
Franklin Open 8 (2024) 100160 

A
2
(

Contents lists available at ScienceDirect

Franklin Open

journal homepage: www.elsevier.com/locate/fraope

Extending boids for safety-critical search and rescue
Cole Hengstebeck, Peter Jamieson, Bryan Van Scoy ∗

Department of Electrical and Computer Engineering, Miami University, 650 East High Street, Oxford, OH, 45056, USA

A R T I C L E I N F O

MSC:
93A16

Keywords:
Boids algorithm
Search and rescue
Control barrier function

A B S T R A C T

Robot swarms can accomplish complex tasks, and in this work, we seek to design swarm robotic algorithms
for search and rescue that are scalable to large swarms, efficient in terms of computations, safe from collisions,
and tunable to mediate the trade-off between exploration and exploitation in the search. We propose extending
the Boids algorithm to accomplish this. Without modifying the three Boids rules of alignment, cohesion, and
separation, we add target-seeking and general collision avoidance by using ghost boids. Additionally, we use a
control barrier function to improve safety at the cost of increased computation. Via simulation in a search
and rescue task, we analyze the trade-offs between safety, computational efficiency, and coverage of the
environment for our algorithm.
1. Introduction

Swarms of robots may be used to search large and complex en-
vironments in search and rescue missions. Traditionally, search and
rescue requires teams of people to explore an environment for the target
needing help. Scenarios have different requirements, from the number
of people searching to the equipment required, such as helicopters or
marine vessels. This presents a limitation on the scalability of search
tasks, which could, in turn, inhibit the success of a mission.

Robots can replace or supplement people searching and entering
potentially dangerous or hard-to-reach areas [1–3]. Robots used for
search and rescue vary greatly in design and intended application. For
example, drones provide aerial views and cover an area quickly [4],
while terrestrial robots have specially designed wheels or treads to
maneuver over rubble or up and down stairs [5]. While robots are
being used to increase the capabilities of search teams, there is often a
one-to-one ratio of robots to human operators.

Several distributed planning and control techniques have been pro-
posed to allow multiple agents to search simultaneously. Particle swarm
optimizers have been used to plan a more optimal search path to
achieve higher target recovery rates [6,7], and machine learning tech-
niques have been applied to improve path planning for searching [8,9].
Also, control schemes have been proposed that mimic the movement
of creatures in biological colonies, which result in successes over some
traditional search patterns [10].

Multi-agent search and rescue is a complex task with various design
trade-offs. Agents seek to explore their environment while exploiting
any available knowledge about the target’s location, and they must do
so safely and with limited computational abilities. In this work, we

∗ Corresponding author.
E-mail address: bvanscoy@miamioh.edu (B. Van Scoy).

aim to design swarm robotic algorithms to safely explore an environ-
ment while exploiting information about possible target locations. Such
algorithms should have the following properties.

• Scalable: The algorithm should scale to large swarms, so robots
should only use information from neighbors.

• Efficient: The algorithm should be implementable on robots with
limited computational abilities.

• Safe: Agents should seek to avoid collisions with other agents and
environmental obstacles.

• Tunable: The algorithm should be tunable to trade-off explo-
ration and exploitation.

One means of achieving verifiable safety in multi-agent systems is
using control barrier functions [11–14]. This approach has been suc-
cessfully applied to various applications such as formation control [15]
and can guarantee safety while avoiding deadlocks [16]. However,
control barrier functions also have limitations. They guarantee safety
when the agents choose their control actions from a certain set, but this
set may be empty, implying no safe action exists (e.g., [14]). Moreover,
some results are restricted to double-integrator dynamics and rely
on braking (subject to a maximum braking force) to avoid collisions
(e.g., [12,13]). In contrast, others rely on multiple communication
rounds to ensure agreement (e.g., [17]).

Control barrier functions modify a nominal controller in a
minimally-invasive manner to improve system safety. As a nominal
controller for search and rescue, we consider Boids algorithm [18].
Initially proposed by Craig Reynolds in computer animation to mimic
the flocking of birds, this algorithm consists of three simple rules. Each
https://doi.org/10.1016/j.fraope.2024.100160
Received 5 April 2024; Received in revised form 6 September 2024; Accepted 23 S
vailable online 27 September 2024 
773-1863/© 2024 The Authors. Published by Elsevier Inc. on behalf of The 
 http://creativecommons.org/licenses/by/4.0/ ). 
eptember 2024

Franklin Institute. This is an open access article under the CC BY license 

https://www.elsevier.com/locate/fraope
https://www.elsevier.com/locate/fraope
mailto:bvanscoy@miamioh.edu
https://doi.org/10.1016/j.fraope.2024.100160
https://doi.org/10.1016/j.fraope.2024.100160
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fraope.2024.100160&domain=pdf
http://creativecommons.org/licenses/by/4.0/


C. Hengstebeck et al. Franklin Open 8 (2024) 100160 
Fig. 1. Heatmap of agent locations aggregated over time for multiple simulations of
our algorithm. The agents start on the left (orange) and seek to avoid collisions (red)
while navigating around the obstacles (black) to reach the target (magenta) while also
exploring the environment. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

agent gathers information about nearby agents, such as their relative
position, velocity, and heading, and then decides how to update its
movement based on the following concepts: separation pushes agents
away from each other, alignment causes agents to move in the same
direction as their neighbors, and cohesion clusters agents together to
form cohesive flocks.

