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Abstract: In wireless communications, traditional base stations act as the backbone for
providing network connectivity to users. These base stations, however, require significant
resources to construct and are therefore not suitable for remote areas and disaster scenarios.
This challenge makes them unfit for deployment in remote areas or in disaster scenarios
where fast network establishment is necessary. To address these challenges, cellular base
stations installed on Unmanned Aerial Vehicles (UAVs) can be an alternative solution. UAVs
provide quick deployment capability and can adapt to changing environmental situations,
making them ideal for dynamic network scenarios. In this paper, we address the critical
issue of UAV positioning to maximize the total user coverage, which can be formulated as
a mixed-integer linear program. Given the complexity of larger-scale scenarios related to
the number of users, we suggest a two-step method. First, we group users into clusters,
and then we optimize the UAV positions with respect to these clusters. This approach
introduces a trade-off between computational time efficiency and optimality, which can be
tuned by adjusting the number of clusters. By varying the number of clusters, we balance
computation time with the optimality of the UAV locations, allowing flexible deployment
in diverse scenarios.

Keywords: UAV; MILP; communication; optimization; clustering

1. Introduction
Unmanned Aerial Vehicles (UAVs) are used to perform a variety of tasks in commercial,

military, and academic domains with applications including disaster response and weather
monitoring, among others [1]. In contrast to the dynamic nature of UAVs, traditional
base stations in wireless communications are stationary. Moreover, static base stations are
costly and time-consuming to construct [2]. Motivated by applications requiring wireless
networks in remote areas, emergency scenarios, and crowded areas (such as large sporting
events), we consider UAVs equipped with mobile base stations [3]. Such UAV base stations
(UAV-BSs) provide several advantages in providing cellular and network connectivity to
the users [4]. The positioning of the UAV-base stations is important to provide effective
communication and strong signal strength [5].

Air-to-ground (A2G) networks enable air-to-ground communications. An example
of this is communication between an aircraft and a ground station. In an A2G network
with multiple UAV Base Stations (UAV-BS), the optimal control of the UAV-BS position
and communication range is a key design factor that determines the overall network
performance, measured based on signal strength, mobility, performance, coverage and
several other measurement factors [5]. There are several advantages to deploying UAVs in
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disaster areas where traditional base stations may be inefficient. Stationary base stations
are unreliable in such situations. In such scenarios, these UAVs could provide a solution to
the problem by acting as temporary mobile towers and providing the necessary network
connectivity to ground users [6]. UAVs can provide assistance by providing connectivity
for data transfer between ground users and supporting emergency services with sensors to
monitor the scenario [7].

In this paper, we consider the problem of placing a group of UAVs within their
environment in order to maximize user coverage. The relevance of this work is shown by
the increased demand for efficient communication methods during critical scenarios where
the deployment of traditional base stations is inefficient. The aim of this research is not
only to position the UAVs optimally but also to provide a scalable framework to adapt to
various user densities. UAV base stations are employed as an alternative in remote areas,
emergencies, and areas with high population density. For given user positions, we show
how to formulate this as a mixed-integer linear program (MILP) [8]. The MILP formulation
is chosen because it effectively handles both continuous variables (UAV positions) and
binary decisions (user associations) while providing optimal solutions for UAV placement
to maximize coverage. As finding the optimal solution does not scale well with the number
of users, we also propose a heuristic algorithm based on clustering, where the number of
clusters is a tunable parameter that trades off computational complexity with optimality.

Main Contributions

The main contributions of this paper are as follows.

• The formulation of UAV positioning as a mixed-integer linear program (MILP) to
maximize user coverage in wireless communications.

• The development of a clustering-based approach to address scalability issues for
scenarios with large numbers of users.

• The introduction of a tunable parameter (number of clusters) to trade off computational
complexity with optimality.

• The demonstration of how the number of clusters can be used to balance user coverage
and computation time through experimental results.

• An analysis of the computational time and user coverage as functions of the number
of UAVs and clusters.

