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Abstract: In this study, we deploy drones as dynamic base stations to address the issue of
optimizing user coverage in areas without fixed base station infrastructure. To optimize
drone placement, we employ Deep Q-Learning, beginning with a centralized approach
due to its simplicity and ease of training. In this centralized approach, all drones are
trained simultaneously. We also employ a decentralized technique in which each drone
acts autonomously while sharing a common neural network, allowing for individualized
learning. In addition, we explore the impacts of jamming on UAVs and provide a reliable
approach for mitigating this interference. To boost robustness, we employ stochastic
user distributions, which train our policy to successfully respond to a wide range of
user situations.

Keywords: machine learning (ML); artificial intelligence (AI); unmanned aerial vehicle
(UAV); reinforcement learning (RL); deep reinforcement learning (DRL); deep Q-learning
(DQL); multi-agent deep reinforcement learning (MADRL); multi-agent deep Q-learning
(MADQL); Internet of Things (IoT); Line of Sight (LoS)

1. Introduction
Unmanned Aerial Vehicles (UAVs) are being explored for their potential applications

in various fields. Their uses include telecommunications, military and security activities,
and entertainment [1]. UAVs are becoming more practical, dependable, and economical,
which makes UAV-based solutions competitive in new markets. The telecommunications
industry is expected to have the highest drone value in 2021, with an estimated 6.3 billion
USD according to [2]. Along with providing network programmability, orchestration,
and edge cloud capabilities, UAVs can also be used to establish line-of-sight (LoS) connec-
tions, provide scalable proximity services, and hold these functions on demand. As a result,
the integration of unmanned aerial platforms into the mobile network ecosystem is gaining
traction in both industry and academia.

UAVs are among the flying platforms whose applications are expanding quickly.
Specifically, due to their intrinsic qualities, like mobility, adaptability, and altitude adap-
tation, UAVs have a number of important potential uses in wireless systems. UAVs have
the potential to improve wireless network coverage, capacity, dependability, and energy-
efficiency by serving as airborne base stations. UAVs can also function inside a cellular
network as flying mobile terminals. These cellular-connected UAVs can be used for a
variety of tasks, such as item delivery and real-time video broadcasting [3]. To overcome
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some of the limitations of current technologies, we see flying base stations carried by UAVs
as an essential addition to a heterogeneous 5G ecosystem. In areas of the world without
reliable cellular infrastructure, UAVs are starting to show promise as an economically viable
method of delivering wireless access. Moreover, UAV base station deployment makes the
most sense when considering events that require wireless services for a short amount
of time. This is particularly true for temporary events, when it is evident that creating
permanent small cell networks for short-term demands is financially unfeasible, such as
sporting events and festivals [4]. For longer-term, more sustainable coverage in such rural
areas, High-Altitude Platform (HAP) UAVs can be of assistance. During transitory events
like football tournaments or presidential inaugurations, as well as in hotspots, mobile UAVs
can offer on-demand connectivity, a high-data-rate wireless service, and traffic offloading
opportunities [5,6]. With reference to this, AT&T and Verizon previously declared their
intention to employ drones in flight to temporarily enhance internet coverage during the
Super Bowl and college football national championships [7]. In addition to ultra-dense tiny
cell networks, flying base stations can undoubtedly be a valuable resource. UAVs have
the potential to save lives as well because of their quick and adaptable deployment. This
makes them a great option in disaster and search and rescue situations, as well as other
situations when stationary infrastructures, such as communication networks, are damaged
or unavailable. This may occur when an earthquake or other natural disaster damages cell
towers, and drones serve as flying base stations (BSs) to allow first responders to reestablish
contact [8]. It is obvious that all UAVs need to have well-designed communication capabili-
ties or be able to provide communication services in order to realize their full potential and
contribute to the civilization of the future. Additionally, flying UAVs have the ability to
travel continually in order to cover a particular region completely in the shortest amount of
time. Thus, in public safety scenarios, using UAV-mounted base stations can be a suitable
alternative for quick and pervasive communication.

Connecting UAVs to cellular networks provides a number of advantages. With cellular
command and control links, autonomous UAVs can be remotely piloted or monitored
from thousands of kilometers away because of the widespread availability of mobile
networks. It can also facilitate information-sharing with air traffic control or allow UAV-
to-UAV communication. Cellular networks can also offer increased dependability and
throughput, as well as improved privacy and security, in comparison to conventional
direct ground-to-UAV communication. A significant financial benefit of using existing
cellular networks is that it may be more affordable to do so than to build new, different
infrastructure configurations [9].

There are several distinct design and research problems associated with UAV-aided
communication as compared to fixed terrestrial networks [10]. In the first place, compared
to the conventional two-dimensional (2D) deployment of terrestrial base stations, the de-
ployment of aerial base stations in three-dimensional (3D) space offers an extra degree
of freedom (DoF). The diverse context of propagation is another significant obstacle [11].
In addition, restricted flight time and inherent flight dynamics are two more complications
associated with aerial BSs and relays that affect the communication performance or quality
of service (QoS). In order to address these issues and direct the study toward UAV-assisted
communications, scheduling, research allocation, and multiple access protocols must be
modified. UAV BS placement optimization or comprehensive end-to-end trajectory opti-
mization can both account for mobility. Because of the extra DoF, even placing UAVs is
a more difficult task than placing stationary base stations. Figure 1 shows an example of
UAV based wireless communication.
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Figure 1. In order to effectively provide maximum user connectivity, UAVs maintain minimal
information exchange among themselves while providing wireless coverage.

The foundation of reinforcement learning is particularly well-suited to the problems
associated with the deployment of autonomous UAVs in communication networks, since its
main idea involves an autonomous agent making choices (like trajectory planning) in order
to maximize a goal (like QoS for an aerial BS) in an uncharted area. Many of the applications
of UAV placement and trajectory planning, including interference-aware multi-UAV path
planning [12], data collection in the context of mobile crowdsensing [13], and maximizing
communications coverage in UAV-aided networks [14], could benefit from the application
of deep reinforcement learning (DRL). Another application of UAV networks is resource
allocation, in addition to path planning. Multi-agent reinforcement learning (MARL) is
employed in [15] to choose the communicative user of each UAV automatically, whether or
not the UAVs communicate information. The integration of intelligent reflecting surfaces
with UAVs in the context of 6G presents a number of issues that RL can address [16].

1.1. Research Gaps

Most existing research focuses solely on either centralized or decentralized approaches
for user coverage, without a comprehensive comparison of both. Our work addresses
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this gap by evaluating and contrasting both methods (Sections 4 and 7). Additionally,
while most reinforcement learning studies train and test their models on the same user
distribution, we deliberately use a stochastic environment during training to ensure that
our model performs well under varied user distribution scenarios (Section 5). Finally, we
also consider jamming attacks during the operation of dynamic base stations—a topic with
limited prior research (Section 6). We further review the relevant literature in Section 2.

1.2. Contributions

The main contributions of this paper are as follows:

1. We use both centralized and decentralized multi-agent deep Q-learning to deter-
mine the positions for a set of UAVs that maximize user connectivity in an ad-hoc
communication network problem.

2. We develop a simple algorithm to train a policy for a stochastic environment, such as
when users are distributed according to a known probability distribution. Moreover,
we empirically explore how well a policy designed for one distribution of environ-
ments performs when applied to environments sampled from a different distribution.

3. We develop a model in which a UAV is jammed and loses connection with other UAVs
after reaching its optimal position, and investigate how this affects user coverage and
network connectivity.

2. Literature Review
The field of wireless communication has advanced significantly with the introduction

of UAVs as enablers of expanded communication services, especially in situations requiring
quick deployment and great flexibility. UAVs can function as BSs or relays, providing
on-demand communication services that are essential for Internet of Things (IoT) applica-
tions, post-disaster recovery networks, and reducing abrupt traffic congestion in cellular
networks [17]. UAV-enabled small cells have been optimized through research into the
strategic deployment of UAVs with regard to altitude and inter-UAV distances, offering
a way to reduce UAV deployment while guaranteeing coverage for all ground users [18].
The methods used to deploy UAVs are critical, particularly when considering UAV-enabled
small cells, as the effective and efficient operation of the network is greatly impacted by the
placement of UAVs. Past research has demonstrated the ability to reduce the number of
UAVs needed by using a sequential UAV placement technique with set heights, improving
network coverage and cutting down on wasteful spending [19]. However, this tactic might
also add processing latency, which could negatively affect network throughput [20]. We
now discuss various techniques to solve this problem, which are summarized in Table 1.