The Boids algorithm is intentionally simple in design. The algorithm
does not provide obstacle avoidance, and there is no means of target-
seeking to complete a specific task. Because of this, the Boids algorithm
has limited direct application outside of computer animation or agent
placement [19,20]. Other algorithms, however, add more rules or
complex control on top of Boids to improve it [21,22].

In this paper, we propose a novel extension to the Boids algorithm
based on control barrier functions, and we characterize its trade-offs in
numerical simulations of a search and rescue task. Without modifying
the three rules of separation, alignment, and cohesion, we use ghost
boids to implement object avoidance and goal-seeking behavior. Ghost
boids interact with agents similarly to other agents but with modified
rules. One type of ghost boid, an aid-to-navigation, is placed on obstacles
and the environment boundary to inhibit collisions. Another type of
ghost boid, a compass, enables the agents to move toward a given
location. By controlling the strength of the compass, we can tune how
much the algorithm exploits the information to move toward the target
location versus how much it explores the environment. To further
improve safety, we use a control barrier function to minimally modify
the algorithm to avoid collisions at an additional computational cost.
Inspired by the Boids algorithm, we impose that each agent travels
at a constant velocity so that the environment is continuously being
explored, so we cannot guarantee safety via braking. Instead, we show
through numerical simulations that safety is vastly improved, even in
large swarms.

Fig. 1 illustrates how we present our results. In this figure, a group
of 50 agents (shown as orange dots on the left side of the image)
explores an environment consisting of a square boundary and two
walls (perpendicular lines shown as black squares emerging from the
bottom and top of the figure). One agent is given the goal’s location
(the magenta star), and the agents use local interactions to explore the
environment and move toward the goal. To visualize this behavior,
we use a heatmap of the agent locations aggregated over time for
2 
multiple simulations, where darker regions (dark blue) correspond to
well-explored areas and lighter regions (yellow) correspond to the less
explored spaces. In this scenario, the agents have effectively explored
the entire environment (since much of the heat map is blue). Ad-
ditionally, three agents are shown to have had collisions across all
aggregated simulations, as indicated by the red dots near the walls. By
tuning the compass influence, the agents may search closer to the goal
location at the cost of less exploration of the environment. The rest of
the paper is organized as follows. We describe the problem setup, the
simulation parameters, and the Boids algorithm in Section 2. We then
introduce the two main components of our algorithm, ghost boids and
control barrier functions, in Sections 3 and 4. We describe our results
in Section 5, provide a discussion of algorithmic caveats and extensions
in Section 6, and concluding remarks in Section 7.

2. Problem setup

To study the properties of our algorithm, we perform various sim-
ulations in a search and rescue scenario. For each set of simulation
parameters, we run 100 simulations, each for 5000 iterations of the
algorithm. Each simulation uses a different random seed for initializa-
tion, with agents initialized in a grid on the left side of the environment
at random headings, as shown in Fig. 1. Once an agent collides with
another agent or an obstacle, it is considered ‘‘dead’’ and becomes
stationary.

Our analysis of a swarming multi-agent system (using and extending
the Reynolds algorithm) has been done by some other researchers with
differing approaches to ours, and their algorithm enhancements have
some similarities. Olfati-Saber [23] explores a framework for flocking
and includes some similar ideas to ours, which we note later in this
work when discussing ghost boids. Ibuki et al. [24] describe a flocking
control algorithm that uses control barrier functions that are partially
validated regarding safety using a small set of simulations. Beaver
et al. [25] provides an overview of the state of flocking algorithms,
including Reynolds flocking, which they call Cluster Flocking.

2.1. Simulation parameters

The simulations have numerous parameters that affect the results
and make our algorithm tunable. To understand how our algorithm
performs in various conditions, we vary the following parameters:
number of agents, position of obstacles in the environment, number
of informed agents,1 and influence (or weight) of a compass.

2.2. Performance metrics

Recall that the goal is for the agents to cooperatively search for
the target location while maintaining safety. We now describe several
performance metrics that we use to characterize how well an algorithm
achieves these objectives.

Safety. We characterize the safety of an algorithm by its survival rate,
which is the ratio of the number of agents that did not have any
collisions throughout a given simulation to the total number of agents.

1 Informed agents know the (possible) target location. In our experiments,
no knowledge of the target location is spread; only agents that are initialized
as informed ever know the target location.



C. Hengstebeck et al. Franklin Open 8 (2024) 100160 
Fig. 2. Visualization of Boids rules. Left to right: separation, alignment, and cohesion.
Performance. We have two metrics to characterize how well a group
of agents explores an environment while exploiting information about
the possible target location. Our first metric is the target success rate,
which is the ratio of agents that have reached the target location by
the end of the simulation to the total number of agents. We count
an agent as having reached the target if it collides with the target at
any point during the simulation, even if the agent later moves away
from the target and/or has a separate collision and dies. While the
target success rate indicates how well the agents exploit the information
about the possible target location, it does not characterize how well
they explore the remainder of the environment. As it is difficult to
capture this exploration/exploitation trade-off in a single number, we
instead use a heatmap of agent positions aggregated over both iterations
and simulations to study the search coverage of an algorithm. Dark
regions of the heatmap indicate locations searched many times over the
simulations (possibly by multiple agents), while lighter regions indicate
low search coverage. An example heatmap is shown in Fig. 1.

2.3. The boids algorithm

We now describe the traditional Boids algorithm that our algo-
rithm builds upon. In this algorithm, each agent moves in the two-
dimensional plane with unit speed in the direction of its heading.
The heading is a weighted average of the headings obtained from the
three rules of separation, alignment, and cohesion. For each agent, the
heading from the separation rule points in the opposite direction as the
relative positions of its neighbors, the heading from the alignment rule
points in the average direction as the headings of its neighbors, and the
heading from the cohesion rule points in the direction of the average
relative positions of its neighbors. We illustrate these three rules in
Fig. 2.