We describe our system model in Section 3 and then formulate the problem of finding
the optimal UAV positions in Section 4. We extend our algorithm using clustering in
Section 5, present simulation results in Section 6, and conclude in Section 7.

2. Literature Review
Combining multi-UAV platforms requires complex strategies to apply in real-world

environments [9]. The main challenge in this type of communication is to develop a
strategy to deploy UAVs to meet the needs of users wirelessly and meet the demands
of network traffic [10]; see the survey [11]. A machine learning approach is used to
simulate scenarios with random user positions operating in large-scale environments.
The transmission power is minimized to improve the environment [12]. For uplink and
downlink coverage, a probabilistic method is used where the user distribution follows
randomness in the long run. Using UAVs for damage control as well as defense requires an
efficient central controller to keep all interconnected UAVs under control [13]. A network
and security architecture is proposed in which public and private keys are assigned to a
centralized UAV communication network. In this architecture, a central ground station
collects data from deployed UAVs, and communication is carried out over short distances.
The energy limitations of UAVs, flight time, and computational power are issues faced
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by this type of network. Ref. [14] describes providing wireless coverage to ground users
in disaster scenarios. It describes the UAV’s ability to analyze the ground user’s location
and demonstrates its efficiency in network coverage. The UAV is integrated into a cellular
system to communicate with other devices and provide a reliable network connection.
Search and rescue missions require tolerance to latency and jitter, as well as maximum
throughput [7]. The UAV communication infrastructure must take these parameters into
account. In [7], UAVs are deployed in a UAV-based WiFi network to support search
missions. The flight zone of the UAV is discretized, and the UAV is controlled to fly based
only on 3D grid coordinates. We also aim to cover the maximum number of users by
limiting the number of drones using a comprehensive search algorithm.

The UAV base station provides network coverage in areas where traditional base sta-
tions have insufficient network coverage. Although this type of network connection brings
high benefits, it also poses the problem of optimizing the location of the base station [6].
UAV communication faces several challenges in terms of effective ground communication
with users and maximizing user coverage [2]. Requiring UAVs to cover larger areas is a
key concern. UAV mobility can cause communication issues due to the dynamic network
topology that depends on how UAVs are interconnected. Too much maneuverability of
UAVs is an important factor to consider, as it can prevent them from being localized accord-
ing to the user’s location, leading to limitations in UAV performance. Ref. [15] proposes
a polynomial-time algorithm and K-means clustering to minimize mobile base stations
and coverage for a group of ground users by ensuring that each ground user is within the
communication range of one of the mobile base stations. These base stations are arranged in
a spiral toward the center according to the range of uncovered ground users. This solves the
problem of avoiding excessive movement of UAVs. Some applications that need to ensure
the quality of service to sensitive users require the optimization of other parameters such
as the total bandwidth and total transmission power of the UAVs [16]. The shared power
allocation is used to communicate securely with users under a specific system configura-
tion [17]. To protect the communication between the UAV-BS and legitimate ground users
in critical security areas, a robust common UAV trajectory is developed, considering simula-
tions with multiple eavesdroppers and specifying the confidentiality of data transmissions
in [18]. The problem of maximizing throughput is also one of the challenges in mobile
relay systems, which requires the optimization of relay trajectories and the optimization
of source or relay power allocation [19]. These are some of the challenges in establishing
UAV-based communications in multiple domains, such as disaster management and secure
military communications. Our work focuses on one of these challenges, the optimization
of UAV positioning, which can indirectly solve other problems as well. A goal-oriented
communication framework is proposed in [20] using deep reinforcement learning with
a proactive repetition scheme to optimize the control, data selection, and repetition for
the real-time tracking of targets by UAVs. Ref. [21] proposes a multi-agent reinforcement
learning approach to optimize UAV communication systems to optimize energy efficiency
and integrates distributed ledger technology to enhance scalability and security. Ref. [22]
aims to minimize the mission completion time by optimizing the UAV-IRS trajectory and
transmission power using deep reinforcement learning.

