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Abstract—We design and analyze a novel gradient-based
algorithm for unconstrained convex optimization. When the
objective function is m-strongly convex and its gradient is L-
Lipschitz continuous, the iterates and function values converge
linearly to the optimum at rates ρ and ρ2, respectively, where
ρ = 1−

√
m/L. These are the fastest known guaranteed linear

convergence rates for globally convergent first-order methods,
and for high desired accuracies the corresponding iteration
complexity is within a factor of two of the theoretical lower
bound. We use a simple graphical design procedure based on
integral quadratic constraints to derive closed-form expressions
for the algorithm parameters. The new algorithm, which we call
the triple momentum method, can be seen as an extension of
methods such as gradient descent, Nesterov’s accelerated gradient
descent, and the heavy-ball method.

Index Terms—optimization algorithms, robust control

I. INTRODUCTION

CONSIDER the optimization problem

minimize
x∈Rn

f(x) (1)

where f : Rn → R is continuously differentiable, strongly
convex with parameter m, and has a Lipschitz continuous
gradient with Lipschitz constant L. Since f is strongly convex,
it has a unique global minimizer x? ∈ Rn. We consider first-
order (gradient-based) algorithms to solve (1).

Perhaps the simplest algorithm which solves (1) is gradient
descent with constant step size, which has the form

xk+1 = xk − α∇f(xk), x0 ∈ Rn.

Using α = 2/(L + m), the iterates converge globally and
linearly to the optimizer with rate (L−m)/(L+m).1

Due to the slow convergence of gradient descent, many
methods have been proposed to obtain faster convergence. In
general, faster convergence rates can be achieved by intro-
ducing momentum. Examples of methods which incorporate
momentum include the heavy-ball method [1],

xk+1 = (1 + β)xk − βxk−1 − α∇f(xk),
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1Throughout the paper, the phrase “linear convergence with rate ρ” means
R-linear convergence after some finite iteration, i.e., having errors bounded
by cρk for some constant c > 0 and for all k ≥ k0 ≥ 0 where k0 is finite.

and Nesterov’s accelerated gradient descent [2],

xk+1 = yk − α∇f(yk)

yk = (1 + β)xk − βxk−1.

It remains an open question how to choose the parameters
α and β to achieve global convergence while optimizing
the convergence rate. For the heavy-ball method, one can
choose parameters to achieve a local convergence rate of
(
√
L−√m)/(

√
L+
√
m), but the resulting method does not

converge globally [3]. For other parameter choices the method
converges globally to the optimizer with a linear rate, although
a tight bound on the rate has not been found [4].

In his book [2], Nesterov gives several choices of both
constant and time-varying parameters which guarantee that
the function values generated by his algorithm converge with
linear rate 1−

√
m/L if f is strongly convex and sublinearly

as O(1/k2) if f is weakly convex.2 The derived bound on
the corresponding iteration complexity (i.e., the number of
iterations required to minimize the objective function to within
a given tolerance) is proportional to a theoretical lower bound,
so his method is often called optimal [2, Thm. 2.2.2]. It
has recently been shown, however, that other algorithms have
smaller bounds on the iteration complexity when the objective
function is weakly convex [5], [6].

To gain intuition into the acceleration process, other accel-
erated methods have recently been designed based on both
geometric descent [7] and optimal quadratic averaging [8].
Both methods achieve the same rate as Nesterov’s method
when the objective function is strongly convex.

In this paper, we develop a novel algorithm to solve (1) for
strongly convex objective functions with known parameters
m and L. Our algorithm, called the triple momentum (TM)
method, uses three momentum terms to achieve global linear
convergence to the optimizer with the fastest known rate
bound, improving on Nesterov’s bound by a factor of two.
We give the constant algorithm parameters in closed-form.
Inspired by [3], we use integral quadratic constraints from
robust control to design our algorithm, although we provide
convergence proofs which do not rely on control theory.

