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Abstract— Robot swarms can be used to accomplish complex
tasks that are difficult or impossible for any single agent alone.
In this paper, we seek to design swarm robotic algorithms for
search and rescue that are scalable to large swarms, efficient
in terms of computations, safe from collisions, and tunable to
mediate the trade-off between exploration of the environment
and exploitation of possible target location information. To
accomplish this, we propose extending the classical Boids
algorithm from computer animation. Without modifying the
three Boids rules of alignment, cohesion, and separation, we
add target-seeking and general collision avoidance through the
novel use of ghost boids. In addition, we use a control barrier
function to further improve safety at the cost of increased
computations. Through simulations in a search and rescue
task, we analyze the trade-offs between safety, computational
efficiency, and coverage of the environment for our algorithm.

I. INTRODUCTION
Swarms of robots may be used to search large and complex

environments in search and rescue missions. Traditionally,
search and rescue requires teams of people to explore an
environment for the target in need of help. Scenarios have
different requirements, from the number of people searching
to the equipment required, such as helicopters or marine
vessels. This presents a limitation on the scalability of search
tasks which could, in turn, inhibit the success of a mission.

Robots can replace or supplement people searching and
entering potentially dangerous or hard-to-reach areas [1]–[3].
Robots used for search and rescue vary greatly in design
and intended application. For example, drones are used to
provide aerial views and cover an area quickly [4], while
terrestrial robots have specially designed wheels or treads
to maneuver over rubble or up and down stairs [5]. While
robots are being used to increase the capabilities of search
teams, there is often a one-to-one ratio of robots to human
operators.

Several distributed planning and control techniques have
been proposed to allow the use of multiple agents to search
simultaneously. Particle swarm optimizers have been used
to plan a more optimal search path to achieve higher target
recovery rates [6], [7], and machine learning techniques have
been applied to improve path planning for searching [8], [9].
Also, control schemes have been proposed that mimic the
movement of creatures in biological colonies which result in
successes over some traditional search patterns [10].

One particularly simple swarm robotics algorithm is the
Boids algorithm [11]. Originally proposed by Craig Reynolds
in computer vision to mimic the flocking of birds, this
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Fig. 1: Heatmap of agent locations aggregated over time for
multiple simulations of our algorithm. The agents start on
the left (brown) and seek to avoid collisions (red) while
navigating around the obstacles (black) to reach the target
(magenta) while also exploring the environment.

algorithm consists of three simple rules to mimic the flocking
behavior of birds. Each agent gathers information about
nearby agents, such as their relative position, velocity, and
heading, and decides how to update its movement based on
this information according to three rules: separation pushes
agents away from each other, alignment causes agents to
move in the same direction as their neighbors, and cohesion
clusters agents together to form cohesive flocks.

The Boids algorithm is intentionally simple in design. The
algorithm does not provide obstacle avoidance, and there
is no means of target-seeking to complete a specific task.
Because of this, the Boids algorithm has limited direct ap-
plication outside of computer animation or agent placement
[12], [13]. Other algorithms, however, add more rules or
complex control on top of Boids to improve it [14]–[16].

In this work, our goal is to design swarm robotic algo-
rithms to safely explore an environment while also exploiting
information about possible target locations. Such algorithms
should have the following properties.

• Scalable: The algorithm should scale to large swarms,
so robots should only use information from neighbors.

• Efficient: The algorithm should be implementable on
robots with limited computational abilities.

• Safe: Agents should avoid collisions with other agents
and obstacles in the environment.

• Tunable: The algorithm should be tunable to trade-off
exploration and exploitation.
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Our main contribution is a novel algorithm that extends the
traditional Boids algorithm to meet these objectives. Without
modifying the three rules of separation, alignment, and
cohesion, we use ghost boids to implement object avoidance
and goal-seeking behavior. Ghost boids interact with agents
in the same way as other agents but with modified rules.
One type of ghost boid, an aid-to-navigation, is placed on
obstacles and the environment boundary to inhibit collisions.
Another type of ghost boid, a compass, enables the agents to
move toward a given location. By controlling the strength of
the compass, we can tune how much the algorithm exploits
the information to move towards the target location versus
how much it explores the environment. To further improve
safety, we use control barrier functions [17] to minimally
modify the algorithm to avoid collisions at an additional
computational cost. While this does not guarantee safety,
we show through numerical simulations that safety is vastly
improved, even in large swarms.