A centralized UAV positioning strategy is employed in [23]. Here, the UAVs are
controlled by a central controller and are used as flying access points to form a mesh
network. This network provides connectivity to ground nodes. The paper is focused
on minimizing the total number of UAVs while maximizing the data rate requirements.
Software-defined networks are increasingly used in managing wireless communication
networks [24]. This paper proposes a centralized learning approach to deploy UAVs in
disaster areas and achieve maximum throughput. Simulations using the algorithm in the
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centralized approach prove that it is suitable for finding the optimal position of UAVs
in disaster environments. Ref. [25] compares centralized and decentralized multi-robot
coverage where ground robots are controlled under the supervision of a UAV. Here, the
UAV acts as a central controller to control the movements of all the robots. Ref. [26]
proposes a centralized approach to address the problem of resource allocation and UAV
trajectory design. The main goal is to maximize the overall user coverage of ground users.
The authors also suggested that the size of the overall system model is proportional to
the number of constraints on the problem, which makes the computations more complex
and makes it difficult to transfer information, decisions, or actions between UAVs. This
correlates with the current need to compare and contrast other optimization algorithms to
overcome these issues. Table 1 summarizes key findings from the selected existing literature,
identifies gaps in the research, and outlines proposed solutions to address those gaps.

Table 1. Summary of recent works on UAV communication and optimization.

Study Key Findings Gaps Identified
Proposed Solutions
(Related to Our
Work)

Wu et al. (2024) [20]

Develop a
goal-oriented
communication
framework to
optimize the control
of a UAV in a
target-tracking
scenario using deep
reinforcement
learning.

The framework is
specific to a single
UAV and the target
tracking scenario.

We consider a group
of UAVs, each of
which acts as a base
station in an ad hoc
communication
network, with the
goal of positioning
the UAVs to
maximize network
coverage to ground
users.

Saleh et al. (2024) [22]

Optimize trajectories
of UAVs in 6G
Terahertz networks
using deep
reinforcement
learning to minimize
time to task
completion.

Optimality of the
generated trajectories
is not guaranteed,
and the objective is
solely based on
completion time.

We propose finding
the provably optimal
UAV locations. For
trajectory planning
problems, our
approach could be
used to find optimal
positions at each
point in time.

Liu et al. (2022) [4]

Use deep
reinforcement
learning to find UAV
policies for
maximizing data
transfer from ground
base stations to a data
center.

As this is a nonlinear
optimization mixed
integer optimization
problem, the policies
found may be
suboptimal.

We obtain optimal
(static) UAV positions
for the problem of
maximizing user
connectivity, as
opposed to
transferring data to a
data center.

Ali et al. (2024) [21]

Use multi-agent deep
reinforcement
learning to position
UAVs in an ad hoc
communication
network.

As the UAV positions
are found using
reinforcement
learning, they may be
suboptimal.

We find the provably
optimal UAV
positions by solving a
mixed integer linear
program.

3. System Model
The system model shown in Figure 1 represents a network of UAVs and their environ-

ment. In this section, we explain the overall model framework, including the dynamics
between UAVs and ground users. Furthermore, the environment consists of mathematical
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principles that play a role in the assignment of users to UAVs and the user distribution
framework.

Figure 1. Overall system model, where H is the UAV altitude and H × tan(θ/2) is the coverage
radius.

The UAV environment is designed to reflect the limitations and simulate the general
functionality of the system. The total area is divided into a grid, Xcov ×Ycov. A set of Nusers

is distributed on this grid. The UAVs operate at a constant distance above the ground,
and we assume that all UAVs in the area fly at a constant altitude HUAV. The Cartesian
coordinates of UAVs and users refer to this grid. They are considered to be at any grid
point. We assume that the UAV can communicate via satellite and act as a communication
bridge between the user and the satellite. This type of connection is necessary in scenarios
such as disaster relief and military operations, where it may be difficult to establish a
ground terminal.

