con-
vergence rate, the parameters are chosen to minimize t  such that 
all poles corresponding to eigenvalues im  for { , , }i N2 f!  are 
inside the circle centered at the origin of radius .t  The dynamic 
average consensus algorithm then converges linearly with rate .t  
(a) The accelerated, dynamic average consensus algorithm in 
Figure 13(a). (b) The nonaccelerated, dynamic average consen-
sus algorithm in Figure 13(c).
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The convergence rates of both the standard (27) and 
accelerated (29) versions of the dynamic average consen-
sus algorithm are plotted in Figure 15 as a function of the 
ratio ./ N2m m

Robust Dynamic Average Consensus Algorithms
Although the previous dynamic average consensus algo-
rithms are not robust to initial conditions, root locus 
techniques can also be used to optimize the convergence 
rate of dynamic average consensus algorithms that are 
robust to initial conditions. Consider the discrete-time 
version of the PI estimator from (19), whose iterations are 
given by
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with parameters , ,k k Rp I !t . The block diagram of this 
algorithm is shown in Figure 13(b).

Because the dynamic average consensus algorithms 
(27) and (29) have only one Laplacian block in the block 
diagram, the resulting root loci are linear in the Lapla-
cian eigenvalues. For the PI dynamic average consensus 
algorithm, however, the block diagram contains two 

Laplacian blocks, resulting in a quadratic dependence 
on the eigenvalues. Instead of a linear root locus, the 
design involves a quadratic root locus. Although this 
complicates the design process, closed-form solutions 
for the algorithm parameters can still be found [57], 
even for the accelerated version using extra dynamics, 
given by
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whose block diagram is in Figure 13(d). The resulting con-
vergence rate is plotted in Figure 15. Although the conver-
gence rates of the standard and accelerated PI dynamic 
average consensus algorithms are slower than those of (27) 
and (29), respectively, they have the additional advantage of 
being robust to initial conditions.

The following result summarizes the parameter choices 
that optimize the convergence rate for each of the discrete-
time dynamic average consensus algorithms in Figure 13. 
The results for the first two algorithms follow from the pre-
vious discussion, whereas details of the results for the last 
two algorithms can be found in [57].

Theorem 5: Optimal Convergence Rates of  
Discrete-Time Dynamic Average Consensus Algorithms
Let G  be a connected, undirected graph. Suppose the refer-
ence signal ui  at each agent { , , }i N1 f!  is a constant scalar. 
Consider the dynamic average consensus algorithms in 
Figure 13, with the parameters chosen according to Table 3 
[the algorithms in Figure 13(a) and (c) are initialized such 
that the average of the initial integrator states is zero, that 
is, .p 0i

N i
1 0R == @  The agreement states , { , , }x i N1k

i f!  con-
verge to uavg  exponentially with rate .t  

PERFECT TRACKING USING A PRIORI KNOWLEDGE 
OF THE INPUT SIGNALS
The design of the dynamic average consensus algorithms 
described in the discussion so far does not require prior 
knowledge of the reference signals and is therefore 
broadly applicable. This also comes at a cost. The conver-
gence guarantees of these algorithms are strong only 
when the reference signals are constant or slowly varying. 
The error of such algorithms can be large, however, when 
the reference signals change quickly in time. This section 
describes dynamic average consensus algorithms, which 
are capable of tracking fast time-varying signals with 
either zero or small steady-state error. In each case, their 
design assumes some specific information about the 
nature of the reference signals. In particular, consider refer-
ence signals that 1) have a known model, 2) are band lim-
ited, or 3) have bounded derivatives.