Table 1. Comparison of techniques.

Technique Methodology Strengths Limitations

Optimization Solve NP-hard problems
using iterative approximation

Provides near-optimal
solutions; well-studied

High computational overhead;
limited scalability

Single-Agent Deep
Q-Learning

Train single RL agent to
optimize UAV positions

Simple formulation; lower
computational cost

Does not effectively capture
inter-UAV coordination

Distributed Q-Learning
(MARL)

Each UAV learns its own
policy with limited
coordination

Scalability; flexibility in
dynamic environments

Challenges in achieving
global coordination

Proposed Methods
Both centralized and
decentralized multi-agent
deep Q-learning

Comprehensive comparison;
trained in stochastic
environments; includes
jamming resilience

Centralized approach scales
poorly; decentralized
coordination complexity
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2.1. Conventional Method

Enhancing network efficiency and lowering energy usage would provide major con-
tributions to the developing field of UAV-assisted multi-access edge computing (MEC).
In order to address the need for energy-efficient resource allocation, ref. [21] presented
a system that utilized MEC-enabled UAVs and ground-based base stations. The system
used the Block Successive Upperbound Minimization (BSUM) method, which represents
a novel approach to resource allocation. A different study [22] demonstrated how non-
orthogonal multiple access (NOMA) may be integrated with UAV flying base stations. It
achieved this by using a path-following algorithm to solve a non-convex optimization
problem, thereby demonstrating the advantages of NOMA in improving wireless commu-
nication. Wu et al. created an effective iterative technique to optimize user scheduling,
UAV trajectory, and power control in order to maximize throughput in multi-UAV enabled
systems [23]. This method showed improvements, optimizing user performance while nav-
igating the intricacies of optimization. In order to dramatically lower latency and increase
spectral efficiency in 3D wireless networks, the author [24] presented a novel framework
for 3D cellular network planning and cell association. This framework uses kernel density
estimation and optimal transport theory, providing a ground-breaking approach to 3D
cellular architecture. In contrast to most previous research that focuses on homogeneous
UAV fleets, ref. [25] proposes a deployment approach for a heterogeneous UAV network.
UAVs with different service capabilities, transmission powers, and battery lifetimes are
used in this network. In this heterogeneous UAV network, user coverage is optimized
using a traditional approximation algorithm.

2.2. Optimization Approach

The problem of controlling and deploying UAVs in communication contexts can also
be formulated as a non-convex optimization problem [26]. These issues are inherently
complicated and frequently categorized as NP-hard [27], which highlights how challeng-
ing it is to solve them using traditional optimization techniques. This difficulty helps to
explain why RL is becoming more and more popular as a substitute method for handling
certain optimization problems. With regard to UAV-based communication systems, rein-
forcement learning’s flexibility and learning-based approach present viable ways to move
beyond the conceptual and computational obstacles that come with more conventional
optimization methods.

2.3. Machine Learning Approach

Intelligent machine learning-based UAV control is necessary to improve the efficiency
of UAV-enabled communication networks. With consideration of the UAVs’ structural
designs, neural network architectures have been examined for UAV trajectories. For relay
placement intended to maximize flow rate, ref. [28] presented a Riemannian multi-armed
bandit (RMAB) reinforcement learning model. In order to support as many ground devices
as feasible, a single UAV was explored by Fahim et al. [29]. The main emphasis of this study
was the trade-off between the UAVs’ increased coverage area and continued connectivity.
Nevertheless, the study in [30] did not include the employment of UAVs as stationary
base stations. A distributed Q-learning method was provided by Klaine et al. [31] to
identify the optimal UAV deployment sites that maximize ground user coverage in the
presence of time-varying user distributions. Liu et al. [32] employed double Q-learning to
design routes that would optimize customer satisfaction for users with time-constrained
service requirements. By jointly optimizing the multiuser communication scheduling, user
association, UAV trajectory, and power control, a combined trajectory and communication
design for multi-UAV enabled wireless networks was developed in [23]. The issue of
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flying trajectory planning for many UAVs in order to provide ground personnel with
emergency communication services was examined by Yang et al. [33]. In order to monitor
a catastrophe area, Xu et al. [34] investigated the problem of deploying a network of
connected unmanned aerial vehicles (UAVs) that consists of K homogeneous UAVs in the air
while maximizing the total data rates of all users. The downlink of a UAV-assisted cellular
network, whereby several collaborating UAVs service various ground user equipment
(UE) under the supervision of a central ground controller via wireless fronthaul links, is
highlighted in [35]. Deep Q-learning is used to find the UAVs positions. In order to optimize
resource allocation in UAV networks, the author in [36] presented a MARL technique that
allows UAVs to autonomously choose communication techniques that maximize long-term
rewards with the least amount of inter-UAV communication. In order to enhance user
connectivity in UAV networks, a distinct study [37] proposed a fully decentralized deep
Q-learning method. The study demonstrated increased performance through differential
levels of UAV information sharing and customized reward functions.

2.4. Jamming

Due to the broadcasting nature of wireless communications, UAV-assisted wireless
communication networks are particularly vulnerable to spectrum jamming assaults, which
pose a serious threat to network operation. Malicious users exploit this vulnerability by
launching three forms of jammer attacks: constant, intermittent, and reactive. Constant
jamming occurs when jamming signals are continuously sent, intermittent jamming in-
volves sending signals periodically, and reactive jamming occurs when jamming signals
target the region of the spectrum inhabited by legitimate users while monitoring their
transmission [38]. In this study [39], a hidden Markov model (HMM)-based jamming
detection technique is suggested, with the goal of detecting reactive short-period jamming
for UAV-assisted wireless communications without requiring prior knowledge of thesignal
or channel characteristics.

2.5. Motivation

Recent advances in drone technology have created new prospects for UAV deployment
in wireless communication networks. UAVs, which range from drones to small airplanes
and airships, represent an innovative approach to delivering dependable and cost-effective
wireless communication options in a variety of real-world circumstances. UAVs can revolu-
tionize traditional terrestrial networks by operating as aerial BSs and providing on-demand
wireless communications to specific areas. This trend of using UAVs for wireless commu-
nication indicates the importance of rethinking research issues, prioritizing networking
and the handling of resources over control and positioning difficulties [40,41]. Machine
learning (ML) has emerged as a significant method for improving UAV-enabled commu-
nication networks, providing autonomous and intelligent solutions. While most of the
existing research focuses on UAV deployment and trajectory designs, the optimization of
resource allocation strategies such as transmit power and subchannels has mainly occurred
in time-independent settings. Furthermore, the rapid movement of UAVs hinders the col-
lection of accurate dynamic environmental information, making the design of dependable
UAV-enabled wireless communications difficult. Furthermore, as network size increases,
the centralized methodologies presented in prior research face computing issues [3,42–44].
MARL provides a distributed approach to intelligent resource management in UAV-enabled
communication networks, particularly when UAVs only have local information. MARL
allows agents to consider particular application-specific requirements while modeling
local interactions, addressing distributed modeling and computation problems. While
MARL applications in cognitive radio networks and wireless regional area networks have
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demonstrated promise, its potential in multi-UAV networks remains untapped, notably
in resource allocation [36,45,46]. Thus, applying MARL to UAV-enabled communication
networks offers a viable approach for intelligent resource management.

3. Background
The growing field reflects the increasing interest and extensive research carried out

in recent years by integrating artificial intelligence (AI) and machine learning (ML) into
UAV-assisted communications [47,48]. The three categories for the machine learning
algorithms are specifically supervised, unsupervised, and reinforcement learning (RL).
While algorithms in an unsupervised environment extract knowledge from patterns in
the unlabeled data, supervised scenarios have an data set with labeled input–output pairs
accessible to direct the learning process. In contrast to ML, which relies on labeled data, RL
learns directly from the environment [49].

3.1. Reinforcement Learning

RL comes under the third category of machine learning, where the RL agent interacts
with an unknown environment and takes the actions and receives the corresponding reward
based on the action that was taken and the current state of the system [50]. The states
describe the agent’s circumstances in the environment. The agent can interact with the
world or environment through a set of actions [50]. The action space can be either discrete or
continuous, indicating the nature of actions from which the agent can choose. For example,
a robot has a continuous action space, which means that the robot’s actions are not limited
to fixed steps, whereas playing a game of chess has a discrete action space [51]. At each time
step t, the state st of the system and immediate reward rt are observed and this information
is used to choose the action at that will maximize the cumulative future reward obtained
by the agent. The RL agent makes decisions regarding the future actions to take. The main
job of the agent is to obtain as large a reward as possible based on the action that it takes.

