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1. INTRODUCTION

We consider the average consensus problem in which each
node in a graph computes the global average of node in-
puts using data collected from its neighbors. This problem
appears in a number of applications involving sensor net-
works, including environmental monitoring (Olfati-Saber,
2005, 2007; Cortés, 2009; Lynch et al., 2008; Bai et al.,
2011; Peterson and Paley, 2013), formation control (Yang
et al., 2008), sensor fusion (Olfati-Saber and Shamma,
2005), and mapping (Aragüés et al., 2012). In this paper
we consider diffusive approaches to this problem which
are inherently scalable, distributed, indifferent to network
structure, and frugal in their use of memory, computation,
and communication resources.

If the node inputs are constants, then their average can
be computed using a variety of diffusive methods in which
node outputs converge to the average of the initial node
states. Such methods are known as static average con-
sensus and have been studied extensively since Tsitsiklis
(1984). Spanos et al. (2005) introduced dynamic average
consensus in which the node inputs appear explicitly in
the update equations themselves, not just as initial states.
In the dynamic case, node inputs can change with time
without the need for any reinitialization, and each node
maintains a running local estimate of the current global
average input. Hence we say that the dynamic average
consensus algorithm running on each node is an estimator.

In this paper we focus our attention on dynamic average
consensus in discrete time. We present a new estimator
based partially on the nonlinear oscillator static consensus
method in (Khan, 2009), but in dynamic form and with
additional filters for improved convergence rates. Our
estimator has a number potential advantages over existing
dynamic average consensus estimators in discrete time,
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and in particular is the only diffusive estimator we know
of which has all of the following properties:

Exactness: Under constant inputs, all node outputs con-
verge to the exact global average in forward time.

Initialization robustness: The initial values of the in-
ternal node states have no effect on the steady-state
estimates (provided they lie in some open region of
attraction).

Time invariance: The estimator dynamics are time in-
variant (in particular, transient characteristics like
settling time do not change as the estimator runs).

Internal stability: The estimator dynamics are bounded-
input, bounded-state stable.

Fast convergence: The estimates converge to steady
state at rates comparable to the fastest known static
average consensus methods.

Single-word local broadcast: At each discrete-time up-
date, each node broadcasts a single real value to its
immediate neighbors.

Exactness is desirable not only because it guarantees zero
steady-state errors for constant inputs, but also because
it leads to small steady-state errors for slowly-varying
inputs. The estimator in (Moallemi and Van Roy, 2006)
is not exact and requires a design trade-off between the
size of steady-state errors under constant inputs and the
convergence rate. Initialization robustness makes it easy
for the network to recover from changes in the network
topology, temporary asymmetries in communication, or
the addition or deletion of nodes; indeed, no special
action is required. The estimators in (Zhu and Mart́ınez,
2010; Yuan et al., 2012; Montijano et al., 2014b) lack
initialization robustness and consequently must take care
to correctly handle these situations without introducing
additional errors in steady state. For example, Zhu and
Mart́ınez (2010) suggest that a node send a particular
message to its neighbors upon leaving the network, but an
abruptly failing node is unlikely to send such a message.
Estimators having initialization robustness can also have a



desirable ergodicity property which allows nodes to recover
the value of the global average under switching network
topologies (Van Scoy et al., 2014). The estimator in
(Montijano et al., 2014a) is time varying, and in particular
its settling times due to state perturbations grow without
bound in forward time (so that the longer it runs, the
slower it recovers from such perturbations). Finally, our
previous designs in (Freeman et al., 2010; Bai et al., 2010;
Elwin et al., 2013, 2014; Van Scoy et al., 2014) require
multi-word local broadcast and generally do not converge
as quickly as the fast static average consensus methods
in (Ghosh et al., 1998; Kokiopoulou and Frossard, 2009;
Oreshkin et al., 2010; Liu and Morse, 2011; Erseghe et al.,
2011).