FIGURE 15 The convergence rate t  as a function of / N2m m  for the 
dynamic average consensus algorithms in Figure 13. The acceler-
ated dynamic average consensus algorithms (dashed lines) use 
extra dynamics to enhance the convergence rate, as opposed to 
the nonaccelerated algorithms (solid lines). Also, the robust algo-
rithms (green) use the proportional-integral structure to obtain 
robustness to initial conditions as opposed to the nonrobust algo-
rithms (blue). The graph is assumed to be constant, connected, 
and undirected with Laplacian eigenvalues im  for { , , }.i N1 f!  
Closed-form expressions for the rates and algorithm parameters 
are provided in Theorem 5.
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Signals With a Known Model (Discrete Time)
The discrete-time dynamic average consensus algorithms 
discussed previously are designed with the idea of tracking 
constant reference signals with zero steady-state error. To do 
this, the algorithms contain an integrator in the feedback 
loop. This concept generalizes to time-varying signals 
with a known model using the internal model principle. 
Consider reference signals whose z-transform has the form 
u ( ) ( )/ ( ),z n z d zi i=  where ( )n zi  and ( )d z  are polynomials in 

{ , , } .z i N1for f!  Dynamic average consensus algorithms 
can be designed to have zero steady-state error for such sig-
nals by placing the model of the input signals [that is, ( )]d z  in 
the feedback loop. Some common examples of models are

 =( )  
( ) ,

( ) ,
 

 .cos
d z

z
z z

m1
2 1

1polynomial of degree
sinusoid with frequency

m

2 ~ ~

-

- +

-)

This section focuses on dynamic average consensus algo-
rithms that track degree m 1-  polynomial reference sig-
nals with zero steady-state error.

Consider the dynamic average consensus algorithms in 
Figure 16. The transfer function of each algorithm has m  
zeros at ,z 1=  so the algorithms track degree m 1-  polyno-
mial references signals with zero steady-state error. The 
time-domain equations for the dynamic average consensus 
algorithm in Figure 16(a) are
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where the mth  divided difference is defined recursively 
as u u u( ) ( ) ( )m

k
i m

k
i m

k
i1 1

1D D D= -- -
-  for m 2$  with u( )

k
i1D = 

u u .k
i

k
i

1- -  The estimate of the average, however, is delayed 
by m  iterations due to the transfer function having a factor 
of z m-  between the input and output. This problem is fixed 
by the dynamic average consensus algorithm in Figure 16(b), 
given by
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which tracks degree m 1-  polynomial reference signals 
with zero steady-state error without delay. Note, however, 
that the communication graph is assumed to be constant to 
use frequency-domain arguments; although the output of 
the dynamic average consensus algorithm in Figure 16(a) is 
delayed, it also has nice tracking properties when the com-
munication graph is time varying, whereas the dynamic 
average consensus algorithm in Figure 16(b) does not.

To track degree m 1-  polynomial reference signals, 
each dynamic average consensus algorithm in Figure 16 
cascades m  dynamic average consensus algorithms, each 
with a pole at z 1=  in the feedback loop. The dynamic 
average consensus algorithm (27) is cascaded in Figure 16(b), 
but any of the dynamic average consensus algorithms 
from the previous section could also be used. For example, 
the PI dynamic average consensus algorithm could be cas-
caded m  times to track degree m 1-  polynomial reference 
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TABLE 3 The parameter selection for the dynamic average consensus algorithms of Figure 13 as a function of the minimum 
and maximum nonzero Laplacian eigenvalues and2 Nm m , respectively, with .: /2r Nm m m=   N/A: not applicable.
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signals with zero steady-state error independent of the ini-
tial conditions.

In general, reference signals with model ( )d z  can be 
tracked with zero steady-state error by cascading simple 
dynamic average consensus algorithms, each of which tracks 
a factor of ( ) .d z  In particular, suppose ( ) ( ) ( )d z d z d z1 2 f=  

( ) .d zm  Then, m dynamic average consensus algorithms can 
be cascaded, where the ith component contains the model 

( ) , , .d z i m1fori f=  Alternatively, a single dynamic average 
consensus algorithm can be designed that contains the entire 
model .( )d z  This approach using an internal model version 
of the PI dynamic average consensus algorithm is designed 
in [66] in both continuous time and discrete time.

In many practical applications, the exact model of the 
reference signals is unknown. However, it is shown in [67] 
that a frequency estimator can be used in conjunction with 
an internal model dynamic average consensus algorithm to 
still achieve zero steady-state error. In particular, the fre-
quency of the reference signals is estimated such that the 
estimate converges to the actual frequency. This time-vary-
ing estimate of the frequency is then used in place of the 
true frequency to design the feedback dynamic average 
consensus algorithm [67].