To motivate the need for obstacle avoidance and goal-seeking be-
havior, consider running the Boids algorithm in a bounded environment
with no obstacles. The corresponding heatmap is shown in Fig. 3,
where agents wander through the environment until colliding with the
boundary (collisions shown in red). In the following two sections, we
describe our extensions to this algorithm that address these issues.

3. Ghost boids

We first extend the traditional Boids algorithm to have object
avoidance and goal-seeking behavior through the use of ghost boids.
These are identical to normal agents, but they do not actively move
on their own. Ghost boids affect the rules for separation and alignment
for neighboring agents. There are two types of ghost boids: aids to
navigation (ATON) [26] and compasses, which we now discuss.
3 
Fig. 3. Heatmap of the traditional Boids algorithm, which has no obstacle-avoidance
or goal-seeking behavior.

3.1. Aids to Navigation (ATON)

We use ATONs to provide obstacle avoidance. ATONs are placed
around the perimeter of obstacles and the environment, as shown in
Fig. 4 (red). These ghost boids are aligned such that they face away
from danger, so they point away from the center of an obstacle and
inwards from the boundary of the environment.

ATONs affect the separation and alignment rules of neighboring
agents. When an agent approaches danger, the ATON repels it from
its location while also aligning the agent’s heading away from danger.

Our concept of ghost boids is not the first approach to obstacle
avoidance. Olfati-Saber [23] proposed what they call 𝛾-agents that
direct a boid away from obstacles. The difference between this ap-
proach and ours is that our ATONs are fixed entities that can be
physically realized — this is both a pro and con. The 𝛾-agents must be
virtually created within the algorithm and placed at the closest point
on the obstacle from the physical agent. In contrast, ATONs represent
fixed entities, such as AprilTags [27,28], that must be placed in the
environment and can be detected by the agent.

3.2. Compasses

Compasses are another type of ghost boid that adds goal-seeking
capabilities to the algorithm. A set of agents called informed agents
know a possible target location to explore. For instance, agents may
be informed through initialization or the spread of information from



C. Hengstebeck et al. Franklin Open 8 (2024) 100160 
Fig. 4. Illustration of ghost boids. ATONs (red triangles) point away from danger for
collision avoidance. A compass (green) is located on an informed agent (blue) and
points toward the target (magenta) for goal-seeking behavior. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

neighboring agents that are informed. Olfati-Saber [23] first proposed
a similar concept with their 𝛽-agents that provide the algorithm with
per agent direction.

Each compass is assigned to a single agent and maintains the same
position as the agent. The compass only affects the alignment rule
of the agent to which it is assigned, and its heading points directly
toward the target location, as illustrated in Fig. 4 (green). To avoid
the influence of the compass being attenuated by several neighbors, we
scale the compass’s influence (or weight) proportional to the number
of neighboring agents and ATONs (but not other compasses).

4. Control barrier functions

While the separation rule of the Boids algorithm and the ATON
ghost boids provide some level of collision avoidance, they provide
insufficient safety in scenarios with large clusters of agents. For in-
stance, consider a set of 50 agents, none of which are informed, in a
bounded environment with two walls. The corresponding heatmap is
shown in Fig. 5, with many collisions occurring both at obstacles and
in the interior of the environment between agents.

To further improve safety, we use a constraint-based control
methodology inspired by long-duration autonomy in ecology [29]. In
particular, we use a control barrier function (CBF) to modify the algo-
rithm in a computationally efficient way that promotes safety [11]. Let
the two-dimensional vectors 𝑝𝑖 and 𝑣𝑖 denote the position and velocity
of boid 𝑖 (either a physical agent or a ghost boid). Let 𝑠𝑖 = (𝑝𝑖, 𝑣𝑖) denote
the state of boid 𝑖, and let 𝑠 = {𝑠𝑖} denote the aggregated state of all
boids.

To characterize safety, we let 𝑆 denote the set of aggregated states
that are considered safe. For instance, a state may be safe if no agent
collides with an obstacle or any other agent, 𝑗. Suppose we can describe
the safe set as the super-level set of some barrier function ℎ applied to
all pairs of boids,

𝑆 = {𝑠 ∣ ℎ(𝑠 , 𝑠 ) ≥ 0 for all 𝑖, 𝑗}. (1)
𝑖 𝑗

4 
Fig. 5. Heatmap of the Boids algorithm with ghost boids. Many collisions occur (red)
even with the separation rule and ATONs. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

For collision avoidance, we choose the barrier function such that it is
nonnegative when two boids are separated by at least some positive
distance 𝐷,

ℎ(𝑠𝑖, 𝑠𝑗 ) = ‖𝑝𝑖 − 𝑝𝑗‖
2 −𝐷2. (2)

To increase safety, we set the safety distance larger than the distance
at which two agents would collide.

The idea behind CBFs is to choose the heading so that the barrier
function does not become too small and the state remains safe. In
continuous time, this safety constraint takes the form
d
d𝑡
ℎ(𝑠𝑖, 𝑠𝑗 ) + 𝛼 ℎ(𝑠𝑖, 𝑠𝑗 ) ≥ 0 for all 𝑖, 𝑗 (3a)

for some positive constant 𝛼, where d
d𝑡ℎ is the derivative of the barrier

function for time along the system’s dynamics. Alternatively, in discrete
time, the safety constraint is [30]

ℎ(𝑠+𝑖 , 𝑠
+
𝑗 ) ≥ 𝑐 ℎ(𝑠𝑖, 𝑠𝑗 ) for all 𝑖, 𝑗 (3b)

for some constant 𝑐 ∈ (0, 1), where 𝑠+𝑖 denotes the state of boid 𝑖 at the
next iteration of the algorithm.