Figure 1 illustrates our results. Here, a group of 100 agents
explores an environment consisting of a square boundary
and two walls. One agent is given the location of a goal,
and the agents use local interactions to both explore the
environment and move towards the goal. To visualize this
behavior, we use a heatmap of the agent locations aggregated
over time for multiple simulations, where darker regions
correspond to well-explored areas. In this scenario, the agents
effectively explore the entire environment; by tuning the
compass influence, the agents may search closer to the goal
location at the cost of less exploration of the environment.

The rest of the paper is organized as follows. We describe
the problem setup, the simulation parameters, and the Boids
algorithm in Section II. We then introduce the two main
components of our algorithm, ghost boids and control barrier
functions, in Sections III and IV. We describe our results in
Section V, and we provide concluding remarks in Section VI.

II. PROBLEM SETUP

To study the properties of our algorithm, we perform
various simulations in a search and rescue scenario. For
each set of simulation parameters, we run 100 simulations,
each for 5000 iterations of the algorithm. Each simulation
uses a different random seed for initialization, with agents
initialized in a grid on the left side of the environment
at random headings as shown in Figure 1. Once an agent
collides with another agent or an obstacle, it is considered
“dead” and becomes stationary.

A. Simulation parameters

The simulations have numerous parameters that affect
the results. To understand how our algorithm performs in
various conditions, we vary the following parameters in our
simulations: the number of agents, the position of obstacles
in the environment, the number of informed agents1, and the
influence (or weight) of a compass.

1In our experiments, no knowledge of the target location is spread; only
agents that are initialized as informed ever have knowledge of the possible
target location.

B. Performance metrics

Recall that the goal is for the group of agents to coopera-
tively search for the target location while maintaining safety.
We now describe several performance metrics that we use to
characterize how well an algorithm achieves these objectives.

a) Safety: We characterize the safety of an algorithm
by its survival rate, which is the ratio of the number of
agents that did not have any collisions throughout a given
simulation to the total number of agents.

b) Performance: We have two metrics to characterize
how well a group of agents explores an environment while
also exploiting information about the possible target location.
Our first metric is the target success rate, which is the ratio
of agents that have reached the target location by the end
of the simulation to the total number of agents. We count
an agent as having reached the target if the target is within
its neighbor radius at any point during the simulation, even
if the agent later moves away from the target and/or has a
collision. While the target success rate indicates how well
the agents exploit the information about the possible target
location, it does not characterize how well they explore the
remainder of the environment. As it is difficult to capture this
exploration/exploitation trade-off in a single number, we in-
stead use a heatmap of agent positions aggregated over both
iterations and simulations to study the search coverage of
an algorithm. Dark regions of the heatmap indicate locations
that were searched many times over the simulations (possibly
by multiple agents), while lighter regions indicate low search
coverage. An example heatmap is shown in Figure 1.

C. The Boids Algorithm

We now describe the traditional Boids algorithm that
our algorithm builds upon. In this algorithm, each agent
moves in the two-dimensional plane with unit speed in the
direction of its heading. The heading is a weighted average
of the headings obtained from the three rules of separation,
alignment, and cohesion. For each agent, the heading from
the separation rule points in the opposite direction as the
relative positions of its neighbors, the heading from the
alignment rule points in the average direction as the headings
of its neighbors, and the heading from the cohesion rule
points in the direction of the average relative positions of its
neighbors. We illustrate these three rules in Figure 2.

Fig. 2: Visualization of Boids rules. Left to right: separation,
alignment, and cohesion.

To motivate the need for obstacle-avoidance and goal-
seeking behavior, consider running the Boids algorithm in a
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Fig. 3: The traditional boids algorithm has no obstacle-
avoidance or goal-seeking behavior.

bounded environment with no obstacles. The corresponding
heatmap is shown in Figure 3, where agents wander through
the environment until colliding with the boundary (collisions
shown in red). We describe our extensions to this algorithm
that address these issues in the next two sections.