Band-Limited Signals (Discrete Time)
To use algorithms designed using the model of the reference 
signals, the signals must be composed of a finite number of 
known frequencies. When either the frequencies are unknown 
or there are infinitely many frequencies, dynamic average 
consensus algorithms can still be designed if the reference 

signals are band limited. In this case, feedforward dynamic 
average consensus algorithm designs can be used to achieve 
arbitrarily small steady-state error.

For this discussion, assume that the reference signals 
are band limited with known cutoff frequency. In particu-
lar, let U ( )zi  be the z-transform of the ith  reference signal 
u{ } .k
i  Then U ( )zi  is band limited with cutoff frequency ci  if 

(U ( ))exp j 0i i =  for all .( , ]c!i i r  
Consider the dynamic average consensus algorithm in 

Figure 17. The reference signals are passed through a prefil-
ter ( )h z  and then multiplied m  times by the consensus 
matrix LI -  with a delay between each (to allow time for 
communication). The transfer function from the input U ( )z  
to the output ( )zX  is

.L L( , ) ( ) ( )H z h z
z
1 Im

m= -

For the tracking error to be small, ( )h z  must approximate 
zm  for all [ , ],0 c!i i  where ( )expz j and ci i=  is the cutoff 
frequency. In this case, the transfer function in the pass-
band is approximately

,L L( , ) ( )H z I m. -

so the error can be made small by making m  large enough 
(so long as L  is scaled such that ) .112

T< <L /N11I - -

Specifically, the prefilter is designed such that ( )h z  is 
proper and ( ) ( )exph z z z jform. i=  for all [ , ]0 c!i i  [note 
that ( )h z zm=  cannot be used because it is not causal]. An 
m-step filter can be obtained by cascading a one-step filter m  
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FIGURE 16 A block diagram of dynamic average consensus algorithms that track polynomial signals of degree m 1-  with zero steady-state 
error when initialized correctly (neither algorithm is robust to initial conditions). The indicated section is repeated in series m times. (a) The 
performance of (32) does not degrade when the graph is time varying, but the estimate is delayed by m iterations. Furthermore, the algo-
rithm is numerically unstable when m is large and eventually diverges from tracking the average when implemented using finite precision 
arithmetic. (b) The estimate of the average by (33) is not delayed, and the algorithm is numerically stable, but the tracking performance 
degrades when the communication graph is time varying. (a) Dynamic average consensus algorithm (32) in [76] where ( )z1( )m m1D = - -  is 
the mth divided difference (see also [77] for a step-size analysis). (b) Dynamic average consensus algorithm (33), which is the algorithm  
in [53] cascaded in series m times.
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times in series. In other words, let ( ) [ ( )] ,h z zf z m=  where 
( )f z  is strictly proper and approximates unity in the 

passband. Because ( )f z  must approximate unity in both 
magnitude and phase, a standard lowpass filter cannot be 
used. Instead, set

 ( ) ( )
( )

,limf z g z
g z

1
z

= -
"3

where ( )g z  is a proper high-pass filter with cutoff fre-
quency .ci  Then ( )f z  is strictly proper (due to the normal-
izing constant in the denominator) and approximates 
unity in the band [ , ]0 ci  [because ( )g z  is high pass]. 
Therefore, a prefilter ( )h z  that approximates zm  in the 
passband can be designed using a standard high-pass 
filter .( )g z

Using such a prefilter, [68] makes the error of the 
dynamic average consensus algorithm in Figure 17 arbi-
trarily small if 1) the graph is connected and balanced 
at each time step (in particular, it need not be constant), 
2) L  is scaled such that / ,1T

2 1< <L N11I - -  3) the 
number of stages m  is made large enough, 4) the pre-
filter can approximate zm  arbitrarily closely in the pass-
band, and 5) exact arithmetic is used. Note that exact 
arithmetic is required for arbitrarily small errors because 
rounding errors cause high-frequency components in the 
reference signals.