Denote the velocity of boid 𝑖 using the Boids algorithm with ghost
boids as 𝑣nom

𝑖 . The CBF controller modifies this velocity in a minimally
invasive way while ensuring safety. It chooses the velocity of each agent
to minimize the squared norm of the difference between its velocity and
that of the nominal velocity subject to the safety constraint:

𝑣𝑖 = argmin
𝑣

‖𝑣 − 𝑣nom
𝑖 ‖

2 (4)

subject to safety constraint (3a) or (3b).

If the nominal velocity 𝑣nom
𝑖 satisfies the safety constraint, it is trivially

the optimal solution. If not, the optimizer finds the velocity as close to
the nominal velocity as possible without defying the safety constraint.

We now describe the detailed formulation of the optimization prob-
lem (4) for the barrier function (2). We first consider the safety con-
straint in discrete time. Using a forward discretization of the differential
equation d

d𝑡 𝑝𝑖 = 𝑣𝑖 with time step 𝛥𝑡, the position of boid 𝑖 at the next
iteration is 𝑝+𝑖 = 𝑝𝑖 + 𝛥𝑡 𝑣𝑖. The safety constraint (3b) between boids 𝑖
and 𝑗 is then
[

𝑝𝑖 − 𝑝𝑗
]𝖳 [

1 − 𝑐 𝛥𝑡
2

][

𝑝𝑖 − 𝑝𝑗
]

≥ (1 − 𝑐)𝐷2,

𝑣𝑖 − 𝑣𝑗 𝛥𝑡 𝛥𝑡 𝑣𝑖 − 𝑣𝑗



C. Hengstebeck et al.

i

(

w
t
p

s
c
t
t
a

s
f
t
t
a
h
i

a
p
i
a

5

o
p
b
t

5

c
s
s
i

p
v

Franklin Open 8 (2024) 100160 
which is quadratic in the differences between the positions and veloci-
ties of the two boids. In this formulation, the optimization problem (4)
is a quadratically-constrained quadratic program, which is, in general,
NP-hard to solve. Furthermore, this is a global optimization problem
since it couples the velocities between all of the agents, which are the
variables in the problem.

Since the previous formulation is not computationally tractable,
we propose a modified problem that is easier to solve but does not
guarantee safety. Define the positive constant 𝛼 = 𝛥𝑡−1(1 − 𝑐). For
𝛥𝑡 sufficiently small, we can neglect the term in the above inequality
that is quadratic in the relative velocities to obtain the modified safety
constraint
[

𝑝𝑖 − 𝑝𝑗
𝑣𝑖 − 𝑣𝑗

]𝖳 [
𝛼 1

1 0

][

𝑝𝑖 − 𝑝𝑗
𝑣𝑖 − 𝑣𝑗

]

≥ 𝛼 𝐷2. (5)

This constraint is affine in the velocity. The optimization problem is
then a convex quadratic program that can be solved efficiently us-
ing standard numerical solvers [31–34]. In addition, this optimization
problem can be solved in a decentralized way by having each agent 𝑖
mplement half of the constraint:

𝑝𝑖 − 𝑝𝑗 )𝖳𝑣𝑖 +
𝛼
4 (‖𝑝𝑖 − 𝑝𝑗‖

2 −𝐷2) ≥ 0, (6)

hich does not depend on the velocity of boid 𝑗 (see [29]). Therefore,
he optimization problem (4) for each boid only requires the relative
ositions and velocities of neighboring boids.

To further motivate this simplification, we observe that the modified
afety constraint (5) is precisely the safety constraint (3a) for the
ontinuous-time dynamics. Since we implement the system in discrete-
ime, this continuous-time safety constraint is not sufficient to guaran-
ee safety. However, our simulations show it drastically improves safety
t a moderate additional computational cost.

Beyond the simplification of the safety constraint, another possible
ource of collisions is that instead of applying the optimal solution 𝑣𝑖
rom (4), we apply the normalized2 velocity ‖𝑣𝑖‖−1𝑣𝑖. We do not include
his normalization as a constraint in (4) as that would again lead
o a quadratically-constrained quadratic program. Without requiring
normalized velocity, we could achieve guaranteed safety simply by

aving all agents remain stationary (e.g., see the braking mechanism
n [13]).

To summarize, each agent 𝑖 first finds its nominal velocity 𝑣nom
𝑖 by

pplying the Boids algorithm with ghost boids, solves the quadratic
rogram (4) subject to its portion of the modified safety constraint
n (6) for all neighboring agents and ATONs to obtain the velocity 𝑣𝑖,
nd then applies the normalized velocity ‖𝑣𝑖‖−1𝑣𝑖 to update its position.

. Experimental results

We now illustrate the properties of our algorithm using simulations
f the search and rescue scenario described in Section 2 under various
arameter settings. Since it is not realistic to discuss all possible com-
inations of parameters, we focus on the parameters most relevant to
he particular discussion.

.1. Safety vs. Efficiency

In physical systems, hardware constraints limit the computational
omplexity of the algorithms they can implement. Therefore, we first
tudy the trade-off between safety and computational efficiency. Fig. 6
hows the heatmap produced by 10 agents, none of which are informed,
n an open environment.