III. GHOST BOIDS

We first extend the traditional Boids algorithm to have
object avoidance and goal-seeking behavior through the use
of ghost boids. These are identical in character to normal
agents, but they do not actively move on their own. Ghost
boids affect the rules for separation, alignment, and cohesion
for neighboring agents. There are two types of ghost boids:
aids to navigation (ATONs) [18] and compasses, which we
now discuss.

A. Aids to Navigation (ATONs)

We use ATONs to provide obstacle avoidance. ATONs are
placed around the perimeter of obstacles and the environment
as shown in Figure 4 (red). These ghost boids are aligned
such that they face away from danger, so they point away
from the center of an obstacle and inwards from the boundary
of the environment.

ATONs affect the separation and alignment rules of neigh-
boring agents. When an agent approaches danger, the ATON
both repels the agent from its location while also aligning
the heading of the agent away from danger.

B. Compasses

Compasses are another type of ghost boid that add goal-
seeking capabilities to the algorithm. A set of agents, called
informed agents, have knowledge of a possible target location
to explore. For instance, agents may be informed through
either initialization or the spread of information from neigh-
boring agents that are informed.

Agent

ATONs

Compass

Target

Fig. 4: Illustration of ghost boids. ATONs (red triangles)
point away from danger for collision avoidance. A compass
(green) is located on an informed agent (blue) and points
toward the target (magenta) for goal-seeking behavior.

Each compass is assigned to a single agent and maintains
the same position as the agent. The compass only affects
the alignment rule of the agent to which it is assigned,
and its heading points directly toward the target location as
illustrated in Figure 4 (green). To avoid the influence of the
compass being attenuated by a large number of neighbors, we
scale the influence (or weight) of the compass proportional
to the number of neighboring agents and ATONs (but not
other compasses).

IV. CONTROL BARRIER FUNCTIONS

While both the separation rule of the Boids algorithm and
the ATON ghost boids provide some level of collision avoid-
ance, they provide insufficient safety in scenarios with large
clusters of agents. For instance, consider a set of 50 agents,
none of which are informed, in a bounded environment with
two walls. The corresponding heatmap is shown in Figure 5,
with many collisions occurring both at obstacles and in the
interior of the environment between agents.

To further improve safety, we use a control barrier function
(CBF) [17] to modify the algorithm in a computationally
efficient way that promotes safety. Let the two-dimensional
vectors pi and vi denote the position and velocity of boid i
(either a physical agent or a ghost boid). Let si = (pi, vi)
denote the state of boid i, and let s = {si} denote the
aggregated state of all boids.

To characterize safety, we let S denote the set of aggre-
gated states that are considered safe. A state may be safe, for
instance, if no agent is colliding with an obstacle or any other
agent. Suppose we can describe the safe set as the super-level
set of some barrier function h applied to all pairs of boids,

S = {s | h(si, sj) ≥ 0 for all i, j}. (1)

For collision avoidance, we choose the barrier function such
that it is nonnegative when two boids are separated by at
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Fig. 5: Heatmap of the boids algorithm with ghost boids.
Even with the separation rule and ATONs, many collisions
occur (red).

least some positive distance D,

h(si, sj) = ∥pi − pj∥2 −D2. (2)

To increase safety, we set the safety distance larger than the
distance at which two agents would collide.

The idea behind CBFs is to choose the heading such that
the barrier function does not become too small so that the
state remains safe. In continuous time, this safety constraint
takes the form

d

dt
h(si, sj) + αh(si, sj) ≥ 0 for all i, j (3a)

for some positive constant α, where d
dth is the time derivative

of the barrier function along the dynamics of the system.
Alternatively, in discrete time the safety constraint is

h(s+i , s
+
j ) ≥ c h(si, sj) for all i, j (3b)

for some constant c ∈ (0, 1), where s+i denotes the state of
boid i at the next iteration of the algorithm.