2. DYNAMIC AVERAGE CONSENSUS

We consider a simple undirected graph G = (V,E) having
a nonempty set V of nodes and a set E of edges, where
each edge is an unordered pair of distinct nodes. We label
and number the nodes and edges, writing V = {1, . . . , n}
and E = {e1, . . . , em}, where n = |V| and m = |E|. Let
B ∈ {−1, 0, 1}n×m be the oriented incidence matrix for G
defined as

Bi` =


1 if i∈ e` and i = min{j : j ∈ e`}
−1 if i∈ e` and i = max{j : j ∈ e`}

0 if i 6∈ e` .

(1)

If we assign a positive weight w` > 0 to each edge e` ∈ E
and form the m×m weight matrix W = diag{w1, . . . , wm},
then L = BWBT is the n×n symmetric weighted Laplacian
matrix for the graph G. Because the column sums of B are
zero, we have L1 = 0, where 1 ∈ Rn denotes the column
vector of all ones. Thus 1 is an eigenvector corresponding
to a zero eigenvalue of L, and one can show that if G is
connected then the remaining n − 1 eigenvalues of L are
all positive.

We assume knowledge of an upper bound λmax on ‖L‖.
This knowledge will typically come from the scheme for
choosing the edge weights. For example, if the weight w`
for each edge e` = {i, j} is

w` =
1

deg(i) + deg(j)
, (2)

where deg(i) denotes the degree of node i, then ‖L‖ will
be no larger than λmax = 1 (Freeman et al., 2010). This
upper bound is tight in the sense that ‖L‖ = 1 for some
graphs using these weights (e.g., the graph having just two
nodes connected by an edge). We also assume knowledge
of a “soft” positive lower bound λmin on the nonzero
eigenvalues of L. This bound is soft in the sense that if
it is violated, then our estimators will still converge but
without any guarantees on their rates of convergence. We
accept such a soft bound as it may difficult to obtain a non-
conservative hard lower bound on the nonzero eigenvalues
of L. As we will see below, the convergence rates of our
estimators will depend on the ratio λr = λmin/λmax. If L is
known and weights can be chosen in a centralized manner,
then one can choose them to maximize the ratio λr. This
is a convex optimization problem essentially equivalent to
the one formulated by Xiao and Boyd (2004).

Suppose each node imaintains an internal scalar state xi(k)
at each discrete time k ∈N, which it updates as follows:

xi(k + 1) = xi(k)− h
∑
{i,j}=e`

w`
[
xi(k)− xj(k)

]
, (3)

where h > 0 is a constant step size and the sum is taken
over all neighbors of i, that is, over all j ∈ V such that
{i, j} = e` for some e` ∈ E. If we stack these states into
a vector x = [x1 . . . xn]T , then we can write the update
more compactly as

x(k + 1) = (I − hL)x(k) , (4)

where I denotes the n×n identity matrix. It is well known
that if h‖L‖ < 2 and if G is connected, then as k →∞, all
entries of the vector x(k) converge to the average of the
entries in the initial state vector x(0). Variations on this
standard iteration have been considered by many authors,
at least as far back as Tsitsiklis (1984). An appropriate
choice for the step size is

h =
2

λmin + λmax
. (5)

Indeed, this choice maximizes the worst-case convergence
rate in the sense that it minimizes the maximum modulus
of the non-unity eigenvalues of I−hL over all Laplacians L
having nonzero eigenvalues in the interval [λmin, λmax].
The resulting maximum modulus is given by

maximum modulus =
1− λr
1 + λr

, (6)

where λr = λmin/λmax.

The system (4) is a static average consensus algorithm
because its input is not a signal but a constant initial
state. Indeed, Fig. 1 shows this system (4) as a block
diagram in which the initial integrator state x(0) appears
explicitly as a constant input. In contrast, in dynamic
average consensus, introduced by Spanos et al. (2005),
each node has an input ui(k) which can change at each
time step k, and the goal is for each node to maintain an
estimate yi(k) of the global average

uave(k) =
1

n

n∑
i=1

ui(k) . (7)

We can form a simple dynamic average consensus estima-
tor by injecting the input into the static consensus block
of Fig. 1, as shown in Fig. 2. Here u = [u1 . . . un]T

and y = [y1 . . . yn]T denote vectors of node inputs and
outputs, respectively. In state-space form, the estimator in
Fig. 2 is [

x(k + 1)
y(k)

]
=

[
I − hL −hL

I I

] [
x(k)
u(k)

]
. (8)

Note that here we inject u(k) at the output of the integra-
tor block. In contrast, Zhu and Mart́ınez (2010) inject the
difference u(k) − u(k − 1) at the input to the integrator
block, and in doing so they introduce an unnecessary delay
together with a corresponding additional state per node.
For this reason, we prefer the version (8) shown in Fig. 2.