2 We could directly apply the velocity obtained from the optimization
roblem (4). The Boids algorithm, however, traditionally uses a constant
elocity, which is why we choose to use the normalized velocity.
5 
Table 1
Survival rate in percent (average runtime in milliseconds) of each algorithm with no
informed agents in an open environment with a varying number of agents.

Algorithm 5 agents 10 agents 50 agents 100 agents

Traditional 1.6 (40) 2.4 (70) 0.0 (326) 0.0 (667)
Ghost boids 100 (77) 95.4 (137) 46.2 (593) 23.9 (1086)
CBF 100 (453) 100 (1360) 99.9 (11 352) 99.9 (25 528)

The most computationally efficient algorithm is the traditional
Boids algorithm, shown in Fig. 6(a), as it only requires each agent
to compute weighted sums of the relative positions and velocities of
its neighboring agents. Since this algorithm has no obstacle avoidance
mechanism, agents wander through the environment until colliding
with the boundary.

The ATONs placed around the boundary result in much fewer
collisions, as illustrated in Fig. 6(b). Most agents wander through the
environment throughout the simulation, resulting in a darker heatmap.
However, the repulsive effect of the separation rule is not always
strong enough to keep agents from colliding, resulting in collisions
between agents throughout the environment. This algorithm has a
slightly higher computational cost as the weighted sums now include
the ATONs on the boundary.

To further improve safety, the CBF algorithm from Section 4 en-
forces the safety constraint to be satisfied if such a velocity exists.
This results in no collisions in this scenario, although it requires each
agent to solve a quadratic program at each iteration of the algorithm.
This optimization problem is trivial, however, if the nominal velocity
already satisfies the safety constraint; it only incurs an additional cost
when the nominal velocity is unsafe.

The survival rate and runtime for each algorithm in this scenario are
provided in Table 1 for various agents. The traditional Boids algorithm
is the most computationally efficient but the least safe, while the CBF
algorithm is the most safe but the least efficient. All algorithms become
less safe and have longer runtimes as the number of agents increases.

While Table 1 shows the average total runtime, the more relevant
statistic when considering viability of real-time applications is the per
agent runtime. We can estimate this quantity by dividing the total
runtime by the number of agents. This is not an exact measure of
the runtime per agent as it also includes the initialization time, so
we expect the runtime per agent to decrease as the number of agents
increases since the initialization time gets distributed across a larger
number of agents. This holds true for the Traditional and Ghost boid
algorithms. The per-agent runtime of the CBF algorithm, however,
increases as the number of agents increases. This is due to the com-
plexity of solving the quadratic programs being such a large factor
in the CBF algorithm. As the number of agents increases, the average
number of neighbors of each agent also increases. This increases the
number of constraints in the quadratic program, making solving it more
computationally expensive.

5.2. Exploration vs. Exploitation

We now study the trade-off between exploring the environment and
exploiting information about the possible target location available to
informed agents. Two parameters affect this trade-off: the number of
informed agents and the compass influence.

The compass influence is a single scalar parameter that trades off
exploration and exploitation. Consider a group of 50 agents, all of
which are informed, running the CBF algorithm in an environment
with a wall as shown in Fig. 7 for varying amounts of compass influ-
ence. Without the compass (Fig. 7(a)), the agents uniformly cover the
environment with few collisions due to the CBF mechanism. With a
small amount of compass influence (Fig. 7(b)), the agents still explore
the environment, but to a lesser extent as they spend more time near
the target location due to the compass pointing in that direction. With



C. Hengstebeck et al. Franklin Open 8 (2024) 100160 
Fig. 6. Heatmaps for each algorithm. The system can be made more safe at additional computational cost.
Fig. 7. Heatmaps of the CBF algorithm. A larger compass influence yields more exploitation and less exploration.
Fig. 8. Heatmaps of the CBF algorithm. Too much compass influence results in agents being trapped in the bowl.
100% compass influence (Fig. 7(c)), the agents move directly toward
the target location and remain within a ball about the target.

Similar to the compass influence, the number of informed agents
can also be used to exploit the trade-off between exploration and ex-
ploitation. More informed agents result in more exploitation, similar to
using more compass influence. As the results are qualitatively similar,
we do not show the plots due to space limitations.

While more compass influence results in more exploitation of target
location information, it can also result in agents becoming trapped
by environmental obstacles. Consider the same setup as before but in
an environment with a bowl-shaped obstacle, as illustrated in Fig. 8.
Here, the target is located on the side of the bowl opposite the starting
location of the agents. When the compass influence is too large, many
agents become trapped by the bowl and are, therefore, unable to reach
6 
the target location. In addition, this results in many collisions due to
the high density of agents inside the bowl. We conclude that complex
environments require a smaller compass influence (or fewer informed
agents) so that agents explore enough of the environment to locate the
target.

6. Discussion

Our algorithm could be extended in various ways. We made several
simplifying assumptions in deriving the safety constraint for the CBF,
so our algorithm does not guarantee safety. An interesting problem is
constructing a safety constraint for the discrete-time dynamics that is
always feasible to guarantee safety.



C. Hengstebeck et al.

v
V
C

D

c
i

A

R

Franklin Open 8 (2024) 100160 
Another extension is to design a high-level planner on top of our
algorithm to prevent agents from becoming stuck by obstacles. In this
work, we only considered cases where all informed agents have access
to the same possible target location. In a more realistic search and
rescue scenario, there may be many possible locations where the target
may be located. The algorithm should then trade off the amount of
effort spent searching each possible target location with the rest of
the environment. Beyond a finite number of single points, we may
generally have a probability distribution over the environment that
describes the probability that the target is at any given location. In that
case, we would want to spend time in each region proportional to the
probability that the target is in that region.