From Figure 2, the agent interacts with the environment and makes decisions about
future actions. In many RL problems, the reward structure might be sparse, and the
feedback regarding whether the agent is making good moves or not is obtained only after a
significant amount of interaction with the environment. This delayed reward information
makes the reinforcement learning problem more challenging. In RL, the agent has a control
strategy, which is called a policy. The policy is the probability that an action is taken in
a given state. The policy can either be deterministic or probabilistic. The agent follows
the policy to maximize the expected sum of future rewards, where the sum represents the
rewards received at different times.

Figure 2. Reinforcement learning flow.
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3.2. Deep Q-Learning

Q-learning is effective in small state and action spaces, but it may not find the optimal
policy in the vast state and action spaces found in complex systems. To address this
problem, the Deep Q-Learning (DQL) technique is presented [52]. The reinforcement
learning algorithm DQL [53] breaks the dependence of the memory complexity of the
learning process from the size of the state–action space by approximating the Q-table
and taking advantage of the universal approximation property of deep neural networks
(DNNs). DNNs are utilized in deep reinforcement learning to control high-dimensional
state spaces. The agent feeds the deep neural network the current state’s feature vector at
each time step. This network is known as a deep Q-network (DQN) because it can predict
the Q-value for every action and state. The DQN must be trained in order to generate
meaningful predictions, which requires the definition of a loss function. There is no label
indicating the proper Q-value for any given state–action pair, so this is not a supervised
learning problem. It is therefore not easy to define an appropriate loss function. Two
identical DNNs (one serving as the main network and the other as the target network)
are initialized with the same settings at the beginning of the Deep Q-Learning process.
Afterward, the agent chooses the action with the highest estimated Q-value and stores the
experience in a replay buffer, together with the reward rt and the state transition from st to
st+1. This allows the DQN to be trained to estimate the Q-values more precisely. The deep
Q-network framework [52] is shown in Figure 3.

Figure 3. Deep Q-Learning framework.

The value against which the loss function will be assessed, or the target update, is
defined as follows [54]:

yt =

rt if st+1 is terminal,

rt + γ max
a

Qθ(st+1, a) otherwise.
(1)

The target yt is compared to the output of the Q-network by means of a mean squared
error (MSE) loss [55]

L(θ) =
1
K

K

∑
t=1

(yt −Qθ(st, at))
2. (2)

Using batch gradient descent, the loss function L(θ) is optimized in relation to the model
parameters θ, where K is the batch size denoting the quantity of transitions sampled from
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the experience replay buffer. The discounted maximum Q-value of the subsequent state st+1

and all feasible actions a are added together to provide the goal value for the t-th transition,
yt. The current state–action pair’s projected Q-value is indicated as Qθ(st, at), whereas rt

stands for the immediate reward obtained following action at in state st. The significance of
future rewards is determined using the discount factor γ. The expression max

a
Qθ(st+1, a)

represents the maximum expected Q-value for all feasible actions a in the next state st+1,
as determined by the current value function estimate Qθ .

3.3. Multi-Agent Reinforcement Learning

Multiple agents working together to impact a shared environment is known as multi-
agent reinforcement learning (MARL). More specifically, each agent acts at each state,
and these actions collectively decide the next state of the environment and each agent’s
reward. Furthermore, each agent may only perceive its own reward, which may differ from
another agent’s. When coordination, collaboration, or rivalry among agents is necessary,
such as in autonomous vehicles, games, robotics, and social issues, MARL can be used in
a variety of contexts [56]. In recent years, a wide range of strategies have been put out to
take advantage of the benefits and overcome the obstacles presented by the fast-growing
field of MARL. For example, agents can communicate with one another to exchange
information [57], competent agents can act as teachers for learners [58], or learners can
observe and mimic skilled agents [59]. In a multi-agent system, the surviving agents can
assume some of the responsibilities of the failing agent or agents. This suggests that MARL
is resilient by nature. Additionally, most multi-agent systems are highly scalable due to
their design, which makes it simple to add new agents to the system. Stability, scalability,
and communication are a few issues that MARL must deal with, which are contingent
upon the structure of the learning process. When agents in an environment work together
to improve the average return for the group as a whole, there is an increase in interest. This
collaborative approach emphasizes how important it is to work together. The multi-agent
reinforcement learning framework [60] is shown in Figure 4.

Figure 4. Illustration of a MARL framework featuring N agents. Each agent contributes to the
environment by selecting actions ai based on its individual state Si and reward Ri. Image from [60].

3.3.1. Centralized

Developing a central controller that decides what each agent should do and receives all
of the agent’s rewards is an alluring option. The problem can be reduced to an MDP, which
is easily handled by single-agent reinforcement learning methods as the controller has
access to all of the agents’ data. Nevertheless, the installation of a central controller could
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be expensive in many real-world situations. In addition, the communication overhead
at the single controller scales with the number of agents, since each agent requires a
connection with the central controller in order to send information. The multi-agent
system’s resilience to malicious attacks and scalability may be negatively impacted by
this [61]. Using observations from every agent, a central agent or network would learn a
shared policy that optimizes how well the team does on each task in a centralized learning
approach. Throughout training, rather than each agent improving its own policy, the central
agent would provide feedback to each agent depending on the team’s success. Every agent
would benefit from this input, learning how to act in a way that advances the team’s goals.

3.3.2. Decentralized

Another method in MARL is decentralized learning, in which each agent indepen-
dently learns and modifies its own policy or value function depending on its local observa-
tions and actions. The benefits of this strategy include scalability, privacy, and robustness,
as it can manage dynamic and heterogeneous agents without relying on a global state or
central authority. Nevertheless, because decentralized learning necessitates greater agent
cooperation and communication and may face non-stationarity and partial observability,
it also has several drawbacks, including complexity, inconsistency, and inefficiency [61].
Without a network or central agent to manage the learning process, each agent’s policy
would be modified in a decentralized learning approach based on its own experience. Each
agent would converse with other agents in the vicinity to exchange information about the
surroundings and their planned course of action while undergoing training. Each agent
would be able to learn to anticipate the other agents’ movements as a result.

4. Problem Setup
We consider a target region A with M number of users located on the ground, as shown

in Figure 5. All users on the ground are stationary. The target area measures L by L squares.
The K number of users congregate near the four hotspots. The remaining M− K users are
uniformly distributed across the entire target area A. To ensure LoS for communication
with ground users, N UAVs fly horizontally inside the target region at a constant altitude
H. Two-dimensional Cartesian coordinates are used to identify the UAV and user positions
inside the designated target region. Each UAV is identical and has a single directional
antenna that concentrates the transmission energy inside an aperture angle θ. A UAV’s
ground coverage is considered to be a disk with radius r = H tan( θ

2 ). The UAV does
not cover users who are outside of its coverage disk. One UAV may cover up to the
number of users assigned to it at once. Bandwidth is not provided uniformly among UAVs;
it is allotted based on user demand and a UAV’s available bandwidth. UAVs operate
independently, observing individual states and communicating little information, primarily
sharing rewards. The time of the UAV movement is separated into discrete time stages,
allowing the UAVs to make sequential decisions. Table 2 represent the default values of
the parameters.

Table 2. Description of parameters and default values.

Parameter Default Value Description

N 5 Number of UAVs
M 100 Number of users
K 90 Number of hotspot users
H 350 m Height of UAVs
θ 60◦ Aperture angle of UAVs
L 1000 m Length and width of target area
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Figure 5. UAVs serving ground users by sharing local information. The domain is discretized into a
grid of length L, each UAV is at a fixed height H, and the coverage radius is r.