We describe our algorithm in Section II and prove the error
bound in Section III. We verify our algorithm with simulations
in Section IV, and conclude in Section V. Furthermore, we
motivate the design of the TM method using integral quadratic
constraints in the Appendix.

2Throughout the paper, “weakly convex” means convex but not necessarily
strongly convex.

c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.



Notation: ‖ · ‖ : Rn → R denotes the 2-norm. Define `n2e as
the set of all one-sided sequences x : N→ Rn. The unit circle
in the complex plane is denoted T. The angle of a complex
number is denoted ∠(rejθ) = θ.

II. MAIN RESULT

Many gradient-based algorithms for solving problem (1) can
be written using the recursion

ξk+1 = (1 + β)ξk − βξk−1 − α∇f(yk)

yk = (1 + γ)ξk − γξk−1

xk = (1 + δ)ξk − δξk−1

(2)

where ξ ∈ `n2e is the internal state, the gradient is applied to
y ∈ `n2e, the output is x ∈ `n2e, and ξ0, ξ−1 ∈ Rn are the initial
conditions. In this paper we assume the parameters α, β, γ, and
δ are constant (i.e., they do not change with k). Table I shows
how some known methods are of the form (2) with particular
constraints on these parameters. For comparison, we plot the
convergence rates of the iterates in Fig. 1.

TABLE I: Parameters of optimization algorithms in the form
of Eq. (2) (up to a change of variables).

Method Parameters
(α, β, γ, δ)

Gradient descent (α, 0, 0, 0)
Heavy-ball method [1], [4] (α, β, 0, 0)
Nesterov’s accelerated gradient descent [2] (α, β, β, 0)
Algorithm in [3, Eq. 6.1] (α, β, γ, 0)
Triple momentum method (Defn. 2) (α, β, γ, δ)

Definition 1 (function class). Define Sm,L to be the set of
functions f : Rn → R that are continuously differentiable,
strongly convex with parameter m, and have Lipschitz gra-
dients with Lipschitz constant L. Furthermore, κ = L/m is
called the condition number of f ∈ Sm,L.

Definition 2 (TM method). Let ρ = 1 − 1/
√
κ. We call the

algorithm in (2) with constant parameters

(α, β, γ, δ) =

(
1 + ρ

L
,
ρ2

2− ρ ,
ρ2

(1 + ρ)(2− ρ)
,

ρ2

1− ρ2

)
(3)

the triple momentum method (or TM method).

We now state our main theorem which gives error bounds
for the TM method. The proof is in Section III.

Theorem 1 (Triple momentum method). Let f ∈ Sm,L with
0 < m ≤ L and let x? ∈ Rn be the unique minimizer of f . For
any initial condition ξ0, ξ−1 ∈ Rn, the TM method produces
iterates which satisfy

‖xk − x?‖ ≤ c ρk (4)

f(xk)− f(x?) ≤ c2
L

2
ρ2k (5)

for all k ≥ 1 where ρ = 1− 1/
√
κ and

c = ρ−1
(
‖x1 − x?‖2 −

1

mL
pm(y0)T pL(y0)

)1/2

(6)

with pr(y) = ∇f(y)− r (y − x?).
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Fig. 1: Convergence rates of gradient-based optimization al-
gorithms for f ∈ Sm,L. Shown are gradient descent with
α = 1/L (cyan) and α = 2/(L + m) (blue), Nesterov’s
method with α = 1/L and β = (

√
L − √m)/(

√
L +

√
m)

(green), and the TM method (red). Nesterov’s lower bound
(dashed black) is also shown. The heavy-ball method with
α = 4/(

√
L +

√
m)2 and β = (

√
L − √m)/(

√
L +

√
m)

converges locally with rate equal to the lower bound, but does
not converge globally.

Corollary 1. In Thm. 1, ξ also converges to x? with rate ρ.