One can show that if h‖L‖ < 2, if G is connected, and if
the inputs ui are constant, then as k → ∞, all entries of
the output vector y(k) in (8) converge to xave(0) + uave,
where xave(0) denotes the average of the entries in the
initial state vector x(0). In other words, the steady-state
error vector under constant inputs is just xave(0)1. Thus if
xave(0) = 0, the steady-state error will be zero for constant
inputs and small for slowly-varying inputs. Furthermore,
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Fig. 1. The static average consensus estimator in (4).
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Fig. 2. A simple dynamic average consensus estimator.

this estimator can be cascaded to achieve zero steady-
state error for inputs that are polynomial functions of
the discrete time variable k: simply feed the output of
the first stage into the input of the second, and so on
as needed. As explained in (Zhu and Mart́ınez, 2010), a
cascade of s estimator stages will achieve zero steady-state
error for polynomial inputs of degree up to s−1. However,
this estimator in Fig. 2 lacks initialization robustness: its
steady-state error depends on the value of xave(0), which
is not constant on any open set of initial states.

One way to achieve initialization robustness, developed
by Montijano et al. (2014a), is to move the integrator
pole in Fig. 2 initially away from z = 1 to a point
strictly inside the unit circle in the complex plane, but
then to let it slowly drift towards one as k → ∞ using
time-varying dynamics. However, this comes at a steep
price: the settling times for the transients due to any new
initialization errors increase without bound as k → ∞.
A different approach, developed by Bai et al. (2010), is
to introduce a second Laplacian into the block diagram,
but this also comes at a price: in some cases the resulting
estimator converges considerably more slowly than the
simple estimator in Fig. 2. In this paper we introduce a
third method for achieving initialization robustness, one
which keeps a single Laplacian in the loop but converges
considerably more quickly than the simple estimator in
Fig. 2. After we introduce our new estimator, we will
discuss its advantages and disadvantages relative to the
existing alternatives.

3. A ROBUST NONLINEAR ESTIMATOR

We must first understand why the simple estimator in
Fig. 2 is not robust to initialization errors. In the consensus
direction, the Laplacian block acts like an open circuit due
to the fact that L1 = 0. When this block is open, the
initial state x(0) just adds to the output, thus producing
steady-state errors which depend on x(0). The problem
does not appear in the disagreement directions (namely,
directions orthogonal to 1) because the corresponding
eigenvalues of I − hL are strictly inside the unit circle,
causing the contribution of any initial states to decay in

−L

h

z − 1
I y(·)

u(·)

x(0)

Fig. 3. A preliminary estimator obtained by swapping the
order of the Laplacian and integrator blocks in Fig. 2.
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Fig. 4. Adding a filter to the estimator in Fig. 3 to allow
time for communication.

these directions. One obvious way to fix this is to simply
swap the order of the Laplacian and integrator blocks,
leading to the estimator shown in Fig. 3. Now the initial
integrator state x(0) no longer appears at the output
in the consensus direction because it passes through the
Laplacian first; hence this (preliminary) new estimator is
robust to initialization errors.

There are problems with the estimator in Fig. 3, however.
The first problem is that now each node’s output at time k
depends on its neighbors’ internal states at time k. This
may not be practical, as it typically takes time for a node
to collect information from its neighbors. Note that the
original estimator in Fig. 2 avoids this problem because the
output of its Laplacian block passes through the strictly
proper integrator before reaching its output y. Thus to
allow time for communication, we need a strictly proper
block between the Laplacian and the output y, which we
now insert as shown in Fig. 4. Here p is the pole of the
added filter, and γ is a constant gain into which we have
absorbed the step size h. The integrator block itself need
not be strictly proper anymore (we only need one strictly
proper block for a well-posed loop), so we add a zero in
this block, putting it at z = 0 for reasons explained below.
A state-space representation of the estimator in Fig. 4 is[

xa(k + 1)
xb(k + 1)
y(k)

]
=

[
I I I

−γL pI− γL −γL
0 I I

][
xa(k)
xb(k)
u(k)

]
, (9)

where now each node i has two internal states xai and xbi,
with xa = [xa1 . . . xan]T and xb = [xb1 . . . xbn]T . Note
that there is no need to account for the initial state vector
xb(0) in the block diagram, as its contribution will decay
in all directions (assuming a stable loop with |p| < 1).