4.1. User Distribution Framework

The user distribution approach simulates how users are distributed throughout distinct
places within a defined coverage area. In the system, the target area is L by L square meters
and there are M users. We consider all the ground users to be stationary. To make the
model simpler and facilitate easier calculation and analysis, the target region is discretized,
and UAVs execute discrete actions. Each grid space size is 100. The system designates
four primary hotspots. It then loops through each hotspot, providing random coordinates
for users within a predetermined radius from the hotspot. These coordinates are initially
created in polar form and then transformed to Cartesian coordinates for convenience
of representation. The K users are in those hotspots. The remaining M − K users are
distributed uniformly within the entire target area, including the hotspot positions. The goal
of this technique is to construct a realistic simulation of the user distribution among various
regions within the defined coverage area, providing geographical dynamics and insights
into user behaviors. The user distribution framework is depicted in Figure 6.

Figure 6. User distribution framework; hotspot users are in represented by red, green, blue, and
purple, and randomly distributed users are in yellow.

4.2. Initialization of UAVs

In this system, M users are covered by N UAVs. The standard height for all UAVS is
fixed at H meters. All of the UAVs are initially positioned at the grid’s origin (0, 0).
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4.3. User Coverage Method

To cover as many users as possible, we use the two-sweep method described in
Algorithm 1. In wireless communication systems, the user association problem is frequently
solved using the two-sweep method [37]. In order to assign users to access points in the
most effective way, two independent stages of operation are carried out. During the first
sweep, which occurs in a 2D environment with the UAVs and users, each individual user
included in the set U of all users makes a connection request to the closest UAV in the set
I of all UAVs. One user is able to send a single request at a time, preventing many UAVs
from serving the same user. Once the UAVs have received the connection requests Cr, they
can identify which users are inside their coverage radius (i.e., within a Euclidean distance
dij that is less than or equal to the coverage radius r). The distance between user j and UAV
i is the Euclidean distance

dij =
√
(xui − xj)2 + (yui − yj)2.

Here, UAV i coordinates are represented by xui and yui, whereas user j coordinates are
indicated by xj and yj. The users inside each UAV’s service area are then sorted according
to their distance from the UAV. As the UAV fills to capacity C, users are admitted in order
of increasing distance. If a user is not connected to any UAVs in the initial sweep, a second
sweep is performed to find the closest UAV that can cover the user. The user cannot access
the network if there is no UAV nearby to cover them.

Algorithm 1 User Association algorithm of decentralized DQN

1: Initialization:
2: Input: Connection request Cr, User association q for u ∈ U,
3: User count for a UAV C for i ∈ I, Coverage radius for UAV r, Distance between UAV

and user d, Closest UAV Closest-UAV, Maximum capacity of a UAV Mc
4: for each user u ∈ U do
5: Closest-UAV← argsort(d) for all i ∈ I
6: if d ≤ r then
7: Cr ← 1
8: end if
9: end for

10: for each UAV i ∈ I do
11: Closest-user← argsort(d) for all u ∈ U and Cr = 1
12: for each user u ∈ Closest-user do
13: if q < C then
14: Set q← 1
15: Set C ← 1
16: end if
17: end for
18: end for
19: for each user u ∈ U do
20: if any user is not associated with any UAV then
21: Closest-UAV← argsort(d) for all i ∈ I
22: for each i ∈ Closest-UAV do
23: if C ≤ Mc and d ≤ r then
24: Set q← 1
25: Set C ← 1
26: end if
27: end for
28: end if
29: end for
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4.4. Design

For a UAV mesh network, we developed a decentralized multi-agent deep Q-learning
framework in which each UAV is autonomous and accountable for its subsequent actions
in order to maximize the total user connectivity. The state space, action space, and reward
function of UAV design will be covered in this section.

4.5. State Space

Since the state of the environment provides the basis for the agent behavior and is also
used to represent and map the environment, its design is very significant. The placements
of UAVs directly determine how many users are covered in each epoch, and this has a
major effect on the goal of maximization. For simplicity, we discretize the whole area into
equal small grid cells, where each cell indicates a possible UAV agent location. Each UAV
agent’s state is defined at each time step using its unique position coordinates within this
grid. While the UAVs fly horizontally, we simply take into account the 2D coordinates
(x, y); the epoch duration is 100 steps in the grid. The movements of UAVs are limited to
within the target region. During training, the DQN uses agents local states as an input, as
well as the individual and overall coverage rate of agents.

4.6. Action Space

Actions include both an agent’s output and the environmental input. Each drone has
five different possible actions. These motions include moving one step in any direction
(left, right, forward, backward), or remaining still. We do not consider the velocity of the
UAV movement in the dynamics, which allows us to have better control over the UAV
movement inside the state space. This reduces the complexity of directing their paths and
interactions in the environment. In addition, there is a border condition in the target area.
Any UAV will return to its initial state if it takes any action to leave the grid from a border
state. When calculating the reward, a flag is utilized to track the UAVs that attempt to leave
the grid and penalize them. Each UAV’s available actions can be expressed as follows:

ai ∈ {left, right, forward, backward, remaining stand-still},

where ai denotes the action of UAV i.

4.7. Reward Function

Reward is the feedback given to the agent after they have acted in response to specific
environmental conditions. The reward R is determined by the number of users covered
by a UAV because the objective is to maximize the number of covered users. The reward
function has multiple additional rewards and negative reward conditions. Any attempt by
a UAV to cross the border will result in a penalty. The UAV will receive a further reward
if the overall coverage rate exceeds a threshold value; if the overall coverage rate falls
below the threshold value, the UAV will be penalized. The UAVs attempt to maximize their
own reward by sharing reward information among themselves. This is called the average
reward. The average reward R is given by the following:

R =



1
N ∑N

i=1(Ri − pi) if flagi ̸= 0,
1
N ∑N

i=1(Ri + qi) if overall_coverage_rate > x,
1
N ∑N

i=1(Ri − ri) if overall_coverage_rate < x,
1
N ∑N

i=1 Ri otherwise,
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where Ri is the reward for the i-th agent, p is the penalty value for the ith agent who is tried
to go out of bounds, r is the penalty value for the i-th agent when the overall coverage rate
is below the threshold level, q is the additional reward value for the i-th agent when overall
coverage rate is below the threshold level, x is the threshold value of the overall coverage
rate, and N is the total number of agents.

4.8. Training

To train agents to make decisions in complicated environments, we propose utilizing
the DQN architecture. Using the Rectified Linear Unit (ReLU) activation functions to
introduce non-linearity, the neural network model consists of two fully linked hidden layers
with 400 neurons each. Given the current states and the individual and total coverage rate
of the environment’s agents, this architecture enables the network to approximate Q-values
for various actions. We train all the agents in a decentralized manner using a single neural
network model.

The reinforcement learning agent facilitates the process of learning by coordinating its
interactions with its environment and gradually improving its ability to make decisions.
The main goal of the agent is to optimize its actions in order to maximize the cumulative
rewards. This is accomplished by carefully balancing exploration and exploitation. In order
to learn more about the environment and the rewards associated with different activities,
the agent is frequently encouraged to experiment with a range of actions and behaviors
during the exploration phase. This exploration is often guided by a policy known as
an epsilon greedy policy, described in Algorithm 2, which finds a balance between the
exploration process and the exploitation of activities that were shown to be effective. Once
the agent has completed the exploration phase, they enter the planning phase. In this phase,
the agent updates its policy or plan to maximize its expected reward using the knowledge
it gathered during the exploration phase.

Algorithm 2 Epsilon-greedy policy

1: Input: Random variable r ∈ (0, 1); epsilon value ϵ ∈ (0, 1); Q-function; state
2: if r ≤ ϵ then
3: action← random available action
4: else
5: action←maximum Q-value in Q[state];
6: end if

To improve sample efficiency and stabilize learning, experiences are stored in a replay
buffer during training. These experiences comprise state–action pairings, accompanying
rewards, future states, and terminal flags. Using an MSE loss function that was optimized
using the Adam optimizer, the agent’s primary goal is to reduce the difference between
the target and forecast Q-values. Multiple epochs of environmental interactions are com-
bined into each iterative episode that makes up the training process. To stabilize training
and reduce overestimation bias, the target network is frequently updated to reflect the
parameters of the main network. Optimizing the learning dynamics and convergence
speed involves fine-tuning hyperparameters including target network update rate, epsilon,
batch size, discount factor, and learning rate. In order to analyze the agent’s performance
and track its learning progress, episode rewards and other pertinent metrics are tracked
during the training process. Through iteratively updating the neural network parameters
with experiences taken from the replay buffer, the agent progressively discovers the most
optimal policies to maximize the cumulative rewards in the given environment.