Proof. The transfer function from ξ to x is (1 + δ) − δ z−1.
The inverse of this transfer function, i.e., the transfer function
from x to ξ, has a pole at δ/(1 + δ) = ρ2 which is no greater
than ρ for any κ ≥ 1. Since the decay rate of this pole is faster
than that of x, then ξ converges with the same rate as x. The
transfer function from x to ξ has unit dc gain and x converges
to x? with rate ρ, so ξ also converges to x? with rate ρ.

We now use the bound for the error of the iterates to
establish the corresponding iteration complexity. Suppose we
have a bound of the form ‖xk−x?‖ ≤ c ρk. Then the number
of iterations kε required to guarantee that ‖xk − x?‖ ≤ ε for
all k ≥ kε is

kε = − ln(c/ε)

ln ρ
. (7)

For ill-conditioned problems in which the condition ratio is
large, the convergence rate is approximately one so we can
use the approximation ln(1 + x) ≈ x for small x to obtain

kε ≈
ln(c/ε)

1− ρ , κ large. (8)

This yields the approximate iterations to converge in Table II.

TABLE II: Approximate iterations to obtain ‖xk−x?‖ ≤ ε for
gradient optimization algorithms for large κ. For each method,
c̃ is a constant which remains bounded as κ→∞.

Method Iterations to converge
Gradient descent, α = 1/L ln(c̃/ε)κ
Gradient descent, α = 2/(L+m) ln(c̃/ε)κ/2
Nesterov’s method ln(c̃/ε) 2

√
κ

Triple momentum method (ln(c̃/ε) + ln(
√
κ))
√
κ

Theoretical lower bound ln(c̃/ε)
√
κ/2



Nesterov’s method is referred to as optimal since the number
of iterations for his method to converge is proportional to
the theoretical lower bound. For high desired accuracies (i.e.,
small ε), however, the TM method achieves a reduction by a
factor of two over Nesterov’s method and is within a factor
of two of the lower bound.

Remark 1. For the TM method, the constant c in (6) depends
on the condition number κ and can be large when κ is large.
In particular, for κ → ∞ we have δ = O(

√
κ) and c =

O(
√
κ). This produces the additional ln(

√
κ)
√
κ term for the

TM method in Table II. When ε is small, however, this term can
be neglected. In other words, the TM method exploits a trade-
off between the size of the constant and the corresponding
convergence rate. Compared to Nesterov’s method, the TM
method has a faster rate ρ but a larger constant c.

III. ANALYSIS

In this section we prove the error bounds for the TM method
in Theorem 1. To do this, we first give our main analysis
theorem which can be used to prove linear convergence of a
sequence with rate ρ after a given number of iterations.

Theorem 2 (Analysis). Let x ∈ `n2e, x? ∈ Rn, and k0 ≥ 0. If
there exists a sequence q ∈ `2e such that

‖xk+1 − x?‖2 ≤ ρ2 ‖xk − x?‖2 − qk, ∀k ≥ k0 (9)

and

0 ≤
k∑
j=0

ρ−2j qj , ∀k ≥ 0, (10)

then xk converges linearly to x? with rate ρ after iteration k0.
In particular, we have ‖xk−x?‖ ≤ c ρk for all k ≥ k0 where

c =
(
ρ−2k0 ‖xk0 − x?‖2 +

k0−1∑
j=0

ρ−2(j+1)qj

)1/2

. (11)

Proof. Suppose there exists a sequence q ∈ `2e which satis-
fies (9) and (10). Define the quanitity

ηk := ‖xk+1 − x?‖2 − ρ2 ‖xk − x?‖2 + qk. (12)

From (9), we have ηk ≤ 0 for all k ≥ k0. Then we have the
following telescoping sum,

0 ≥
k−1∑
j=k0

ρ2(k−j−1) ηj

= ‖xk− x?‖2 − ρ2(k−k0) ‖xk0− x?‖2 + ρ2(k−1)
k−1∑
j=k0

ρ−2jqj

for all k ≥ k0. From (10), we also have

−
k0−1∑
j=0

ρ−2j qj ≤
k−1∑
j=k0

ρ−2j qj .