3.1. Resource Allocation

Let M denote the number of UAVs and N denote the number of users. Each UAV
has a certain bandwidth. In this scenario, BWUAV is assumed to be 4 MHz. This 4 MHz
bandwidth is selected based on a realistic bandwidth value that can reproduce the actual
limitations depending on the operating conditions. The bandwidth of a UAV with the
reduction factor is expressed as,

BWeffective = BWUAV × Reduction Factor. (1)

This reduction factor is considered based on practical constraints such as channel
conditions, hardware limitations such as transmitter and receiver efficiency, etc. The total
bandwidth of the UAV is divided into resource blocks, and each resource block is assigned
to a ground user. The bandwidth of each resource block is 180 kHz. Considering the total
bandwidth of each UAV and the reduction factor, the effective bandwidth is

BWeffective = 4 MHz× 0.9 = 3.6 MHz. (2)
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The reduction factor of 0.9 means that the system can maintain 90 percentages of the
theoretical bandwidth after considering practical limitations. Taking the reduction factor
into account, the total bandwidth of each UAV is reduced to 3.6 MHz. Since the bandwidth
of each resource block is BRB = 180 kHz, the total number of resource blocks NRB that each
UAV can accommodate is

NRB =
BWeffective

BWRB
=

3.6 MHz
180 kHz

= 20. (3)

If each resource block is assigned to a user, the total number of users that each UAV
can accommodate is 20. The coverage of UAVs with respect to the ground users is shown
in Figure 2.

H=350m

H tan(θ/2)

Figure 2. UAV coverage over ground users.

3.2. Ground User Distribution

We assume that the ground users are grouped into certain areas called hotspots.
Hotspots are locations with a dense number of users and depict urban areas. The hotspot
center is the center point of the radius where users are located. The users are randomly
distributed such that each hotspot has a certain number of users, and a small percentage
of the total users are evenly distributed across the environment depicting the rural areas.
This distribution model mimics the real-world scenario where there is a dense number of
ground users in urban areas such as cities and fewer users in rural areas. These hotspots
allow efficient resource allocation and the targeting of service improvement. This user
distribution also ensures that both the urban and the rural network needs are considered
in the system design. Figure 3 illustrates the distribution of ground users according to
hotspots, where the users are distributed according to Algorithm 1.
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Figure 3. Ground user distribution. Blue circles indicate users, red stars indicate hotspots, and the
axes are the coordinates in meters. The users are randomly distributed near the hotspots according
to Algorithm 1.

Algorithm 1 Algorithm for user distribution based on hotspots

1: Initialization:
2: Inputs: Number of users n, number of UAVs m, hotspot radius rhotspot, hotspots T
3: D ←

⌊ n
m
⌋

▷ D - users per hotspot
4: Initialize L as an empty array to store user locations
5: for each hotspot t in T do
6: for d from 1 to D do
7: Generate random r uniformly within [−rhotspot, rhotspot]
8: Generate random ϕ within [0, 2π]
9: x ← r× cos(ϕ) + tx ▷ tx, ty - coordinates of hotspot center

10: y← r× sin(ϕ) + ty
11: Append (x, y) to L
12: end for
13: end for
14: Generate random locations for remaining (n− D)× |T| users and append to L
15: return L

3.3. User Association

Ground user association is the process of determining whether a user is connected
to a UAV. The connection between a user and a UAV depends on various factors. The
assignment of a user to a UAV depends on the distance between the user and the UAV.
The distance between the user j and the UAV i is calculated using the Euclidean distance
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formula, which is formulated in two-dimensional space: The calculation of the distance
between a user and a UAV is as follows:

dij =
√
(xUAV,i − xuser,j)2 + (yUAV,i − yuser,j)2 (4)

where xUAV,i and yUAV,i represent the Cartesian coordinates of UAV i in the grid, and xuser,j

and yuser,j represent the coordinates of user j. The distance formula is used together with
the coverage radius of the UAV. The coverage radius determines the limit of UAVs that can
cover a user. When a user is within the detection range of a UAV, the distance between
them is calculated. If the distance between the user and the UAV is less than the detection
range, the user sends a connection request to the respective UAV. User j sends a connection
request to UAV i when

dij ≤ Rcov (5)

where dij is the distance between user j and UAV i and Rcov is the coverage radius of the
UAV. The maximum capacity of each UAV is 20 users based on the available resource blocks
and maximum user capacity. Resource blocks are assigned to users based on distance, and
priority is given to users closest to the UAV. Table 2 describes the simulation parameters
used in this paper.