Agent–environment interaction can be divided into sub-sequences whenever the RL
algorithms provide a concept of time steps. Until a terminal state or a stopping criterion has
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been attained, these subsequences, which are referred to as episodes, consist of recurring
interactions between the agent and the environment. The current episode ends when all
UAVs have moved and are in their ideal places for that particular episode. A maximum
of 750 episodes, each with up to 100 epochs, make up the training. The tested agent goes
through 100 epochs of testing. The training is carried out on a Windows 11 server with
an Intel Core i7-7700 CPU (Intel Corporation, Santa Clara, CA, USA) running at 3.60 GHz
and 16 GB of RAM using Python 3.11. The MADQL algorithm was built using the PyTorch
library. Table 3 summarizes the key parameters, which are set according to the UAV
simulation requirements for optimal performance. In addition, the Figure 7 illustrates
the entire methodology used to position the UAVs within the environment to maximize
user coverage.

Main Deep Q
Network

Target Deep Q
Network

Target Q values
(To compute Loss)

Computing Q
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Q( st ,ai )
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action with the
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Figure 7. Flowchart of the proposed multi-agent reinforcement learning workflow.

Table 3. Simulation parameters.

Parameter/Software Value/Detail

Simulation Domain 1000 × 1000 units, discretized into a 10 × 10 grid
Number of Users 100 (distributed via hotspots and random scattering)
Number of UAVs 5
UAV Height 350 units
Coverage Angle 60° (coverage radius = 350 × tan(60°/2))
UAV Capacities [10, 15, 20, 25, 30]
Learning Algorithm Centralized and Decentralized Deep Q-Learning
Neural Network Architecture Two hidden layers with 400 neurons each, ReLU activation
RL Hyperparameters Discount factor = 0.95; learning rate = 3.5× 10−4

Epochs = 100; Replay buffer size = 125,000;
Batch size = 512; ϵ = 0.10

Software Python 3.11.12, Gym 0.25.2, NumPy 2.0.2, Matplotlib 3.10.0, PyTorch 2.6.0
Hardware Simulated on CPU (with potential GPU configuration)
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4.9. Example Simulation Result

This study explores the findings, in which each UAV maximizes its individual reward
while also sharing rewards with others to maximize the global reward and cover the maxi-
mum number of distributed users, as the reward is based on the number of users covered.

In Figure 8, the convergence curve is shown. The optimal state of the UAVs is displayed
in Figure 9, showing their successful collaboration in maximizing the reward function and
enabling the UAVs to cover up to 93 users.

Figure 8. Convergence plot of connected users per episode.

Figure 9. Simulation result with the reward information exchanged among the UAVs. Each dot
represents a user, with colors indicating the hotspots used to generate the user distribution (see
Section 4.1), with yellow indicating users randomly sampled in the environment. Each of the five
UAVs are indicated by a black shape, with their coverage area indicated by light blue.

To improve positional accuracy, we reduced the grid resolution from 100 m to 50 m
in our most recent UAV simulation update. The updated technique involves the UAV
taking 100 m steps for the first 60 steps before switching to 50 m steps for the final 80 steps.
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Figure 10 depicts the convergence plot for this approach. This change enables the UAV
to make more precise movements as it approaches the optimal position, increasing user
coverage from 93 to 95. Figure 11 shows the optimal position of the UAVs. Despite this
development, the improved grid resolution and smaller step sizes cause a substantial
increase in simulation time. The previous setup took roughly 200 min, whereas the current
configuration takes around 300 min. As a result, achieving more exact optimal positioning
requires longer simulation times, emphasizing the importance of balancing precision and
computational efficiency.

Figure 10. Convergence plot of connected users per episode when the grid space is 50 m.

Figure 11. Simulation result with reward information exchange among the UAVs when the grid space
is 50 m. For the meaning of the colors and shapes, please see the caption of Figure 9.
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In summary, achieving more precise optimal positioning necessitates longer simulation
times, highlighting the need to balance precision with computational efficiency.

5. Training Methods and Policy Adaptability in Different
Environmental Settings

In this section, we focus on the stochastic environment and investigate various user
distributions inside a specific target area, with the goal of improving our model’s adapt-
ability and robustness [62]. To accurately imitate real-world settings, we purposely add
diversity in user distribution across different episodes when training our model. This
deliberate variation is critical, providing our model with the capacity to handle the many
user distribution circumstances seen in practical applications. By exposing our model to a
variety of user distributions during training, we hope to foster resilience and improve its
capacity to be generalized across different types of user distributions. We hope to gain a
thorough understanding of how our model responds to changing levels of uncertainty and
adapts to a variety of environmental conditions, ultimately improving its performance in
real-world applications characterized by stochastic dynamics.

We expand our investigation by applying the training data from one setting to another
and analyzing the results using histograms. Our goal is to evaluate the performance of the
model learned in one environment when applied to a different, but comparable, environ-
ment. By displaying the results with histograms, we can see how well the model generalizes
across settings and responds to changes in environmental conditions. This research allows
for us to assess the model’s resilience and transferability, providing information on its
ability to manage stochastic environments.

5.1. Motivation

Our approach is motivated by the computational expenses associated with training
reinforcement learning models. Given the computational resources necessary for training,
we intend to accelerate the process by training the model in a given environment and then
evaluating it in similar scenarios. This method allows us to use the knowledge learned
during training to similar situations, lowering the computational overhead required when
building numerous models from scratch for each environment. By focusing on training
the model in one environment and testing it in others, we hope to increase efficiency while
maintaining the model’s effectiveness and flexibility across multiple related scenarios. This
strategy not only minimizes computational resources, but it also makes it easier to use
reinforcement learning techniques in real-world circumstances.

5.2. Stochastic User Distribution

In Section 4, user positions remained consistent across all episodes of training. In this
section, we consider two additional distribution scenarios. To distinguish the various user
distributions, we refer to the user distribution from Section 4, in which the user positions
remain constant as a type I distribution. Figure 12 provides a sample of a type II user
distribution in which user positions are randomly sampled in each episode while hotspot
coordinates and user counts remain unchanged. This design enables an investigation of
how user distribution patterns change over numerous episodes while the overall structure
of the hotspots remains unchanged. In contrast, Figure 13 displays a sample of a type III
user distribution scenario in which both the placements and the number of user counts
are randomly sampled in each episode but the hotspot coordinates remain constant. This
dynamic design allows for research on how changes in user counts and positions affect the
overall distribution landscape while keeping hotspot locations consistent across episodes.
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These different distribution techniques provide useful insights into the dynamic nature of
user distribution and its consequences for system efficiency.

Figure 12. Type II user distribution samples in which user positions are randomly sampled in each
episode while keeping hotspot coordinates and user counts fixed. For the meaning of the colors and
shapes, please see the caption of Figure 9.

Figure 13. Type III user distribution samples in which user positions and the number of user counts
are randomly sampled in each episode while the hotspot coordinates are kept constant. For the
meaning of the colors and shapes, please see the caption of Figure 9.

5.3. Training

To optimize the UAV’s decision-making within the network, we employed the same
training procedure as in Section 4. The strategy used for user distribution during the
training phase, however, differs significantly. In contrast to the fixed user distribution
employed in the earlier training cycles, we introduced dynamic adjustments to the user
distribution following each episode. This adaptable approach is in line with real-world
situations, in which user populations may fluctuate over time as a result of events, shifting
mobility patterns, or modifications to the surrounding environment. As they were trained
under a variety of user distribution scenarios, the UAV agents are exposed to a broad
range of working environments, which improves their ability to adapt to changing user
environments. After conducting a thorough experiment and analyzing the simulation
results, we evaluate how well the training framework performs in enabling UAV agents
to navigate and serve users in a variety of distribution patterns, which helps to optimize
network performance in dynamic and unpredictable environments.
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5.4. Simulation Results

For three learning algorithms in a UAV-assisted network, Figure 14 shows a com-
parative study of the episodic rewards received across 750 episodes. Because the user
distribution remained constant throughout every training event, Type I exhibits a rapid
learning efficiency that is typified by a swift ascent to a stable high-reward plateau. As seen
by the longer progress to equivalent reward levels with larger fluctuations, Type II, which
has a user sample that varies with each training event, shows a more measured learning
curve and moderate stability. With the highest degree of variety, Type III exhibits compa-
rable reward attainment but a more intricate learning environment. Type III introduces
variability in both user samples and the number of users per hotspot during training. In
spite of these variations, all three kinds show convergence, highlighting how well the
learning algorithms adapt to different training scenarios.