Combining these results gives the bound

‖xk − x?‖2 ≤ ρ2(k−k0) ‖xk0 − x?‖2 + ρ2(k−1)
k0−1∑
j=0

ρ−2jqj

for k ≥ k0. Factoring out ρ2k and taking the square root gives
‖xk−x?‖ ≤ c ρk for all k ≥ k0 where c is given by (11).

In order to use Theorem 2 to prove linear convergence, we
need a sequence qk that satisfies (10) and enables us to show
that (9) holds. When the sequence xk is generated by gradient
algorithms applied to strongly convex functions, we can use
the following lemma from [3] to generate the sequence qk.

Lemma 1 ([3, Lemma 10]). Suppose f ∈ Sm,L with 0 =
∇f(x?). Define pr(y) := ∇f(y)−r (y−x?). Given a sequence
y ∈ `n2e, let

qk =

{
−pm(yk)T

[
pL(yk)− ρ2 pL(yk−1)

]
, k ≥ 1

−pm(y0)T pL(y0), k = 0.
(13)

Then

0 ≤
k∑
j=0

ρ−2j qj , ∀k ≥ 0. (14)

We now prove that the sequence xk produced by the TM
method converges linearly to x? with rate ρ using Theorem 2
along with the sequence qk given in Lemma 1.

Proof of Theorem 1. Let xk and yk be the sequences gener-
ated by the TM method with initial conditions ξ0 and ξ−1,
and let k0 = 1. Let qk be given by

qk =
1

mL

{
−pm(yk)T

[
pL(yk)− ρ2 pL(yk−1)

]
, k ≥ 1

−pm(y0)T pL(y0), k = 0

where pr(yk) = ∇f(yk)− r (yk − x?). Then (10) holds from
Lemma 1. Next, we show that (9) holds for all k ≥ 1. The
sequence ηk in (12) is

ηk = ‖xk+1 − x?‖2 − ρ2 ‖xk − x?‖2

− 1

mL
pm(yk)T

[
pL(yk)− ρ2 pL(yk−1)

]
(15)

for k ≥ 1. From the definition of the TM method in (2), we
can make the substitutions

xk+1 → (1 + δ)ξk+1 − δξk
xk → (1 + δ)ξk − δξk−1

yk → (1 + γ)ξk − γξk−1

yk−1 → (1 + γ)ξk−1 − γξk−2

∇f(yk)→
[
−ξk+1 + (1 + β)ξk − βξk−1

]
/α

∇f(yk−1)→
[
−ξk + (1 + β)ξk−1 − βξk−2

]
/α

(16)

which gives ηk in terms of ξk−2, ξk−1, ξk, ξk+1, and x?.
Substituting ρ = 1−

√
m/L and the TM method parameters

in (3), it is straightforward to show that ηk ≡ 0 for all
ξk−2, ξk−1, ξk, ξk+1, x? ∈ Rn. (In fact, these parameters are
the unique solution with ρ ∈ [0, 1) to the equation ηk ≡ 0.)
Then (9) is satisfied with equality for k ≥ 1. Applying
Theorem 2 gives the bound on the iterates in (4), and the
bound on the function values in (5) follows since the gradient
of f is Lipschitz continuous with Lipschitz constant L.

Remark 2. It is often desired to have intuition about the
design of optimization algorithms. One method of obtaining
the TM method parameters is to define ηk as in (15), make



the substitutions in (16), and then solve 0 ≡ ηk. A more
intuitive design process, however, can be obtained using
integral quadratic constraints from robust control. We develop
this approach in the Appendix.