Denote the velocity of boid i using the Boids algorithm
with ghost boids as vnom

i . The CBF controller modifies this
velocity in a minimally-invasive way while ensuring safety.
It chooses the velocity of each agent to minimize the squared
norm of the difference between its velocity and that of the
nominal velocity subject to the safety constraint:

vi = argmin
v

∥v − vnom
i ∥2 (4)

subject to safety constraint (3a) or (3b).

If the nominal velocity vnom
i satisfies the safety constraint,

then it is trivially the optimal solution. If not, the optimizer
finds the velocity that is as close to the nominal velocity as
possible without defying the safety constraint.

We now describe the detailed formulation of the opti-
mization problem (4) for the barrier function (2). We first

consider the safety constraint in discrete time. Using a
forward discretization of the differential equation d

dtpi = vi
with time step ∆t, the position of boid i at the next iteration
is p+i = pi+∆t vi. The safety constraint (3b) between boids
i and j is then[

pi − pj
vi − vj

]T [
1− c ∆t
∆t ∆t2

] [
pi − pj
vi − vj

]
≥ (1− c)D2,

which is quadratic in the differences between the positions
and velocities of the two boids. In this formulation, the opti-
mization problem (4) is a quadratically-constrained quadratic
program (QCQP), which is in general NP-hard to solve.
Furthermore, this is a global optimization problem since it
couples the velocities between all of the agents, which are
the variables in the problem.

Since the previous formulation is not computationally
tractable, we instead propose a modified problem that is
easier to solve but that does not guarantee safety. Define the
positive constant α = ∆t−1(1−c). For ∆t sufficiently small,
we can neglect the quadratic term in the above inequality to
obtain the modified safety constraint[

pi − pj
vi − vj

]T [
α 1
1 0

] [
pi − pj
vi − vj

]
≥ αD2. (5)

This constraint is affine in the velocity. The optimization
problem is then a quadratic program, which is convex and
can be solved efficiently using standard numerical solvers
[19]–[22]. In addition, this optimization problem can be
solved in a decentralized way by having each agent i
implement half of the constraint:

(pi − pj)
Tvi +

α
4 (∥pi − pj∥2 −D2) ≥ 0, (6)

which does not depend on the velocity of boid j. Therefore,
the optimization problem (4) for each boid only requires the
relative positions and velocities of neighboring boids.

To further motivate this simplification, we observe that
the modified safety constraint (5) is precisely the safety
constraint (3a) for the continuous-time dynamics. Since we
implement the system in discrete-time, this continuous-time
safety constraint is not sufficient to guarantee safety. We
show in our simulations, however, that it drastically improves
safety at a moderate additional computational cost.

Beyond the simplification of the safety constraint, another
possible source of collisions is that, instead of applying
the optimal solution vi from (4), we apply the normalized2

velocity ∥vi∥−1vi. We do not include this normalization as
a constraint in (4) as that would again lead to a QCQP.

To summarize, each agent i first finds its nominal velocity
vnom
i by applying the Boids algorithm with ghost boids,

solves the quadratic program (4) subject to its portion of the
modified safety constraint in (6) for all neighboring agents
and ATONs to obtain the velocity vi, and then applies the
normalized velocity ∥vi∥−1vi to update its position.

2We could directly apply the velocity obtained from the optimization
problem (4). The Boids algorithm, however, traditionally uses a constant
velocity, which is why we choose to use the normalized velocity.
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V. EXPERIMENTAL RESULTS

We now illustrate the properties of our algorithm using
simulations of the search and rescue scenario described in
Section II under various parameter settings.

A. Safety vs efficiency

We first study the trade-off between safety and computa-
tional efficiency. Figure 6 shows the heatmap produced by 10
agents, none of which are informed, in an open environment.

The most efficient is the traditional Boids algorithm,
shown in Figure 6a, as it only requires each agent to compute
weighted sums of the relative positions and velocities of
its neighboring agents. Since this algorithm has no obstacle
avoidance mechanism, agents wander through the environ-
ment until colliding with the boundary.