Signals With Bounded Derivatives (Continuous Time)
Stronger tracking results can be obtained using algorithms 
implemented in continuous time. Here, a number of contin-
uous-time dynamic average consensus algorithms are pre-
sented that are capable of tracking time-varying reference 
signals whose derivatives are bounded with zero error in 
finite time. For simplicity, assume that the communication 
graph is constant, connected, and undirected. Also, the 
reference signals are assumed to be differentiable with 
bounded derivatives.

In discrete time, zero steady-state error is obtained by 
placing the internal model of the reference signals in the 
feedback loop. This provides infinite loop gain at the fre-
quencies contained in the reference signals. In continuous 
time, however, the discontinuous signum function sgn can 

be used in the feedback loop to provide infinite loop gain 
over all frequencies, so no model of the reference signals is 
required. Furthermore, such continuous-time dynamic 
average consensus algorithms are capable of achieving zero 
error tracking in finite time as opposed to the exponential 
convergence achieved by discrete-time dynamic average 
consensus algorithms. One such algorithm is described 
in [69] as

 ( ( ) ( )), { , , },x t x t i N1sgn f!-ux k
.i i

p

j

i j
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The block diagram representation in Figure 18(a) indicates 
that this algorithm applies sgn in the feedback loop. Under 
the given assumptions, using a sliding mode argument, the 
feedback gain kp  can be selected to guarantee zero error 
tracking in finite time, provided that an upper bound c  
of the form u ( )sup

.
[ , )0 31<< x c=3!x  is known [69]. The 

dynamic consensus algorithm (34) can also be implemented 
without derivative information of the reference signals in 
an equivalent way as
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T h e  c o r r e s p o n d i n g  b l o c k  d i a g r a m  i s  s h o w n  i n 
Figure 18(b).

It is simple to see from the block diagram of Figure 18(a) 
why (34) is not robust to initial conditions; the integrator 
state is directly connected to the output and therefore 
affects the steady-state output in the consensus direction. 
This issue is addressed by the dynamic average consensus 
algorithm in Figure 18(c), given by
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FIGURE 17 The feedforward dynamic average consensus algorithm for tracking the average of band-limited reference signals. The prefilter 
( )h z  is applied to the reference signals before passing through the graph Laplacian. For an appropriately designed prefilter, the dynamic 

average consensus algorithm can track band-limited reference signals with arbitrarily small steady-state error when using exact arithmetic 
(and small error for finite precision) [68].
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which moves the integrator before the Laplacian in the 
feedback loop. However, this dynamic average consensus 
algorithm has two Laplacian blocks directly connected, 
which means that it requires two-hop communication to 
implement. In other words, two sequential rounds of com-
munication are required at each time instant. In the time 
domain, each agent must perform the following (in order) 
at each time :t  1) communicate ( ),p ti  2) calculate ( ),x ti  
3) communicate ( ),x ti  and 4) update ( )p ti  using the deriva-
tive .( )p tio  To require only one-hop communication, the 
dynamic average consensus algorithm in Figure 18(d), 
given by

 ,q q xi i ia=- +o  (37a)
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places a strictly proper transfer function in the path between 
the Laplacian blocks. The extra dynamics, however, cause 
the output to converge exponentially instead of in finite 
time [70].

Alternatively, under the given assumptions, a sliding-
mode-based dynamic average consensus algorithm with 
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FIGURE 18 A block diagram of discontinuous dynamic average consensus algorithms in continuous time. In each case, the communica-
tion graph is assumed to be constant, connected, and balanced with Laplacian matrix .L BB= <  Furthermore, the reference signals are 
assumed to have bounded derivatives. The dynamic average consensus algorithm (34), shown in (a), achieves perfect tracking in finite 
time and uses one-hop communication, but it is not robust to initial conditions [that is, the steady-state error is zero only if ( )  ( )].u0 1 01 x NN =< <  
Furthermore, the derivative of the reference signals is required (see [69]). The dynamic average consensus algorithm (35) shown in (b) 
is equivalent to the algorithm in (a), although this form does not require the derivative of the reference signals. In this case, the require-
ment on the initial conditions is ( ) .p1 0 0N =<  The dynamic average consensus algorithm (36) shown in (c) converges to zero error in finite 
time and is robust to initial conditions but requires two-hop communication (in other words, two rounds of communication are performed 
at each time instant) (see [70]). The dynamic average consensus algorithm (37) shown in (d) is robust to initial conditions and uses one-
hop communication but converges to zero error exponentially instead of in finite time (see [70]). The dynamic average consensus algo-
rithm (38) shown in (e) is robust to initial conditions and uses one-hop communication, although the error converges to zero exponentially 
instead of in finite time (see [71]). (a) The dynamic average consensus algorithm (34). (b) The dynamic average consensus algorithm 
(35). (c) The dynamic average consensus algorithm (36). (d) The dynamic average consensus algorithm (37). (e) The dynamic average 
consensus algorithm (38). 
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zero error tracking, which can be arbitrarily initialized, is 
provided in [71] as
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However, this algorithm requires both the reference sig-
nals and their derivatives to be bounded with known values 