IV. SIMULATIONS

To verify the TM method, we simulate the algorithm using
smooth multidimensional piecewise objective functions similar
to the heavy-ball counter-example in [3]. Let

f(x) =

p∑
i=1

g(aT

i x− bi) +
m

2
‖x‖2 (17)

and

g(x) =

{
1
2x

2e−r/x, x > 0

0, x ≤ 0
(18)

0 1,000 2,000 3,000 4,000
10−14

10−9

10−4

101

Iteration k

‖x
k
−
x
?
‖

Gradient descent
Nesterov’s method
TM method (xk)
TM method (ξk)
Heavy-ball method

(a) Comparison of different methods. The circles indicate the proven
error bounds (no bound is shown for the heavy-ball method since it
is not globally convergent). For the TM method, the error using both
xk and ξk is shown; both sequences converge with the same rate, but
the smallest error is achieved using xk.
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(b) The TM method is designed using the indicated values for m
with L = 104. The convergence is linear in each case, although the
rate is slower when m is larger than the true value.

Fig. 2: Simulation results using the objective function in (17)
where f ∈ S1,104 with n = 100, p = 5, and r = 10−6.

where A = [a1, . . . , ap] ∈ Rn×p and b ∈ Rp with ‖A‖ =√
L−m. Then f ∈ Sm,L ∩ C∞, i.e., f is m-strongly

convex, its gradient is L-Lipschitz continuous, and it has
continuous derivatives of all orders. We randomly generate
the components of A and b from the normal distribution and
then scale A so that ‖A‖ =

√
L−m.

In Fig. 2a, various methods are used to solve the same
problem. Gradient descent is very slow due to the large
condition number. The heavy-ball method has the fastest local
convergence but contains stable limit cycles and does not
converge globally. The TM method is proven to converge from
any initial condition, and the proven rate is twice as fast as
that of Nesterov’s method. To verify Corollary 1, we also plot
the error of ξk from the optimizer. While the rate is the same
as that of xk, the error using xk as the output is smaller (note
that ξk does not satisfy the same bound as xk).

Since the parameter m is often unknown in practice, we
also simulate the TM method where the parameters α, β, γ,
and δ are designed using values of m which are larger than
the strong convexity parameter of f ; see Fig. 2b. The error
still converges linearly in each case, although the convergence
rate is slower if m is larger than the true value.

V. CONCLUSIONS

We have proposed a novel gradient-based algorithm for
convex optimization. When f ∈ Sm,L, the iterates converge
linearly to the optimizer at rate 1 −

√
m/L from any initial

condition. This is the fastest known convergence rate that has
been proven for first-order algorithms which converge globally
to the minimizer. For high levels of accuracy, the bound on
the iteration complexity for our algorithm is half the known
bound for Nesterov’s method and within a factor of two of the
theoretical lower bound in [2, Thm. 2.1.12]. We gave a simple
algebraic proof for the error bound of the TM method, and
IQCs from robust control were used to motivate the design.

APPENDIX

Integral quadratic constraints (IQCs) are a powerful tool
from robust control for analyzing interconnected dynami-
cal systems which contain nonlinear components, including
gradient-based optimization algorithms [3]. We now develop
the IQC tools which will be used to give insight into the TM
method.

In the robust control framework, we consider an unknown
function ∆ : Rn → Rn in feedback with a known linear
system G : Rn → Rd×Rn, where G is given by the recursion

ηk+1 = Aηk +Buk, η0 ∈ Rp

xk = C1ηk (19)
yk = C2ηk.

The internal state is η ∈ `p2e, the input is u ∈ `n2e, and the
outputs are x ∈ `d2e and y ∈ `n2e. The feedback is given by
u = ∆(y) which produces the closed-loop system

ηk+1 = Aηk +B∆(C2ηk), η0 ∈ Rp

xk = C1ηk.
(20)



The system in (20) is difficult to analyze due to the unknown
function ∆. The idea behind IQCs is to replace ∆ with
constraints that we know its input and output sequences must
satisfy. If a result holds for any signals (y, u) which satisfy
the constraints, then the result must also hold for the original
system. To develop the constraints on (y, u), consider a linear
system Ψ : `n2e × `n2e → `m2e of the form

ζk+1 = AΨζk +ByΨyk +BuΨuk, ζ0 = ζ? ∈ Rq

wk = CΨζk +Dy
Ψyk +Du

Ψuk
(21)

where ρ(Aψ) < 1 and (ζ?, w?, y?, u?) is the unique fixed-point
of the system. This defines the map w = Ψ(y, u) as shown in
Figure 3.