Finally, implementing these algorithms on a physical swarm of
robots would provide valuable insight into their viability in realis-
tic search and rescue applications. While simulations provide general
insights, imperfect sensor readings and actuator control, dynamic ter-
rain, different robot specifications, and more will result in different
performances in realistic applications.

7. Conclusions

In this work, we extended the traditional Boids algorithm to be
applicable to search and rescue tasks. We introduced two types of ghost
boids, ATONs, and compasses, to give the algorithm obstacle-avoidance
and goal-seeking behavior. Then, we implemented a CBF controller on
top of this algorithm to achieve better safety at an additional compu-
tational cost. We showed through simulations that our algorithm can
trade off safety and efficiency through ATONs and CBFs and that the
number of informed agents and compass influence can be used to trade
off exploration of the environment with the exploitation of possible
target location information. However, in complex environments (such
as the bowl-shaped obstacle), too much compass influence can cause
livelock scenarios in which informed agents cannot navigate around
the obstacle to reach the target.

CRediT authorship contribution statement

Cole Hengstebeck: Writing – original draft, Visualization, Val-
idation, Software, Formal analysis. Peter Jamieson: Writing – re-
iew & editing, Supervision, Methodology, Conceptualization. Bryan
an Scoy: Writing – review & editing, Supervision, Methodology,
onceptualization.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

This research received no external funding.

eferences

[1] S. Waharte, N. Trigoni, Supporting search and rescue operations with UAVs, in:
International Conference on Emerging Security Technologies, 2010, pp. 142–147,
http://dx.doi.org/10.1109/EST.2010.31.

[2] J.L. Baxter, E. Burke, J.M. Garibaldi, M. Norman, Multi-Robot Search and Rescue:
A Potential Field Based Approach, Springer, Berlin, Heidelberg, 2007, pp. 9–16,
http://dx.doi.org/10.1007/978-3-540-73424-6_2.

[3] J. León, G.A. Cardona, A. Botello, J.M. Calderón, Robot swarms theory applicable
to seek and rescue operation, in: Intelligent Systems Design and Applications:
16th International Conference on Intelligent Systems Design and Applications,
Springer, Porto, Portugal, 2017, pp. 1061–1070.

[4] A. Matos, A. Martins, A. Dias, B. Ferreira, J.M. Almeida, H. Ferreira, G. Amaral,
A. Figueiredo, R. Almeida, F. Silva, Multiple robot operations for maritime search
and rescue in euRathlon 2015 competition, in: OCEANS, Shanghai, China, 2016,

pp. 1–7, http://dx.doi.org/10.1109/OCEANSAP.2016.7485707.

7 
[5] R.R. Murphy, S. Tadokoro, D. Nardi, A. Jacoff, P. Fiorini, H. Choset, A.M.
Erkmen, Search and Rescue Robotics, Springer, Berlin, Heidelberg, 2008, pp.
1151–1173, http://dx.doi.org/10.1007/978-3-540-30301-5_51.

[6] K.J. Rafferty, E.W. McGookin, An autonomous air-sea rescue system using
particle swarm optimization, in: International Conference on Connected Vehicles
and Expo, 2013, pp. 459–464, http://dx.doi.org/10.1109/ICCVE.2013.6799836.

[7] Z. Chen, H. Liu, Y. Tian, R. Wang, P. Xiong, G. Wu, A particle swarm
optimization algorithm based on time-space weight for helicopter maritime
search and rescue decision-making, IEEE Access 8 (2020) 81526–81541, http:
//dx.doi.org/10.1109/ACCESS.2020.2990927.

[8] P. Xiong, L. Hu, T. Yongliang, C. Zikun, W. Bin, Y. Hao, Helicopter maritime
search area planning based on a minimum bounding rectangle and K-means
clustering, Chin. J. Aeronaut. 34 (2) (2021) 554–562, http://dx.doi.org/10.1016/
j.cja.2020.08.047.

[9] B. Ai, M. Jia, H. Xu, J. Xu, Z. Wen, B. Li, D. Zhang, Coverage path planning
for maritime search and rescue using reinforcement learning, Ocean Eng. 241
(2021) 110098, http://dx.doi.org/10.1016/j.oceaneng.2021.110098.

[10] W. Yue, Y. Xi, X. Guan, A new searching approach using improved multi-ant
colony scheme for multi-UAVs in unknown environments, IEEE Access 7 (2019)
161094–161102, http://dx.doi.org/10.1109/ACCESS.2019.2949249.

[11] A.D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, P. Tabuada,
Control barrier functions: Theory and applications, in: 18th European Con-
trol Conference, 2019, pp. 3420–3431, http://dx.doi.org/10.23919/ECC.2019.
8796030.

[12] U. Borrmann, L. Wang, A.D. Ames, M. Egerstedt, Control barrier certificates for
safe swarm behavior, IFAC-PapersOnLine 48 (27) (2015) 68–73, http://dx.doi.
org/10.1016/j.ifacol.2015.11.154.

[13] L. Wang, A.D. Ames, M. Egerstedt, Safety barrier certificates for collisions-free
multirobot systems, IEEE Trans. Robot. 33 (3) (2017) 661–674, http://dx.doi.
org/10.1109/TRO.2017.2659727.