:and1 2c c  u )sup ([ , )0 1 31< <x c=3!x  and u )sup ([ , )0 < <x =3!x o  
.2 31c  These values are required to design the proper slid-

ing mode gain .kp
The continuous-time finite-time algorithms described in 

this section exhibit a sliding mode behavior. In fact, they con-
verge in finite time to the agreement manifold and then slide on 
it by switching continuously at an infinite frequency between 
two system structures. This phenomenon is called chattering. 
Recall that commutations at infinite frequency between two 
subsystems is called the Zeno phenomenon in the literature on 
hybrid systems. See [72] for a detailed discussion on the relation 
between first-order sliding mode chattering and the Zeno phe-
nomenon. From a practical perspective, chattering is undesir-
able and leads to excessive control energy expenditure [73]. A 
common approach to eliminate chattering is to smooth out the 
control discontinuity in a thin boundary layer around the 
switching surface. However, this approach leads to a tracking 
error that is proportional to the thickness of the boundary layer. 
Another approach to address is the use of higher-order sliding 
mode control; see [74] for details. To the best of our knowledge, 
higher-order sliding mode control has not been used in the con-
text of dynamic average consensus, although there exist results 
for other networked agreement problems [75].

CONCLUSIONS AND FUTURE DIRECTIONS
This article has provided an overview of the state of the art 
on the available distributed algorithmic solutions to tackle 
the dynamic average consensus problem. It begins by 
exploring several applications of dynamic average con-
sensus in cyberphysical systems, including distributed for-
mation control, state estimation, convex optimization, and 
optimal resource allocation. Using dynamic average con-
sensus as a backbone, these advanced distributed algo-
rithms enable groups of agents to coordinate to solve 
complex problems. Starting from the static consensus prob-
lem, we then derived dynamic average consensus algo-
rithms for various scenarios. Continuous-time algorithms 
are first introduced (along with simple techniques for analyz-
ing them) using block diagrams to provide intuition for 
the algorithmic structure. To reduce the communication 
bandwidth, how to choose the step sizes to optimize the 

convergence rate when implemented in discrete time is 
shown, along with how to accelerate the convergence rate 
by introducing extra dynamics. Finally, how to use a priori 
information about the reference signals to design algo-
rithms with improved tracking performance is shown.

The goal is that the article helps the reader obtain an 
overview of the progress and intricacies of this topic and 
appreciate the design tradeoffs faced when balancing desir-
able properties for large-scale interconnected systems, such 
as convergence rate, steady-state error, robustness to initial 
conditions, internal stability, amount of memory required 
on each agent, and amount of communication between 
neighboring agents. Given the importance of the ability to 
track the average of time-varying reference signals in net-
work systems, it is expected that the number and breadth of 
applications for dynamic average consensus algorithms 
will continue to increase in such areas as the smart grid, 
autonomous vehicles, and distributed robotics.

Many interesting questions and avenues for further 
research remain open. For instance, the emergence of oppor-
tunistic state-triggered ideas in the control and coordination 
of networked cyberphysical systems presents exciting 
opportunities for the development of novel solutions to the 
dynamic average consensus problem. The underlying theme 
of this effort is to abandon the paradigm of periodic or con-
tinuous sampling/control in exchange for deliberate, oppor-
tunistic aperiodic sampling/control to improve efficiency. 
Beyond the brief incursion on this topic in “Dynamic Aver-
age Consensus Algorithms with Continuous-Time Evolution 
and Discrete-Time Communication,” further research is 
needed on synthesizing triggering criteria for individual 
agents that prescribe when information is to be shared 
with or acquired from neighbors, which lead to con-
vergence guarantees and are amenable to the charac-
terization of performance improvements over periodic 
discrete-time implementations. 