G

∆

Ψ

u

x

y

w

u, y ∈ `n2e

x ∈ `d2e
w ∈ `m2e
η ∈ `p2e
ζ ∈ `q2e

Fig. 3: The linear system G with state η is in feedback with
the unknown function ∆, and the system output is x. The
auxiliary system Ψ with state ζ filters u and y to produce an
output w which satisfies the IQC.

We now define a ρ-IQC, which is a constraint on w which
can be used to prove linear convergence with rate ρ.

Definition 3 (ρ-IQC, [3, Defn. 3]). Suppose u?, y? ∈ Rn with
u? = ∆(y?) and y ∈ `n2e is an arbitrary square-summable
sequence, i.e.,

∑∞
k=0 ‖yk‖2 < ∞. Let u = ∆(y) and w =

Ψ(y, u). We say that ∆ ∈ IQC(Ψ,M, u?, y?, ρ) if

0 ≤
k∑
j=0

ρ−2j(wj − w?)TM(wj − w?), ∀k ≥ 0. (22)

If ∆ ∈ IQC(Ψ,M, u?, y?, ρ), then we can remove ∆ from
the block diagram and simply study the connection of the
linear systems G and Ψ subject to the IQC constraint (22).
For gradient-based optimization algorithms, we need an IQC
which characterizes ∇f . The following lemma provides a
useful class of IQCs which characterizes ∇f when f ∈ Sm,L.

Lemma 2 ([3, Lemma 10]). Suppose f ∈ Sm,L and
(u?, y?) is a reference point for the gradient of f , i.e.,
u? = ∇f(y?). Let H(z) = ρ̄2/z with ρ̄ ∈ [0, 1]. Then
∇f ∈ IQC(Ψ,M, u?, y?, ρ) for any ρ ∈ [ρ̄, 1] where

Ψ =

[
L(1−H) −(1−H)
−m 1

]
⊗ In, M =

[
0 1
1 0

]
⊗ In.

(23)

Remark 3. Lemmas 1 and 2 are related as follows. Using Ψ
and M in (23) with H(z) = ρ2/z, the sequence qk in (13) is
equal to

qk = (wk − w?)TM(wk − w?) (24)

where wk and w? are the outputs of Ψ when the inputs
are (yk, uk) and (y?, u?), respectively. Condition (14) is then
equivalent to the IQC condition in (22).

Now that we can characterize ∇f using an IQC, we would
like conditions on G, Ψ, and M such that xk converges
linearly with rate ρ for any signal u such that the IQC
condition in (22) is satisfied. Such conditions exist in both
the time domain and the frequency domain [3], [9], [10], [11],
[12]. For example, the following theorem can be used to prove
that the state of G2 converges with rate ρ where G2 is the
transfer function from u to y.

Theorem 3 ([9, Thm. 2]). Let G2(ρz) ∈ RHm×n∞ and let ∆
be a bounded causal operator. Suppose that:

1) ∀τ ∈ [0, 1], the interconnection of G2 and τ∆ is well-
posed.

2) ∀τ ∈ [0, 1], we have τ∆ ∈ IQC(Ψ,M, u?, y?, ρ).
3) there exists ε > 0 such that[

G2(z)
I

]∗
Π(z)

[
G2(z)
I

]
� −εI, ∀z ∈ ρT (25)

where Π(z) = Ψ(z)∗MΨ(z).
Then the state of G2 converges linearly with rate ρ.

The condition in (25) is a frequency-domain inequality
(FDI) which must be satisfied at every point on ρT. This can
be converted into a single linear matrix inequality (LMI) by
applying the discrete-time KYP lemma [13]. This allows us to
establish the following connection between Theorem 2 and the
IQC framework: if we let xk be the internal state of G, then
conditions (9) and (10) in Theorem 2 are comparable to the
FDI in (25) and the IQC condition in (22), respectively. The-
orem 2, however, offers several advantages over the existing
IQC framework; in particular, it

1) can be used to certify linear convergence after a finite
number of iterations, and

2) can be applied to any sequence xk, not just the internal
state of G.