To choose values for the parameters γ and p, we consider
the root locus diagram for the loop, treating the Laplacian
as a scalar parameter λ varying from λmin to λmax. Because
we added a zero at z = 0, the root locus for 0 < p < 1
includes a circle of radius α =

√
p, as shown in Fig. 5.

To maximize the convergence rate, we would like to have
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Fig. 5. Root locus of the loop in Fig. 4, which includes a
circle of radius α =

√
p.
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Fig. 6. A smaller maximum modulus of poles translates
to a faster decay of the disagreement modes and thus
faster estimator convergence.

all closed-loop poles within this circle while minimizing its
radius α. We accomplish this by choosing α and γ so that
there is a double real pole at α when λ = λmin and a double
real pole at −α when λ = λmax. It is straightforward to
show that this leads to the choices

α =
√
p =

1−
√
λr

1 +
√
λr

(10)

γ =
(1− α)2

λmin
=

(1 + α)2

λmax
, (11)

where λr = λmin/λmax. Here α is the maximum modulus
of the resulting closed-loop poles (excluding the pole at
z = 1), and as in (6) it is a function of λr. In Fig. 6 we
plot these two functions (6) and (10), and we conclude
that the estimator in Fig. 4 converges considerably more
quickly than the estimator in Fig. 2. This is consistent
with the fast static consensus results in (Ghosh et al.,
1998; Kokiopoulou and Frossard, 2009; Oreshkin et al.,
2010; Liu and Morse, 2011; Erseghe et al., 2011), which
show how additional estimator dynamics can significantly
improve convergence rates.

There is second problem with the estimator in Fig. 3, one it
shares with the estimator in Fig. 4: they are not bounded-

input, bounded-state stable. For example, if the estimator
outputs y are constant (as they will be in steady state
for constant inputs), then the integrator states grow as
ramps and are thus unbounded in forward time. To fix
this problem, we propose to change the state space on
each node from the plane to the cylinder, and in doing so
introduce nonlinearities into the dynamics.

We first observe that in the state-space representation (9)
of the estimator in Fig. 4, each node i maintains an
internal state vector [xai xbi]

T ∈ R2. As it is the inte-
grator state xai which can grow unbounded in forward
time under bounded inputs, we propose to have it take
values on the compact manifold S1 instead of the real
line. We must modify the dynamics to make this work,
but the result will be that xai is automatically bounded
regardless of the other signals in the system. In essence, we
are proposing dynamic consensus via filtered oscillators,
an extension of the unfiltered static oscillator consensus
method introduced by Khan (2009).

For convenience we will parameterize the circle S1 using
radian angles in the interval (−π, π]. Also, we will use ⊕
and 	 to denote angle addition, subtraction, and unary
negation, so that π ⊕ π = 0 and 0 	 π = 	π = π. We
introduce two functions, the first from R to S1 and the
second from S1 to R. The first function is just the standard
covering map C : R → S1 which takes any real number s
to its projection C(s) = s+ 2π` onto the circle S1, where `
is the unique integer such that C(s)∈ (−π, π]. The second
function is a C1 phase coupling function f : S1 → R.
We assume that f is odd, meaning f(	θ) = −f(θ) for all
θ ∈ S1, and that f(0) = 0 and f ′(0) = 1. Otherwise f is
free for us to choose, a simple choice being f = sin. Given
a constant scaling parameter η > 0, the new nonlinear
estimator for each node i takes the form

xai(k + 1) = τi(k) (12)

xbi(k + 1) = pxbi(k)− γη
∑
{i,j}=e`

w`f
(
τi(k)	 τj(k)