Table 2. Symbols and simulation parameters

Description Symbol Value

Number of UAVs m
Number of users n
Hotspots T
Hotspot radius rhotspot 200 m
Users per hotspot D
Position of UAV i (xUAV,i, yUAV,i)
Position of user j (xuser,j, yuser,j)
Center of cluster j (xcluster,j, ycluster,j)
Distance between UAV i and user j dij
Coverage angle θ π/3 rad
Coverage radius Rcov 202.07 m
Altitude of UAV H 350 m
Bandwidth of each UAV BWUAV 4 MHz
Effective bandwidth BWeffective 3.6 MHz
Resource block bandwidth BWRB 180 KHz
Resource blocks per UAV NRB 20
Grid size - 100 m
UAV–user allocation variable Xij
UAV–cluster allocation variable Yij
Number of users in cluster j Uj
Big-M method parameter M 2000 m
Binary auxiliary variable ϵij

4. Optimization Problem Formulation
We now show how to formulate the problem of placing the UAVs to maximize the

number of users served as a Mixed-Integer Linear Program (MILP).

4.1. Decision Variables

The decision variables in the optimization problem are the UAV positions (xUAV,i, yUAV,i)

along with a set of binary variables Xij that are one if UAV i is allocated to serve user j and
zero otherwise. The presence of both real and binary variables makes this a mixed-integer
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optimization problem. The decision variables are important in determining the optimal
placement of UAVs while ensuring efficient resource allocation and maximizing user coverage.
The binary variables in user association enable clear user assignment and also prevent overlaps
in service allocation.

4.2. Objective Function

The objective of the optimization problem is to maximize the total number of ground
users that are served by the UAVs. Intuitively, we expect this to place UAVs in regions
with dense user populations. This objective of maximizing the total number of users
ensures optimal coverage while considering the service capacity of the UAVs and the other
constraints in UAV deployment. This also provides flexibility in adapting to the changes in
user distribution depending on the user density in the real world. This objective function
allows efficient resource allocation and balances the trade-off between the coverage area
and the service quality. In terms of the user associations, the objective is to maximize

n

∑
i=1

m

∑
j=1

Xij. (6)

Note that this objective function treats all users equally; we could instead modify the
objective to bias the UAVs towards certain groups of users (e.g., users who pay more for
the service) to enhance connectivity for that group.

4.3. Constraints

We now describe the constraints on the decision variables. The first constraint ensures
that each user j is associated with at most one UAV, which is represented as

n

∑
i=1

Xij ≤ 1, ∀j ∈ J1, mK. (7)

The notation J1, mK denotes the set {1, 2, . . . , m} and m is the number of users. This
constraint ensures that each user has at most one network to access.

The next constraint is the maximum user capacity constraint, which is to make sure
that for each UAV i, the maximum number of users that each UAV can serve is 20. This value
is the representation of the bandwidth limitation of each individual UAV. The maximum
user capacity constraint is

m

∑
j=1

Xij ≤ 20, ∀i ∈ J1, nK. (8)

The boundary constraint is the one that makes sure that no UAV exceeds the boundary
limit of the environment. This boundary is the area where the network service is provided.
The boundary condition is represented as

Rcov ≤ xUAV,i ≤ L− Rcov (9)

Rcov ≤ yUAV,i ≤ L− Rcov, ∀i ∈ J1, nK. (10)

where L× L represents the length of the environment.
Next, we impose the constraint that a UAV is able to serve a user only when the

user is within the coverage radius of the UAV. As this is an implication, it is not directly
implementable as a linear constraint. Using the Big-M method, however, we can formulate
the constraint as√

(xUAV,i − xuser,j)2 + (yUAV,i − yuser,j)2 ≤ Rcov + M(1− Xij) (11)
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where the parameter M > 0 is a large number. When Xij = 1, this constrains the position
of the UAV such that the user is within its coverage radius. When Xij = 0, the parameter
M is large enough that this poses no constraint on the UAV position.