The conditions in Theorem 3 are not satisfied for the TM
method, and therefore it cannot be used to prove convergence.
However, we can gain insight into the design by relaxing the
requirement that ε > 0 in (25). Suppose G2(z) = g2(z) ⊗
In. Then for the IQC in Lemma 2, the left-hand side of (25)
simplifies to

−2 Re{(1−H) (1− Lg2) (1−mg2)∗} ⊗ In. (26)

If we set ε = 0 in (25), then this is equivalent to the following
relaxed frequency-domain condition.

Condition 1 (Relaxed frequency-domain condition).

∠F (z) ∈
[
−π

2
,
π

2

]
for all z ∈ ρT (27)

where

F (z) :=
1− Lg2(z)

1−mg2(z)

(
1−H(z)

)
(28)

and G2(z) = g2(z)⊗ In.

We now describe how to design the system g2(z), the IQC
parameter H(z), and the convergence rate ρ to satisfy the
relaxed frequency-domain condition. This procedure is then
used to design the TM method.



1) Draw the root locus of −g2(z).
2) Draw a pole/zero plot of F (z) as follows:

a) The root locus poles at gain m are poles of F (z).
b) The root locus poles at gain L are zeros of F (z).
c) The poles and zeros of 1 − H(z) are poles and

zeros, respectively, of F (z).
3) For all z ∈ ρT, calculate ∠F (z) by summing the angles

from z to the zeros and subtracting the angles from
z to the poles. Condition 1 is satisfied if ∠F (z) ∈
[−π/2, π/2] for all z ∈ ρT.

A. Design of the TM method

To design the TM method using IQCs, we first formulate
the problem in the robust control framework. We use the IQC
in Lemma 2 to characterize ∇f when f ∈ Sm,L. The gradient-
based optimization algorithm in (2) is equivalent to the closed-
loop system in (20) with ∆ = ∇f , η0 =

[
ξT
0 ξT

−1

]T
, p = 2n,

and

G =


A B

C1 0

C2 0

 =


(1 + β)In −βIn −αIn

In 0n 0n

(1 + δ)In −δIn 0n

(1 + γ)In −γIn 0n

 . (29)

The transfer function from u to y is G2(z) = g2(z)⊗In where

g2(z) = −(1 + γ)α

(
z − γ

1+γ

)
(z − 1)(z − β)

. (30)

From the root locus of −g2(z) in Fig. 4a, it is clear that (1−
Lg2(z))/(1−mg2(z)) will have negative phase for θ ∈ (0, π)
and positive phase for θ ∈ (π, 2π) (see Fig. 4c). The phase of
1−H(z) is simply added to that of (1−Lg2(z))/(1−mg2(z)),
so we want to choose H(z) to have large positive phase in
(0, π) and large negative phase in (π, 2π). This is achieved
using H(z) = ρ2/z (see Fig. 4c). Then 1−H(z) has a zero
at z = ρ2 and a pole at z = 0. We design g2(z) to cancel out
the pole and zero of 1−H(z) and to minimize the convergence
rate ρ as follows:
• Design 1−mg2(z) to have roots at z = ρ2 (to cancel the

zero of 1−H(z)) and z = ρ.
• Design 1− Lg2(z) to have roots at z = 0 (to cancel the

pole of 1−H(z)) and z = −ρ.
These four conditions are used to solve for the parameters α,
β, γ, and the convergence rate ρ. Since g2(z) does not depend
on the parameter δ, it must be obtained in the time-domain by
solving 0 ≡ ηk where ηk is defined in (15).

Remark 4. We choose g2(z) such that the roots of 1−mg2(z)
and 1− Lg2(z) cancel the zero and pole, respectively, of
H(z). We can do this since the cancelled poles and zeros
are inside ρT.
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