The use of event triggering also opens up the way to employ 
other interesting forms of communication and computa-
tion among the agents when solving the dynamic average con-
sensus problem, such as, for instance, the cloud. In cloud-based 
coordination, instead of direct peer-to-peer communication, 
agents interact indirectly by opportunistically communicating 
with the cloud to leave messages for other agents. These mes-
sages can contain information about their current esti-
mates, future plans, or fallback strategies. The use of the 
cloud also opens the possibility of network agents with limited 
capabilities taking advantage of high-performance computa-
tion capabilities to deal with complex processes. The time-
varying nature of the signals available at the individual agents 
in the dynamic average consensus problem raises many inter-
esting challenges that must be addressed to take advantage of 
this approach. Related to the focus of this effort on the com-
munication aspects, the development of initialization-free 
dynamic average consensus algorithms over directed graphs 
is also another important line of research.
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Dynamic Average Consensus Algorithms With Continuous-Time  
Evolution and Discrete-Time Communication

We discuss here an alternative to the discretization route 

explained in “Euler Discretizations of Continuous-Time 

Dynamic Average Consensus Algorithms” to produce imple-

mentable strategies from the continuous-time algorithms 

described in the article. This approach is based on the ob-

servation that, when implementing the algorithms over digital 

platforms, computation can still be reasonably approximated 

by continuous-time evolution (given the ever-growing capabili-

ties of modern embedded processors and computers), whereas 

communication is a process that still requires proper acknowl-

edgment of its discrete-time nature. The basic idea is to op-

portunistically trigger, based on the network state, the times for 

information sharing among agents to take place and allow indi-

vidual agents to determine these autonomously. This has the 

potential to result in more efficient algorithm implementations 

because performing communication usually requires more en-

ergy than computation [S22]. In addition, the use of fixed com-

munication step sizes can lead to a wasteful use of the network 

resources because of the need to select it, taking into account 

worst-case scenarios. These observations are aligned with the 

ongoing research activity [S23], [S24] on event-triggered con-

trol and aperiodic sampling for controlled dynamical systems 

that seeks to trade computation and decision making for less 

communication, sensing, or actuator effort while still guaran-

teeing a desired level of performance. The surveys [S25], [S26] 

describe how these ideas can be employed to design event-

triggered communication laws for static average consensus.

Motivated by these observations, [S15] investigates a dis-

crete-time communication implementation of the continuous-

time algorithm (25) for dynamic average consensus. Under this 

strategy, the algorithm becomes

 ( ),av x xi
ij

i j

j

N
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ab= -
=

o t t/  (S21a)
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for each { , , },i N1 f!  where ( ) ( )x t x ti i
k
i=t  for [ , ),t t tk

i
k
i

1! +  with 

{ }t Rk
i

01 $  denoting the sequence of times at which agent i  

communicates with its in-neighbors. The basic idea is that 

agents share their information with neighbors when the uncer-

tainty in the outdated information is such that the monotonic 

convergent behavior of the overall network can no longer be 

guaranteed. The design of such triggers is challenging because 

of the following requirements: 1) triggers need to be distributed 

so that agents can check them with the information available 

to them from their out-neighbors, 2) they must guarantee the 

absence of Zeno behavior (the undesirable situation where an 

infinite number of communication rounds are triggered in a fi-

nite amount of time), and 3) they have to ensure the network 

achieves dynamic average consensus, although agents operate 

with outdated information while inputs are changing with time.

Consider the following event-triggered communication law 

[S15]: each agent is to communicate with its in-neighbors at 

times { } ,t Rk
i

k 0N 1! $  starting at ,t 0i
1 =  determined by

 [ , ) ( ) ( ) .argmaxt t x t x ttk
i

k
i i

k
i i

i1 3! # e= -+ $ .  (S22)

Here, Ri 0!e 2  is a constant value that each agent chooses 

locally to control its inter-event times and avoid Zeno behavior. 