5. Clustering
While the MILP formulation may be used to find the optimal placement of the UAVs,

the computational complexity does not scale well with the number of users (as illustrated in
Section 6). For scenarios with large numbers of users, we therefore propose first clustering
users into groups and then solving an optimization problem to place the UAVs with respect
to the clusters. Let k denote the number of clusters, Uj the number of users in cluster j,
and (xc,j, yc,j) the center of cluster j. An illustration of the clustering of users is shown in
Figure 4.

Figure 4. Clustering 1000 users into 10 clusters using k-means clustering. The axes indicate position
in meters.

5.1. Decision Variables and Objective Functions

In the previous optimization problem, the user association variables were binary
as each individual user was either served by a particular UAV or not. In the clustering
approach, the user association variable Yij is the percentage of users in cluster j that are
served by UAV i. This formulation allows a UAV to serve only part of a cluster (e.g.,
when the cluster has more users than the capacity of the UAV). Here, Yij is continuous
and provides more flexibility in resource allocation compared to the binary variables by
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implementing partial service allocation within the clusters. This allows efficient usage of
UAV resources to serve a large number of users. Other decision variables are the UAV
positions and the binary auxiliary variables ϵij (see Equation (17)).

As before, the objective is to maximize the number of users covered. Since Yij is the
percentage of users in cluster j served by UAV i and Uj is the number of users in cluster j,
the product Yij Uj is the number of users in cluster j served by UAV i. Summing over UAVs
yields the total number of users covered:

n

∑
i=1

k

∑
j=1

Yij Uj. (12)

This objective function balances both the clustering approach and the practical limita-
tions of UAV deployment while maintaining service quality across the coverage area. It
also enables flexible resource allocation to serve the clusters based on their capacity.

5.2. Constraints

Since the variable Yij is a percentage, it must be constrained to the unit interval:

0 ≤ Yij ≤ 1, ∀i ∈ J1, nK, ∀j ∈ J1, kK. (13)

Similar to the previous optimization constraints, each UAV has the capacity to serve
no more than 20 users, so

k

∑
j=1

Yij Uj ≤ 20, ∀i ∈ J1, nK. (14)

Each cluster may be served by multiple UAVs (with each UAV serving a fraction of the
users), but the total percentage of users served in any cluster cannot be more than 100%, so

n

∑
i=1

Yij ≤ 1, ∀j ∈ J1, kK. (15)

Previously, we allowed a UAV to serve a user only if the user was within the coverage
radius of the UAV. Here, we allow a UAV to serve a fraction of users in a cluster only if the
cluster center is within the coverage radius of the UAV. To formulate this constraint, we use
the binary auxiliary variable ϵij and set√

(xUAV,i − xcluster,j)2 + (yUAV,i − ycluser,j)2 ≤ Rcov + M ϵij (16)

where M > 0 is a large constant and

Yij ≤ 1− ϵij, ∀i ∈ J1, nK, ∀j ∈ J1, kK. (17)

The logic behind this constraint is as follows. If the center of cluster j is not within the
coverage radius of UAV i, then ϵij must be equal to one (since it is binary, and a value of
zero would violate the first condition). The second condition then implies that Yij = 0 so
that no users in the cluster are served by the UAV. On the other hand, when the cluster
center is within the coverage radius of the UAV, ϵij may be zero, in which case Yij ≤ 1, so
the UAV can serve users in the cluster.
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6. Simulation Results
We now illustrate our results through several simulations. As an illustrative result,

Figure 5 represents the optimized positions of n = 5 UAVs that maximize the number of
users out of m = 100 with network coverage. Here, red circles denote the coverage areas of
UAVs and blue dots indicate users (hotspots denote regions of higher user density—such
as urban areas—and are not used by the algorithm). We solved the optimization problem
using the CVX modeling framework [27] in Matlab with the Gurobi solver [28].