[14] M. Machida, M. Ichien, Consensus-based control barrier function for swarm, in:
2021 IEEE International Conference on Robotics and Automation, ICRA, 2021,
pp. 8623–8628, http://dx.doi.org/10.1109/ICRA48506.2021.9561971.

[15] B.A. Butler, C.H. Leung, P.E. Paré, Collaborative safe formation control for
coupled multi-agent systems, in: European Control Conference, ECC, 2024, pp.
3410–3415, http://dx.doi.org/10.23919/ECC64448.2024.10590880.

[16] M. Jankovic, M. Santillo, Collision avoidance and liveness of multi-agent sys-
tems with CBF-based controllers, in: 60th IEEE Conference on Decision and
Control, CDC, 2021, pp. 6822–6828, http://dx.doi.org/10.1109/CDC45484.2021.
9682854.

[17] B.A. Butler, P.E. Paré, Collaborative safety-critical control for dynamically
coupled networked systems, 2024, arXiv:2310.03289, URL https://arxiv.org/abs/
2310.03289.

[18] C.W. Reynolds, Flocks, herds and schools: A distributed behavioral model,
SIGGRAPH Comput. Graph. 21 (4) (1987) 25–34, http://dx.doi.org/10.1145/
37402.37406.

[19] P.M. Mavhemwa, I. Nyangani, Uniform spatial subdivision to improve Boids
Algorithm in a gaming environment, Int. J. Adv. Res. Dev. 3 (10) (2018) 49–57.

[20] J. Hagelbäck, Hybrid pathfinding in StarCraft, IEEE Trans. Comput. Intell. AI
Games 8 (4) (2016) 319–324, http://dx.doi.org/10.1109/TCIAIG.2015.2414447.

[21] J.B. Clark, D.R. Jacques, Flight test results for UAVs using boid guidance
algorithms, Procedia Comput. Sci. 8 (2012) 232–238, http://dx.doi.org/10.1016/
j.procs.2012.01.048.

[22] J. Wang, H. Zhao, Y. Bi, S. Shao, Q. Liu, X. Chen, R. Zeng, Y. Wang, L. Ha,
An improved fast flocking algorithm with obstacle avoidance for multiagent
dynamic systems, J. Appl. Math. 2014 (1) (2014) 659805, http://dx.doi.org/
10.1155/2014/659805.

[23] R. Olfati-Saber, Flocking for multi-agent dynamic systems: Algorithms and
theory, IEEE Trans. Autom. Control 51 (3) (2006) 401–420, http://dx.doi.org/
10.1109/TAC.2005.864190.

[24] T. Ibuki, S. Wilson, J. Yamauchi, M. Fujita, M. Egerstedt, Optimization-based
distributed flocking control for multiple rigid bodies, IEEE Robot. Autom. Lett.
5 (2) (2020) 1891–1898, http://dx.doi.org/10.1109/LRA.2020.2969950.

[25] L.E. Beaver, A.A. Malikopoulos, An overview on optimal flocking, Annu. Rev.
Control 51 (2021) 88–99, http://dx.doi.org/10.1016/j.arcontrol.2021.03.004.

[26] United States Coast Guard, 13th District, Office of Boating Safety, U.S. aids
to navigation system, 2018, URL https://www.pacificarea.uscg.mil/Portals/8/
District_13/dpw/docs/usaidstonavigationbooklet.pdf?ver=2018-10-15-154501-
363.

[27] E. Olson, AprilTag: A robust and flexible visual fiducial system, in: IEEE
International Conference on Robotics and Automation, 2011, pp. 3400–3407,
http://dx.doi.org/10.1109/ICRA.2011.5979561.

[28] J. Wang, E. Olson, AprilTag 2: Efficient and robust fiducial detection, in: 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS,
2016, pp. 4193–4198, http://dx.doi.org/10.1109/IROS.2016.7759617.

[29] M. Egerstedt, Robot Ecology: Constraint-Based Design for Long-Duration Au-
tonomy, Princeton University Press, Princeton, 2021, http://dx.doi.org/10.1515/
9780691230078.