)
(13)

τi(k) = xai(k)⊕ C
(xbi(k) + ui(k)

η

)
(14)

yi(k) = xbi(k) + ui(k) , (15)

where τi(·) is an auxiliary output which takes values in S1

and is transmitted to neighboring nodes. In what follows,
we interpret C, f , and ⊕ as acting element-wise on vector
arguments to produce vector values. We can thus define
the nonlinear Laplacian L : (S1)n → Rn as

L(·) = BWf(BT·), (16)

where here we interpret BT as a Z-linear map from (S1)n

to (S1)m. We now write the collection of these estimators
(12)–(15) in a more compact form as

xa(k + 1) = τ(k) (17)

xb(k + 1) = pxb(k)− γηL
(
τ(k)

)
(18)

τ(k) = xa(k)⊕ C
(xb(k) + u(k)

η

)
(19)

y(k) = xb(k) + u(k) , (20)

where τ = [τ1 . . . τn]T is a vector in (S1)n (as is xa). Fig. 7
shows a block diagram of this new nonlinear estimator,
and we see that it is similar to the one in Fig. 4—we have
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Fig. 7. A nonlinear dynamic average consensus estimator.

merely replaced the Laplacian and integrator blocks with
nonlinear versions and introduced the scaling parameter η.

We need the scaling parameter η here because the nonlin-
ear Laplacian L(·) has a bounded image in Rn. Indeed, the
continuous function |f | achieves a maximum value fmax on
the compact set S1, so the Laplacian is bounded as

‖L(·)‖∞ 6 fmax‖BW‖∞ . (21)

If we define the error vector e(k) at time k as

e(k) = y(k)− uave(k)1 , (22)

then (20) implies

xb(k) = e(k)−
[
u(k)− uave(k)1

]
. (23)

On the other hand, the `1-norm of the upper filter in Fig. 7
is γη/(1− p), which implies

‖xb‖∞ 6
γη

1− p
‖L(·)‖∞ =

η√
λminλmax

‖L(·)‖∞ . (24)

Combining (21), (23), and (24), we see that∥∥u− uave1∥∥∞ 6 ‖e‖∞ +
ηfmax√
λminλmax

‖BW‖∞ . (25)

For the weights in (2), one can show that ‖BW‖∞ < 1 for
any graph, which gives us the graph-independent bound∥∥u− uave1∥∥∞ 6 ‖e‖∞ +

ηfmax√
λminλmax

. (26)

We can view this inequality as a necessary condition on the
scaling parameter η. However, choosing η to satisfy (26)
for a desired bound on the steady-state error requires
knowledge of an upper bound on the differences between
the inputs ui and their global average uave. Hence this
estimator cannot achieve bounded error for general ramp
inputs or other types of unbounded input signals, even
when the estimator is cascaded, because eventually the
bounded nonlinear Laplacian will be unable to produce
large enough outputs. This is a clear disadvantage of this
nonlinear estimator, but in practice it may not matter
because the input signals in many applications will be
bounded.

For the remainder of this paper, we will assume for
simplicity that there exists b ∈ (0, π) such that f(θ) = θ
when |θ| 6 b. This means that the nonlinear estimator in
Fig. 7 will generate the same output as the linear estimator
in Fig. 4 when all initial states are zero and the scaling
parameter η is sufficiently large relative to the size of the
inputs. In this case, if u is constant and η satisfies∥∥u− uave1∥∥∞ 6

ηb
√
λr

2
√
n

, (27)

then there is an open set of initial node states from which
the estimator outputs yi(k) all converge to the global
average uave as k → ∞. Furthermore, the convergence is
exponential with a rate determined by α in (10) (thus it

is as fast as the estimator in Fig. 4). Finally, simulations
suggest that this open set of initial node states (namely,
the estimator’s region of attraction) is large for sufficiently
large values of η.