Figure 5. Positions (black squares) and coverage areas (red circles) of UAVs that maximize the number
of users (blue circles) that are served. The axes indicate position in meters.

6.1. Optimal UAV Placement

We first consider the optimal placement of UAVs found by solving the MILP in
Section 4. We compare the number of users served with the computational time for a
varying number of UAVs with m = 100 users. In Figure 6, we plot the optimal value
(which is the total number of users served by the group of UAVs). In Figure 7, we plot the
computational time needed to solve the optimization problem for a varying number of
UAVs. For n ∈ {1, 2, 3, 4} UAVs, the computation time is relatively small and the optimal
value increases by 20 (the capacity of each UAV) as each UAV is added. The maximum
time taken was with n = 5 UAVs. Increasing the UAVs beyond this actually takes less
time, and the total number of users increases until all m = 100 users are served by n = 10
UAVs. The results show that the coverage capacity of the UAVs increases linearly up to
four UAVs, and due to the computational complexity, there is a peak and then the efficiency
improves again. This non-linear behavior in time shows the trade-off between the coverage
optimization and the complexity of the algorithm.
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Figure 6. Number of users covered as a function of the number of UAVs. The number of users
covered is the optimal value of the MILP from Section 4.
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Figure 7. Time consumption to obtain the optimal solution.

6.2. Scaling to Large Numbers of Users via Clustering

To study how the problem scales with the number of users, we now consider a scenario
with m = 1000 users. Figure 8 shows the number of users covered as a function of the num-
ber of UAVs for various numbers of clusters. Using more clusters results in a more refined
characterization of the user distribution and therefore a larger number of users served.
This improves more precise UAV positioning in variable user density areas. The clustering
approach also shows better scalability compared to the direct optimization method for
larger-scale problems. The cost of using more clusters, however, is shown in Figure 9. The
computational time grows both with the number of UAVs and with the number of clusters.
The computational complexity growth here follows an exponential trend that highlights
the trade-off between the accuracy of the solution and the computational efficiency. We can
therefore use the number of clusters to trade off the computational time needed to solve
the problem with the optimality of the obtained solution.
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Figure 8. Total number of users covered as a function of the number of UAVs using the clustering
approach.

Number of UAVs vs Elapsed Time for Different Cluster Counts
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Figure 9. Computational time as a function of the number of UAVs using the clustering approach.

The combined plot including the optimal result, the results obtained using the cluster-
ing approach, and the distribution results where the UAV is randomly placed in the user
grid is shown in Figure 10. Here, the general optimization approach could not solve the
problem for more than 10 UAVs, as the problem grows as the number of users and UAVs
increases. This limitation of the general optimization approach shows the need for efficient
methods like clustering in larger-scale scenarios, which serves as a practical alternative
while maintaining near-optimal performance. The distribution graph shows the random
user distribution in 1000 iterations for each UAV range, and the results of the clustering
approach show that the initial trend is consistent with the optimal results. Finally, we find
that when the number of UAVs is 50 and the total number of users is 1000. This proves that
the clustering approach is effective when the problem size increases.
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Figure 10. Combined plot for large-scale problem.

7. Conclusions
In this paper, we considered the positioning of UAV base stations in an ad hoc com-

munication network. Specifically, we formulated the problem of positioning the UAV base
stations to maximize the number of users covered as a mixed-integer linear program. For
large-scale scenarios with many users, the computational complexity of finding the optimal
positions can be quite high. To address this, we proposed clustering users and then solving
a heuristic problem based on these clusters. The experimental results show that the number
of clusters may be used to trade off user coverage and computation time. This study shows
the practical application of UAVs as base stations deployed in challenging environments
such as disaster scenarios and temporary network setups where network connectivity and
rapid deployment are crucial. The scalability and flexibility of the clustering approach are
suitable for diverse scenarios to ensure efficient resource allocation and enhanced network
performance. Future work includes developing iterative algorithms capable of tracking
mobile users.
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