Specifically, the interexecution times of each agent { , , }i N1 f!  

employing (S22) are lower bounded by

 ,ln
c

1 1i
i
ix

a
ae

= +` j  (S23)

where ci  and h  are positive real numbers that depend on the 

initial conditions and network parameters (we omit for simplici-

ty their specific form, but see [S15] for the explicit expressions). 

The lower bound (S23) shows that, for a positive nonzero ,ie  

the interexecution times are bounded away from zero, and it is 

guaranteed that, for networks with a finite number of agents, 

the implementation of (S21) with the communication trigger law 

(S22) is Zeno free. The following result formally describes the 

convergence behavior of (S21) under (S22) when the interac-

tion topology is modeled by a strongly connected and weight-

balanced digraph.

Theorem S3: Convergence of (S21) Over Strongly 

Connected and Weight-Balanced Digraph with Asynchronous 

Distributed Event-Triggered Communication [S15]

Let G  be a strongly connected and weight-balanced digraph. 

Assume the reference signals satisfy ( ) ,usup t[ , )
.

t
i i

0 31l=3!  

for { , , },i N1 f!  and ( ) .usup t[ , )
.

t N0 31cP =3!  For any 

, ,R 0!a b 2  (S21) over G  starting from ( )x 0 Ri !  and ( )v 0 Ri !  

with ( ) ,v 0 0j
N j

1R ==  where each agent { , , }i N1 f!  commu-

nicates with its neighbors at times { } ,t Rk
i

k 0N 1! $  starting at 

,t 0i
1 =  determined by (S22) with ,RN

0!e 2  satisfies
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for { , , }i N1 f!  with an exponential rate of convergence of 

{ , }.min 2a bmt  Furthermore, the interexecution times of agent 

{ , , }i N1 f!  are lower bounded by (S23). 
The expected tradeoff between the desire for longer 

interevent time and the adverse effect on systems convergence 
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and performance is captured in (S23) and (S24). The lower bound 
ix  in (S23) on the inter-event times allows a designer to compute 

bounds on the maximum number of communication rounds 

(and associated energy spent) by each agent { , , }i N1 f!  

(and hence the network) during any given time  interval. It is 

 interesting to analyze how this lower bound  depends on the 

various problem ingredients: ix  is an increasing function of 

ie  and a decreasing function of a  and .ci  Through the lat-

ter variable, the bound also depends on the graph topology 

and the design parameter .b  Given the definition of ,ci  we 

can deduce that the faster an input of an agent is changing 

(larger )il  or the  farther the agent initially starts from the av-

erage of the inputs, the more often that agent would need to 

trigger communication. The connection between the network 

performance and the communication overhead can also be ob-

served here. Increasing b  or decreasing ie  to improve the ul-

timate tracking error bound (S24) results in smaller inter-event 

times. Given that the rate of convergence of (S21) under (S22) 

is { , },min 2a bmt  decreasing a  to increase the inter-event times 

slows down the convergence.

When the interaction topology is a connected graph, the 

properties of the Laplacian enable the identification of an al-

ternative event-triggered communication law that, compared to 

(S22), has a longer inter-event time but similar dynamic aver-

age tracking performance. Consider the sequence of commu-

nication times { }tk
i

k N!  determined by
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k
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Compared to (S22), the extra term / ( ) ( ) ( )d t x t1 4 ai
j
N

ij
i

1out ;R -= t  

( )x tj 2;t  in the communication law (S25) allows agents to have 

longer inter-event times. Formally, the interexecution times 

of agent { , , }i N1 f!  implementing (S25) are lower bound-

ed by
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for positive constants ;cir  see [S15] for explicit expressions. 