For time-varying inputs, we can examine the Bode plot of
the linear estimator in Fig. 4 to determine the response of
the nonlinear estimator in Fig. 7, assuming η is sufficiently
large relative to

∥∥u−uave1∥∥∞. If we exclude the consensus
direction in which the estimator acts like an all-pass filter,
then it is a high-pass filter with a magnitude of zero at zero
frequency increasing to a magnitude of one at a critical
frequency θc. If θc is measured in units of radians per
sample and if the Laplacian L has nonzero eigenvalues in
the interval [λmin, λmax], then

θc > cos−1

(1

2
+

α

α2 + 1

)
, (28)

with equality when λmin is actually an eigenvalue of L.
Input frequencies below θc will be attenuated in the dis-
agreement directions (which is what we want for consen-
sus), whereas inputs frequencies above θc will be ampli-
fied. Thus to achieve a small steady-state error with this
estimator, the input spectrum should have all significant
components below θc. Note that cascading the estima-
tor will add the Bode plots and thus further attenuate
frequencies below θc, but each additional cascade stage
requires an additional communicated real value per node
per time step. Moreover, as cascading will further amplify
frequencies above θc, noise and quantization effects will
limit the number of useful cascade stages.

4. SIMULATIONS

To test the estimators in Figs. 2 and 7, we simulated
their responses on an Erdős-Rényi random graph having
n = 100 nodes and an edge probability of 0.05. We used the
weights in (2) with the hard bound λmax = 1, and we chose
λmin = 0.03 as random trials indicate that this value is a
lower bound on all non-zero Laplacian eigenvalues for over
99% of such random graphs. We then chose our estimator
parameters according to (5), (10), and (11). The actual
minimum and maximum eigenvalues for our random L
were 0.05 and 0.9, respectively. Finally, we chose the phase
coupling function f so that f(θ) = θ for |θ| 6 2.5.

To choose a value for the scaling parameter η, we assumed
that our inputs satisfied

∥∥u − uave1∥∥∞ 6 10. In this case

the necessary condition (26) with e = 0 yielded η > 0.7,
whereas the sufficient condition (27) yielded η > 462. We
chose η = 500 for our simulations, although much smaller
values seemed to work as well.

We first simulated the estimators in Figs. 2 and 7 with
constant inputs chosen uniformly at random over the
interval [0, 10] and all initial states set to zero. The results
are shown in Fig. 8 under “zero IC.” As expected, both
estimators generate errors that converge exponentially to
zero, but the estimator in Fig. 7 converges considerably
more quickly. We then chose initial states uniformly at
random over the interval [−10, 10], with the exception
of the initial oscillator states for the nonlinear estimator
in Fig. 7, which we chose at random from the smaller
interval [−10/η, 10/η] to account for the scaling effects of
the parameter η. The results are shown in Fig. 8 under
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Fig. 8. Maximum errors of the estimators in Figs. 2 and 7
under constant inputs.

“nonzero IC,”, and we see that only the estimator in Fig. 7
demonstrates the initialization robustness property.

We then simulated the estimators over time-varying inputs
generated as follows. For each node i, we chose a mean µi
and standard deviation σi independently at random from
a uniform distribution over the interval [0, 10]. Then we
created an i.i.d. sequence vi(k) ∼ N (µi, σ

2
i ), k = 0, 1, . . . .

Finally, we passed the sequence vi through a seventh-order
elliptic filter with a cutoff frequency of 0.02π radians per
sample to obtain the input signal ui for node i. We chose
this cutoff frequency to be below the critical frequency θc
in (28), which for our parameters gave θc = 0.077π. The
results are shown in Fig. 9 for the case of zero initial
states, both for a single estimator and for a cascade of
four estimators (in the cascade, the inputs enter the first
stage, the outputs of the first stage are the inputs to the
second, etc., and the outputs of the last stage are the
estimates). We see that cascading the estimators reduced
the steady-state errors but worsens the transient part of
the response. Also, the four-stage estimator requires four
times as much communication per node per time step as
the single-stage estimator. For nonzero initial states, the
results (not shown) are similar for the estimator in Fig. 7,
but the steady-state errors are larger for the estimator in
Fig. 2 due to its lack of initialization robustness.
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Decentralised minimal-time dynamic consensus. In Pro-
ceedings of the 2012 American Control Conference, 800–
805. Montreal.

Zhu, M. and Mart́ınez, S. (2010). Discrete-time dynamic
average consensus. Automatica, 46(2), 322–329.