Figure 14. Comparison of convergence plot.

The variable spread of and peaks in the distributions in the histograms presented
below show how the number of users connected per episode varied among the simulation
settings. The red dashed line, which represents the mean number of users connected,
moves around the charts to show the various average connectivity in each case.

We conducted an empirical study to examine the effectiveness of a policy designed for
one distribution of environments on environments taken from a different distribution. This
investigation was essential for evaluating the training policy’s robustness and adaptability
in a variety of environmental circumstances.

The test results obtained for a policy that was learned on a Type I user distribution and
then applied to the same training distribution are shown in Figure 15 (top left). Applying
the taught policy to a similar user distribution situation resulted in the policy connecting
86 users in each testing episode. When the same policy was applied to a Type II user
distribution, as shown in Figure 15 (top center), a broader frequency distribution with a
lower mean of about 82 users connected is revealed. This suggests that the user sampling
variability may have somewhat lowered performance. Lastly, due to changes in both user
sampling and the number of users per hotspot, Figure 15 (top right) shows an even greater
decline in user connectivity when the policy was applied to the Type III user distribution,
with the mean connecting to around 76 users.
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Test results are shown in Figure 15 (middle left) for a policy learned on a Type II
user distribution that, when applied to a Type I distribution, achieved connectivity for
83 users. The performance of the identical Type II-trained strategy with its native Type II
distribution is shown in Figure 15 (middle center), where the mean connectivity decreased
to about 82 users and the distribution is more dispersed. When evaluated under Type III
conditions, the Type II-trained strategy in Figure 15 (middle right) shows an even broader
spread, with the mean number of people linked falling to about 80. These outcomes
demonstrate how flexible the strategy is, preserving a high level of user connectivity in a
range of distributions.

Figure 15. Histograms showing the distribution of the number of users connected after applying
the trained policy for 500 episodes. The horizontal axis represents the number of users connected,
while the vertical axis shows how frequently each number of connected users occurred. The average
number of connected users is shown by a red dashed line on each graph. Each column of histograms
indicates a different type of user distribution (Type I, II, and III), and each row applies a different
policy (trained on Type I, II, and III user distributions). In the first column (corresponding to Type 1
user distributions), the black and red lines are identical since there is only a single user distribution
so all simulations achieve the same number of connected users.

After training with a Type III user distribution, the policy connected an average of
84 users per episode in a Type I scenario. The test results are shown in Figure 15 (bottom
left). Under Type II conditions, the identical technique shows a greater dispersion in
connectivity with a mean of about 81 users in Figure 15 (bottom middle). After additional
testing under Type III settings, the number of connected users showed the widest range,
with the mean falling to roughly 79, as illustrated in Figure 15 (bottom right).

The testing results show that the user connectivity policy was robust when applied
to different user distributions; in all circumstances, the policy covered about 80 percent
of users. The policy was able to maintain a high degree of consistency every time. This
performance consistency, which accounts for a significant majority of the users, irrespective
of the distribution method, highlights the algorithm’s resilience and potential utility in a
range of operational environments.
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6. Robustness Against Jamming Attacks
Unmanned aerial vehicles (UAVs) have shown great promise in addressing a variety

of communication network difficulties [62]. Jamming attacks remain one of the main
problems in wireless networks, despite the significant technological advancements in this
field. The widespread occurrence of wireless networks based on UAVs has made jamming
assaults a significant obstacle to the effective implementation of these technologies [63].
The term “jamming attack” describes the illegal creation of interference to an ongoing
communication in order to cause disruptions or deceive users of wireless networks. In order
to interfere with the wireless networks’ regular operation, the jammer sends out jamming
signals. Wireless networks are therefore still susceptible to a variety of jamming attack
methods. Because of the UAV’s great degree of adaptability, it is possible to mitigate
the jamming attack or perhaps completely prevent its detrimental effects. Nonetheless,
the jammer may target the UAV itself in an attempt to impede the regular operation of
UAV-based communication networks [64].

The authors of [65] presented a UAV-aided anti-jamming system for cellular networks.
Reinforcement learning algorithms are used by the UAV to select relay policies for users
in cellular networks. To counteract the jamming attack, the UAV routes traffic from the
jammed base station to a backup base station. In [66], the authors examined an anti-
jamming communication within a UAV swarm when jamming was present. The UAV
maximizes its data reception by taking use of the degree of freedom in frequency, velocity,
antenna, and regional domain while a jammer targets the network. In [67,68] suggested a
combined optimization for the UAV trajectory and transmission power in anti-jamming
communication networks. The optimization problems are solved using a Q-learning-based
anti-jamming approach and a stackelberg framework.

6.1. Problem Setup

In our current system model, any UAV can be jammed by malicious entities while
providing services to users, resulting in a drop in overall coverage because the jammed UAV
can no longer serve users. When a UAV is jammed, it loses its capacity to communicate
with other UAVs, which means it cannot send or receive information or signals from the
remaining UAVs. The jammed UAV can only hover indefinitely, with no further activity.
In this approach, jamming occurs after the UAV has taken 30 steps within the grid from the
origin, allowing it to achieve its optimal location before being jammed.

Our key objective is to enable the UAV to quickly react, reposition itself, and take the
optimal position to cover the maximum number of users.

6.2. Methodology

To optimize user coverage in the event of UAV jamming, we incorporated a straight-
forward yet efficient heuristic into our proposed strategy, as described in Algorithm 3. Any
UAV that becomes jammed instantly experiences a zero percent individual coverage rate.
As soon as one of the UAVs becomes jammed, the other UAVs will identify its location.
Then, the individual coverage rate of each remaining UAV will be determined. The UAV
with the lowest coverage rate will travel in the direction of the jammed UAV if any of these
serving UAVs have individual coverage rates that are lower than the jammed UAV’s initial
coverage rate. The UAVs take one step at a time toward the jammed UAV. The UAV with the
lowest coverage rate applies vector calculations to precisely navigate to the jammed UAV’s
location. The UAV that goes to the jammed UAV’s location resumes normal operation,
seeking to restore coverage to the previously served area. If the jammed UAV’s coverage
rate prior to jamming was less than or equal to the remaining UAVs’ coverage rates, no UAV
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will approach the jammed UAV’s position. This is because the overall goal is to maintain or
increase user coverage across the network.

This technique was included in the main algorithm to assist in the dynamic relocation
of UAVs when one is jammed. Its integration prevents the main algorithm from getting
stuck in the local minima, allowing for UAVs to continuously adjust their positions to
optimize user coverage, which is the primary goal.

Algorithm 3 UAV Handling in Jammed UAV Scenario

1: Input: Number of UAVs N, Index of jammed UAV j, User count per UAV C[i] for i ∈ [0, N),
Current and target positions for UAVs.

2: if j ̸= None then
3: Determine Valid UAV Indices:
4: V ← {i | i ∈ [0, N), i ̸= j, UAVi not in transit}
5: Compare User Counts:
6: uj ← C[j] ▷ Number of users for the jammed UAV
7: umin ← min(C[V]) ▷ Minimum number of users among valid UAVs
8: if uj > umin then
9: if assigned_uav = None then

10: Select UAV with Minimum Users:
11: uav_min← arg min(C[V])
12: assigned_uav← uav_min
13: else
14: uav_min← assigned_uav
15: end if
16: Obtain Current and Target Positions:
17: current_position← Position[uav_min]
18: target_position← Position[j]
19: if current_position ̸= target_position then
20: Calculate Movement Direction:
21: direction_vector← target_position− current_position
22: step_x← sign(direction_vector[horizontal])
23: step_y← sign(direction_vector[vertical])
24: Update UAV Position:
25: next_position← current_position + [step_x, step_y]
26: Position[uav_min]← next_position
27: else State Reset Assigned UAV:
28: assigned_uav← None
29: end if
30: end if
31: end if

6.3. Simulation Results

The simulation outcomes illustrate the positions of UAVs before and after a jamming
event, providing a visual representation of both UAVs and users in Figure 16. Here, we
present one specific case, while similar figures and their numerical data will be provided for
other cases. In the left figure, the UAVs are initially positioned optimally, covering a total
of 86 users. However, after UAV 1, marked with a star, is jammed, its individual coverage
rate drops to zero, leading to a significant decrease in overall user coverage, as shown in
Figure 16, dropping to 45 users. In response, the remaining UAVs adjust their positions
within a few time steps, following the relocation strategy outlined by our algorithm. The
figure on the right depicts the new positions after the relocation, where the UAV marked
with a triangle moves to the location of the jammed star-marked UAV to cover the affected
users. This adaptive response enables the network to recover, achieving a new coverage
level of 68 users, as indicated in Figure 17.