http://dx.doi.org/10.1109/EST.2010.31
http://dx.doi.org/10.1007/978-3-540-73424-6_2
http://refhub.elsevier.com/S2773-1863(24)00090-2/sb3
http://refhub.elsevier.com/S2773-1863(24)00090-2/sb3
http://refhub.elsevier.com/S2773-1863(24)00090-2/sb3
http://refhub.elsevier.com/S2773-1863(24)00090-2/sb3
http://refhub.elsevier.com/S2773-1863(24)00090-2/sb3
http://refhub.elsevier.com/S2773-1863(24)00090-2/sb3
http://refhub.elsevier.com/S2773-1863(24)00090-2/sb3
http://dx.doi.org/10.1109/OCEANSAP.2016.7485707
http://dx.doi.org/10.1007/978-3-540-30301-5_51
http://dx.doi.org/10.1109/ICCVE.2013.6799836
http://dx.doi.org/10.1109/ACCESS.2020.2990927
http://dx.doi.org/10.1109/ACCESS.2020.2990927
http://dx.doi.org/10.1109/ACCESS.2020.2990927
http://dx.doi.org/10.1016/j.cja.2020.08.047
http://dx.doi.org/10.1016/j.cja.2020.08.047
http://dx.doi.org/10.1016/j.cja.2020.08.047
http://dx.doi.org/10.1016/j.oceaneng.2021.110098
http://dx.doi.org/10.1109/ACCESS.2019.2949249
http://dx.doi.org/10.23919/ECC.2019.8796030
http://dx.doi.org/10.23919/ECC.2019.8796030
http://dx.doi.org/10.23919/ECC.2019.8796030
http://dx.doi.org/10.1016/j.ifacol.2015.11.154
http://dx.doi.org/10.1016/j.ifacol.2015.11.154
http://dx.doi.org/10.1016/j.ifacol.2015.11.154
http://dx.doi.org/10.1109/TRO.2017.2659727
http://dx.doi.org/10.1109/TRO.2017.2659727
http://dx.doi.org/10.1109/TRO.2017.2659727
http://dx.doi.org/10.1109/ICRA48506.2021.9561971
http://dx.doi.org/10.23919/ECC64448.2024.10590880
http://dx.doi.org/10.1109/CDC45484.2021.9682854
http://dx.doi.org/10.1109/CDC45484.2021.9682854
http://dx.doi.org/10.1109/CDC45484.2021.9682854
http://arxiv.org/abs/2310.03289
https://arxiv.org/abs/2310.03289
https://arxiv.org/abs/2310.03289
https://arxiv.org/abs/2310.03289
http://dx.doi.org/10.1145/37402.37406
http://dx.doi.org/10.1145/37402.37406
http://dx.doi.org/10.1145/37402.37406
http://refhub.elsevier.com/S2773-1863(24)00090-2/sb19
http://refhub.elsevier.com/S2773-1863(24)00090-2/sb19
http://refhub.elsevier.com/S2773-1863(24)00090-2/sb19
http://dx.doi.org/10.1109/TCIAIG.2015.2414447
http://dx.doi.org/10.1016/j.procs.2012.01.048
http://dx.doi.org/10.1016/j.procs.2012.01.048
http://dx.doi.org/10.1016/j.procs.2012.01.048
http://dx.doi.org/10.1155/2014/659805
http://dx.doi.org/10.1155/2014/659805
http://dx.doi.org/10.1155/2014/659805
http://dx.doi.org/10.1109/TAC.2005.864190
http://dx.doi.org/10.1109/TAC.2005.864190
http://dx.doi.org/10.1109/TAC.2005.864190
http://dx.doi.org/10.1109/LRA.2020.2969950
http://dx.doi.org/10.1016/j.arcontrol.2021.03.004
https://www.pacificarea.uscg.mil/Portals/8/District_13/dpw/docs/usaidstonavigationbooklet.pdf?ver=2018-10-15-154501-363
https://www.pacificarea.uscg.mil/Portals/8/District_13/dpw/docs/usaidstonavigationbooklet.pdf?ver=2018-10-15-154501-363
https://www.pacificarea.uscg.mil/Portals/8/District_13/dpw/docs/usaidstonavigationbooklet.pdf?ver=2018-10-15-154501-363
https://www.pacificarea.uscg.mil/Portals/8/District_13/dpw/docs/usaidstonavigationbooklet.pdf?ver=2018-10-15-154501-363
https://www.pacificarea.uscg.mil/Portals/8/District_13/dpw/docs/usaidstonavigationbooklet.pdf?ver=2018-10-15-154501-363
http://dx.doi.org/10.1109/ICRA.2011.5979561
http://dx.doi.org/10.1109/IROS.2016.7759617
http://dx.doi.org/10.1515/9780691230078
http://dx.doi.org/10.1515/9780691230078
http://dx.doi.org/10.1515/9780691230078


C. Hengstebeck et al. Franklin Open 8 (2024) 100160 
[30] A. Agrawal, K. Sreenath, Discrete control barrier functions for safety-critical
control of discrete systems with application to bipedal robot navigation, in:
Robotics: Science and Systems, Vol. 13, Cambridge, MA, USA, 2017, URL https:
//www.roboticsproceedings.org/rss13/p73.pdf.

[31] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, S. Boyd, OSQP: an operator
splitting solver for quadratic programs, Math. Program. Comput. 12 (4) (2020)
637–672, http://dx.doi.org/10.1007/s12532-020-00179-2.
8 
[32] G. Banjac, P. Goulart, B. Stellato, S. Boyd, Infeasibility detection in the alternat-
ing direction method of multipliers for convex optimization, J. Optim. Theory
Appl. 183 (2) (2019) 490–519, http://dx.doi.org/10.1007/s10957-019-01575-y.

[33] G. Banjac, B. Stellato, N. Moehle, P. Goulart, A. Bemporad, S. Boyd, Embedded
code generation using the OSQP solver, in: IEEE Conference on Decision and
Control, 2017, http://dx.doi.org/10.1109/CDC.2017.8263928.

[34] B. Stellato, V.V. Naik, A. Bemporad, P. Goulart, S. Boyd, Embedded mixed-integer
quadratic optimization using the OSQP solver, in: European Control Conference,
2018, http://dx.doi.org/10.23919/ECC.2018.8550136.

https://www.roboticsproceedings.org/rss13/p73.pdf
https://www.roboticsproceedings.org/rss13/p73.pdf
https://www.roboticsproceedings.org/rss13/p73.pdf
http://dx.doi.org/10.1007/s12532-020-00179-2
http://dx.doi.org/10.1007/s10957-019-01575-y
http://dx.doi.org/10.1109/CDC.2017.8263928
http://dx.doi.org/10.23919/ECC.2018.8550136

	Extending boids for safety-critical search and rescue
	Introduction
	Problem Setup
	Simulation Parameters
	Performance metrics
	The Boids Algorithm

	Ghost Boids
	Aids to Navigation (ATON)
	Compasses

	Control Barrier Functions
	Experimental results
	Safety vs. Efficiency
	Exploration vs. Exploitation

	Discussion 
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