Numerical examples in [S15] show that the implementation 

of (S25) for connected graphs results in inter-event times lon-

ger than the ones of the event-triggered law (S22). Figure S2 

shows one of those examples. Similar results can also be de-

rived for time-varying, jointly connected graphs (see [S15] for a 

complete exposition).
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FIGURE S2 A comparison between the event-triggered algo-
rithm (S21) employing the event-triggered communication law 
(S25) and the Euler discretized implementation of (25), as 
described in (S15) with fixed step size [S15]. Both of these 
algorithms use 1a =  and .4b =  The network is a weight-bal-
anced digraph of five agents with unit weights. The inputs are 

( ) . ( . ),sinr t t0 5 0 81 =  r ( ) . ( . ) . ( . ), r ( )sin cost t t t0 5 0 7 0 5 0 62 3= + =  
( . ) ,sin t0 2 1+  r ( ) a n( . ),tat t0 54 =  and r ( ) . ( ).cost t0 1 25 =  In plot 

(a), the black (respectively, gray) lines correspond to the track-
ing error of the event-triggered algorithm (S21) employing 
event-triggered law (S25) with / .d2 0 1i

i
oute =^ h  [respectively, 

the Euler discretized algorithm (S15) with fixed step size 
. ].0 12d =  Recall from “Euler Discretizations of Continuous-

Time Dynamic Average Consensus Algorithms” that conver-
gence for (S15) is guaranteed if ( , { , ( ) }),dmin0 max

1 1 1out!d a b- - -  
which, for this example, results in ( , . ).0 0 125!d  The horizontal 
blue lines show the .0 05!  error bound for reference. Part (a) 
shows that both algorithms exhibit comparable tracking per-
formance. Part (b) shows the communication times of each 
agent using the event-triggered strategy. The number of times 
that agents { , , }1 5f  communicate in the time interval [ , ]0 20  
is ( , , , , ),39 40 42 40 39  respectively, when implementing event-
triggered communication (S25). These numbers are sig-
nificantly smaller than the communication rounds required 
by each agent in the Euler discretized algorithm (S15) 

12 166-( / .20 0  rounds).
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We believe that the interconnection of dynamic average 
consensus algorithms with other coordination layers in net-
work systems is a fertile area for both research and applica-
tions. Dynamic average consensus algorithms are a versatile 
tool in interconnected scenarios where it is necessary to com-
pute changing estimates of quantities that are employed by 
other coordination algorithms and whose execution in turn 
affects the time-varying signals available to the individual 
agents. This was illustrated in the “Applications of Dynamic 
Average Consensus in Network Systems” section, which 
described how (in resource allocation problems) a group of 
distributed energy resources can collectively estimate the mis-
match between the aggregated power injection and the desired 
load using dynamic average consensus. The computed mis-
match, in turn, informs the distributed energy resources in 
their decision-making process seeking to determine the power 
injections that optimize their generation cost, which, in turn, 
changes the mismatch computed by the dynamic average con-
sensus algorithm. The fact that the time-varying nature of the 
signals is driven by a dynamic process that itself uses the 
output of the dynamic average consensus algorithms opens 
the way for the use of many concepts germane to systems and 
control, including stable interconnections, ISS, and passivity. 
Along these lines, we could also think of self-tuning mecha-
nisms embedded within dynamic average consensus algorith-
mic solutions that tune the algorithm execution based on the 
evolution of the time-varying signals.

Another interesting topic for future research is the privacy 
preservation of the signals available to the agents in the 
dynamic average consensus problem. Protecting the privacy 
and confidentiality of data is a critical issue in emerging dis-
tributed automated systems deployed in a variety of scenarios, 
including power networks, smart transportation, the Internet 
of Things, and manufacturing systems. In such scenarios, the 
ability of a network system to optimize its operation, fuse 
information, compute common estimates of unknown quanti-
ties, and agree on a common worldview while protecting sen-
sitive information is crucial. In this respect, the design of 
privacy-preserving dynamic average consensus algorithms is 
in its infancy. Interestingly, the dynamic nature of the problem 
might offer advantages in this regard with respect to the static 
average consensus problem. For instance, in differential pri-
vacy, where the designer makes it provably difficult for an 
adversary to make inferences about individual records from 
published outputs or even detect the presence of an individual 
in the data set, it is known that privacy guarantees weaken as 
more queries are made to the same database. However, if the 
database is changing, this limitation no longer applies, and 
this opens the way to studying how privacy guarantees change 
with the rate of variation of the time-varying signals in the 
dynamic average consensus problem.
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