Figure 18 depicts the dynamic behavior of five UAVs in reaction to jamming events,
with each UAV jammed independently after a time step of 30. The plot depicts how the
number of users connected to each UAV varies before and after the jamming, showing the



Drones 2025, 9, 321 24 of 35

overall network coverage rate and the subsequent recovery process. Initially, all UAVs
performed optimally, and the total network coverage rate reached a maximum of 86 users.
However, when a jamming event occurred that targeted one UAV at a time (as represented
by the red dashed line at time step 30), the coverage rate quickly declined, indicating that the
jammed UAV was unable to provide service. When the first UAV (blue line) was jammed, its
coverage rate decreased from around 86 users to 45, resulting in a considerable decrease in
overall coverage. However, due to the algorithm’s relocation method, the remaining UAVs
modified their placements, resulting in a steady recovery of overall coverage that stabilized
at around 68 users. For the second UAV (orange line), the remaining UAVs shifted their
coverage, settling at around 68 users. The third UAV (green line) maintained a relatively
consistent coverage, starting at roughly 76 users, with minimal influence from jamming due
to its ideal placement. When UAV four was jammed, its coverage decreased from roughly
86 to around 57 users. After the jamming occurred, the relocation mechanism allowed the
remaining UAVs to shift their positions, gradually restoring the overall coverage to around
68 users. Similarly, when UAV five was jammed, the coverage rate dropped dramatically,
to roughly 66 users, before returning to 71 users following relocation. These findings show
that the algorithm is effective at dynamically reallocating UAVs to enhance user coverage,
even in the face of severe disruptions such as jamming attempts.

Figure 16. UAV relocation to maintain maximum user coverage before and after a jamming incident.
For the meaning of the colors and shapes, please see the caption of Figure 9.

Figure 17. Number of connected users over time (blue). The vertical red dashed line indicates the
time of the jamming attack.
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After each jamming incident, the network eventually settled on a new equilibrium
coverage level that iwa somewhat lower than the initial peak but much greater than the
immediate post-jamming condition. This result demonstrates the relocation strategy’s effec-
tiveness in maintaining a strong network performance and maximizing user connectivity
under adverse conditions.

Figure 18. The number of connected users for each of the five UAVs over time. The vertical red
dashed line indicates the time of the jamming attack. Before the jamming attack, all UAVs steadily
increased their number of connected users. The number of users decreased noticeably after the
jamming event. Over time, the UAVs adapted to counteract the impacts of the jamming, stabilizing
their user connections.

7. Centralized Problem Approach
In contrast to the distributed approach shown in the previous section, we now consider

the use of a centralized algorithm to place the UAVs in order to maximize the number of
connected users. Here, a centralized controller computes the actions of all UAVs. This
approach is illustrated in Figure 19.

Figure 19. Centralized RL approach where all the UAVs are controlled by a single agent.

7.1. Centralized Algorithm Workflow

The centralized approach consists of a central neural network that can control the
actions of all the UAVs [26,69]. The global state of all the UAVs, sglobal(t), provides the
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inputs to the main network. The main deep Q network approximates the optimal Q values
for all the possible joint actions of the UAVs and the Q values for the current state are
predicted. The target network, in parallel, provides the target Q values that are used in
the computation of the loss function and the main network weights are adjusted based on
this. The best set of joint actions that holds the maximum Q value is chosen, and this action
is considered for all the UAVs in the environment. The epsilon greedy policy acts as the
deciding factor and the trade-off between exploration and exploitation is determined using
the ϵ parameter.

After choosing the best joint action, it is sent to the environment and the actions
are implemented. The environment, in return, provides the combined reward/penalty
for the collective action taken, the next transitioned state information, and information
regarding whether the terminal state was reached. This collective information is stored
in the replay buffer from which the sample of memories that contains these information
is taken and used to train the neural network.This iterative process is carried out in each
step for several episodes, more than the multi-agent algorithm, as a large amount of data
need to be handled. The calculation of the optimal value takes time since the network has
to find the optimal joint actions in a combined fashion for all the UAVs. This strategy is
used in optimal UAV position placement to obtain the maximum user coverage using a
single controller. The total runtime of this algorithm is longer than that of the multi-agent
algorithm, as a large amount of data are handled by the neural network. The centralized
algorithm flow is shown in Algorithm 4.

Algorithm 4 Centralized DQL Approach to UAV position optimization

1: Initialization:
2: Initialize the centralized main DQN Q(sglobal, ajoint; θ);
3: Initialize the centralized target DQN Q̂(sglobal, ajoint; θ̂) with weights θ̂ = θ;
4: Initialize the centralized experience replay buffer B;
5: Learning Process:
6: for each episode e = 1 . . . E do
7: Initialize the global state for all UAVs to starting state sglobal,0;
8: for each timestep t = 1 . . . T do
9: Execute centralized ϵ-greedy policy to select joint action ajoint,t;

10: Take joint action ajoint,t, observe joint reward rt, and next global state sglobal,t+1;
11: Store transition (sglobal,t, ajoint,t, rt, sglobal,t+1) in B;
12: if enough data in B then
13: Sample minibatch and perform a gradient descent step on Q;
14: Periodically update Q̂ with weights from Q;
15: end if
16: end for
17: end for

7.2. Centralized Deep Neural Network

The centralized deep neural network is responsible for the calculation of the Q values
for the joint action. This is shown in Algorithm 5. The neural network in the multi-agent
approach is computationally easy as the input dimension and output dimension of the
neural network are not large. However, in the centralized approach, the input dimension
of the neural network depends on the total number of UAVs employed in the environment.
The output dimension of both the network grows larger in accordance with the number
of actions and number of added UAVs. This neural network structure is used in both the
main network and the target network of the centralized algorithm. The centralized neural
network structure is shown in Figure 20.
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Algorithm 5 Training centralized DQN for UAV

1: Initialize replay buffer B, centralized action-value function Q with weights θ, and target
action-value function Q̂ with weights θ− = θ

2: for each training iteration do
3: Sample minibatch of transitions (s, a, r, s′) from B

4: Set y =

{
r for terminal s′

r + γ maxa′ Q̂(s′, a′; θ−) otherwise
5: Perform a gradient descent step on (y−Q(s, a; θ))2 with respect to θ
6: Every C steps reset Q̂ to Q: θ− ← θ
7: end for

Figure 20. Centralized deep Q network structure for the main network and target network. Here,
s(x)i,t and s(y)i,t denote the states of all the UAVs, and ai,t denote the Q values for the combined
joint action.

7.3. Main Network

The main network is responsible for decision-making using the Q values, which
determine the best joint action to take. The dimension of the input layer corresponds to
the state space. For example, if there are five UAVs in the environment and each UAV has
two coordinates, then the dimension of the state space would be (5× 2), which is 10. This
would provide the input dimension of the main network and output the Q values for the
joint action. If there are k different actions, then the dimensions of the output layer would
be kM. That means if there were five UAVs and five actions for each UAV, then the output
dimension of the neural network would be 55. This is a very large value compared to the
output of the multi-agent network.

7.4. Target Network

The target network has the same architecture as the main network. The target network
is used in the calculation of the target Q values for combined joint action for the next
state. This sets a target value for the main network, which is used in the calculation of
loss function. The error is the measure of the difference between the expected cumulative
reward for the joint action and the current cumulative reward after taking the current joint
action. The target Q value is calculated as

Qtarget(sglobal, ajoint) = r(sglobal, ajoint) + γ max
a′joint

Qtarget network(s
′
global, a′joint) (3)
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where sglobal is the current global state, ajoint is the joint action taken by all UAVs,
r(sglobal, ajoint) is the immediate reward received after taking action ajoint in state sglobal,
s′global is the next global state resulting from action ajoint, γ is the discount factor,
and Qtarget network(s′global, a′joint) is the Q value predicted by the target network for the
next state and all possible joint actions. The training of the centralized neural network is
shown in Algorithm 5.

7.5. Epsilon Greedy Policy

Similar to multi-agent deep Q learning, the centralized approach uses an epsilon
greedy policy to determine the joint action to be taken. The difference here is that the
central controller uses a single epsilon greedy policy to determine whether the exploration
or exploitation strategy is to be used at each time step. If the epsilon value is greater than
the generated random number, then the agent chooses exploration; if the value of ϵ is
lower, the agent is prompted to choose the action with the highest Q value, as shown in
Algorithm 2.

7.6. Reward Function

In centralized algorithm the reward is based on the total number of users covered by
all the UAVs. Instead of assigning a reward and penalty to each individual UAV, we assign
a cumulative reward combining all the UAVs, and the penalties are assigned based on the
violation conditions. The centralized reward function is shown in Algorithm 6.

Algorithm 6 Reward calculation for the centralized approach

1: Input: Nassoc,i, number of UAVs M, penalty_flag
2: reward← sum(Nassoc,i)
3: for k from 0 to M− 1 do
4: if penalty_flag[k] = 1 then
5: reward← reward− 2 ▷ Penalty for boundary exceedance
6: end if
7: end for
8: Output: reward

7.7. Training of the Decentralized Model

The five decentralized models in the multi-agent deep Q network are first trained
separately, with a separate neural network controlling each model. The decentralized
model architecture has an input layer of size 2, two hidden layers with 400 neurons each
and ReLU activation functions, and an output layer of size 5.

After training the decentralized models, neural network weights are saved individ-
ually and the averages of the saved decentralized model weights for each compatible
layer are computed. In this case, the compatible layers are the hidden layers of the neural
network. As their dimensions are different from the centralized models, the input and
output layers of the neural network are incompatible.

7.8. Initialization of the Centralized Model

In the centralized model, the weights of each individual decentralized neural network
are initialized into a central neural network, which then trains the neural network. This is
shown in Figure 21. The centralized neural network architecture has an input layer of size
10, two hidden layers with 400 neurons each and ReLU activation functions, and an output
layer of size 3125.
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Figure 21. Neural Network initialization for centralized deep Q network structure.

In order to initialize the centralized model, we updated the state dictionary containing
the weights of the centralized neural network with the average weights of the decentral-
ized neural network. The centralized neural network’s hidden layer structure contains
similarities to the decentralized neural network’s weight structure. Therefore, these layers
were compatible. We calculated and set the weights of the various decentralized neural
networks as the average for the centralized model. After training the decentralized models,
each weight of the neural network was saved. The averages of the saved decentralized
model weights for the compatible layers were then computed. The layers of the neural
network that were compatible in this case were its hidden layers. As the dimensions of
the input and output layers of neural networks are different from those of the centralized
model, they cannot be initialized.

7.9. Centralized DQL Results

Table 4 describes the simulation parameters used in the centralized approach.
Figure 22 (left) presents the trend of episode vs. the connected user in episodes obtained
from the centralized learning algorithm. This graph highlights the smoothed short-term
fluctuations and highlights the long-term trends. Initially, the learning graph increases
rapidly, representing the learning process, and after approximately 600 episodes, the al-
gorithm stabilizes and shows convergence towards the optimal policy. This depicts the
trial-and-error nature of the learning process where, despite these fluctuations, the algo-
rithm shows an upward trend and convergence.

Figure 22. Simulation results of the centralized algorithm; (Left) number of connected users in each
episode by all the agents; (Right) best state of all UAVs.
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Table 4. Simulation parameters of the centralized approach.

Parameter Value

Number of epoch Nepoch 100
Dimension of state space 10
Dimension of action space 55 = 3125
Coverage radius h · tan

(
Ω
2

)
= 202.07 m

DQN structure Nlayers = 4, Nnodes = 400
Altitude of UAV h 350 m
Usable bandwidth 0.9 ×BWUAV = 3.6 GHz
Learning rate α 0.10× 10−4

Resource block per UAV 20
Number of hotspots 4
Bandwidth of resource block 180 KHz
UAV bandwidth 4 GHz
Grid space 100 m
Number of user U 100
Replay buffer size 125,000
Batch size 512

Figure 22 (right) shows the best state of all the UAVs in the centralized approach.
Here, the red circles denote the coverage radius of each UAV and the users that fall under
the coverage radius of an UAV are considered for connection with that particular UAV
depending upon the constraints of the UAV.

7.10. Neural Network Initialization

The performance of the centralized algorithm with the hidden neural network layers
initialized using the weights of decentralized network is similar to that of the centralized
algorithm. A major difference, however, is the time required for the model to learn the
policy. As the centralized neural network is large, it requires extensive training and tuning
of the hyper-parameters. The layers of the neural network and the learning rate are directly
related to the improved outcomes obtained by the model. Therefore, both the centralized
and the decentralized neural network layers must be compatible in order to initialize the
weights. In the current case, we have hidden neural network layers of the same size with a
similar number of nodes. If we change any one of the neural network layers during the
tuning process, it would be not compatible for the initialization, and this approach would
not be effective. The previous centralized algorithm had a runtime of 157 min, while the
initialization approach took 63 min to run the centralized algorithm with the initialized
weights. If we consider the total runtime, including the decentralized network training,
the combined runtime is 125 min. The results show that the initialization of the hidden
layers in the centralized neural network was helpful and did not degrade the performance;
instead, the learning process stabilized faster even if the learning rate was increased.

Figure 23 shows the output of the centralized and decentralized neural network in
a small-scale problem. This particular output shows that the centralized UAV algorithm
performs better when the problem is not large. As the problem becomes larger, the data
involved increase and this causes the algorithm to learn slower and take a longer time to
achieve a better performance. Here, the output of the centralized algorithm shows a smooth
learning process, whereas the decentralized algorithm shows a rough learning curve. One
of the main reasons for this is because the learning rate employed in the decentralized
network is updating faster. Compared to the five-UAV scenario, three UAVs provide a
better outcome, with a higher learning rate. Due to this, even if there were some initial
spikes in the learning, after a few episodes, the learning stabilizes. The final best outcome of
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the centralized algorithm covers 54 users of a total user count of 60, and the outcome of the
decentralized algorithm was 48 covered users. This shows that the centralized algorithm
performs better than the decentralized algorithm for smaller-scale scenarios.

Figure 23. Simulation results of centralized (left) and decentralized (right) neural network at a small
scale using three UAVs.

7.11. Comparison with Decentralized Approach

The centralized approach, while effective for smaller networks, faces increasing com-
putational complexity as the number of UAVs and users grows due to the exponential
expansion of the joint state and action spaces. In contrast, the decentralized approach
distributes the computational load across individual UAVs, which allows it to scale more
gracefully in larger networks. Although decentralized systems may encounter challenges
with inter-agent coordination as the network size increases, our simulation results demon-
strate that they maintain a robust performance and adaptability even with higher numbers
of UAVs and users. Thus, our work provides a clear trade-off: centralized methods can
offer optimal coordination in limited scenarios, whereas decentralized methods are more
suitable for large-scale, dynamic environments.

8. Conclusions
To summarize, this paper advanced the cause of improving user connectivity in

ad hoc communication networks by strategically deploying UAVs under the control of a
multi-agent and centralized deep Q-learning framework. The robustness of the suggested
approach is demonstrated through the creation of a simple algorithm for policy-training in
stochastic settings and the thorough testing of that algorithm over a range of environmental
distributions. Furthermore, the empirical analysis of policy adaptation under various
distributions confirms the taught policy’s adaptability and robustness. This paper also
focused on instances in which jamming attacks result in a considerable reduction in total
user coverage rate. Under such adverse conditions, we created an algorithm that adjusts
the placements of UAVs that are not impacted by jamming while in service. The main goal
of this algorithm is to optimize user coverage by reallocating UAVs to keep as many ground
users connected as is feasible during instances of jamming. This method significantly
mitigates the negative consequences of jamming assaults by guaranteeing that the network
can adapt and respond to disturbances, hence increasing the overall system’s resilience
and reliability. This work establishes a baseline for the flexibility of UAV network rules
in the dynamic conditions of real-world situations, laying the groundwork for further
research in this field. The practical implementation of multi-agent reinforcement learning
algorithms for UAV base stations presents a variety of additional challenges. UAV flight
time, for instance, is limited by battery capacity, making efficient energy management
and optimized trajectory planning essential in real-world deployments. Moreover, limited
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memory and computational abilities present practical challenges in UAV base station
deployment, which are interesting challenges for future work.
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