The ATONs placed around the boundary result in much
fewer collisions as illustrated in Figure 6b. Now, most
agents continue to wander through the environment over the
course of the simulation, resulting in a darker heatmap. The
repulsive affect of the separation rule, however, is not always
strong enough to keep agents from colliding, resulting in
collisions between agents throughout the environment. This
algorithm has a slightly higher computational cost as the
weighted sums now include the ATONs on the boundary.

To further improve safety, the CBF algorithm from Sec. IV
enforces the safety constraint to be satisfied, if such a
velocity exists. This results in no collisions in this scenario,
although it requires each agent to solve a quadratic program
at each iteration of the algorithm. This optimization problem
is trivial, however, if the nominal velocity already satisfies
the safety constraint, so it only incurs an additional cost when
the nominal velocity is unsafe.

The survival rate and runtime for each algorithm in this
scenario are provided in Table I for a varying number of
agents. The traditional Boids algorithm is most computation-
ally efficient but the least safe, while the CBF algorithm is
most safe but least efficient. All algorithms become less safe
and have longer runtimes as the number of agents increases.

TABLE I: Survival rate in percent (average runtime in
milliseconds) of each algorithm with no informed agents in
an open environment with a varying number of agents.

Algorithm 5 Agents 10 Agents 50 Agents 100 Agents

Traditional 1.6 (40) 2.4 (70) 0.0 (326) 0.0 (667)
Ghost boids 100 (77) 95.4 (137) 46.2 (593) 23.9 (1086)

CBF 100 (453) 100 (1360) 99.9 (11352) 99.9 (25528)

B. Exploration vs exploitation

We now study the trade-off between exploring the envi-
ronment and exploiting information about the possible target
location that is available to informed agents. There are two
parameters that affect this trade-off: the number of informed
agents and the compass influence.

The compass influence is a single scalar parameter that
trades off exploration and exploitation. Consider a group
of 50 agents, all of which are informed, running the CBF
algorithm in an environment with a wall as shown in Figure 7
for varying amounts of compass influence. Without the com-
pass (Fig. 7a), the agents uniformly cover the environment
with few collisions due to the CBF mechanism. With a
small amount of compass influence (Fig. 7b), the agents
still explore the environment, but to a lesser extent as they
spend more time near the possible target location due to
the compass pointing in that direction. With 100% compass
influence (Fig. 7c), the agents move directly toward the target
location and remain within a ball about the target.

Similar to the compass influence, the number of informed
agents can also be used to exploit the trade-off between
exploration and exploitation. More informed agents results in
more exploitation, similar to using more compass influence.
As the results are qualitatively similar, we do not show the
plots due to space limitations.

While more compass influence results in more exploitation
of target location information, it can also result in agents
becoming trapped by obstacles in the environment. Consider
the same setup as before, but in an environment with a
bowl-shaped obstacle as illustrated in Figure 8. Here, the

(a) The traditional boids algorithm has
many collisions at the boundary.

(b) ATONs repel agents from the boundary
causing fewer collisions.

(c) The CBF algorithm has no collisions,
but agents solve a QP at each iteration.

Fig. 6: Heatmaps for each algorithm. The system can be made more safe at additional computational cost.
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(a) 0% compass influence (b) 10% compass influence (c) 100% compass influence

Fig. 7: Heatmaps of the CBF algorithm. Larger compass influence yields more exploitation and less exploration.

(a) 0% compass influence (b) 10% compass influence (c) 100% compass influence

Fig. 8: Heatmaps of the CBF algorithm. Too much compass influence results in agents trapped in the bowl.

target is located on the opposite side of the bowl as the
starting locations of the agents. When the compass influence
is too large, many agents become trapped by the bowl and
are therefore unable to reach the target location. In addition,
this results in a large number of collisions due to the high
density of agents inside the bowl. We conclude that complex
environments require small compass influence so that agents
explore enough of the environment to locate the target.

VI. CONCLUSIONS

In this work, we extended the traditional boids algorithm
to be applicable to search and rescue tasks. We introduced
two types of ghost boids, ATONs and compasses, to give the
algorithm obstacle-avoidance and goal-seeking behavior, and
then implemented a CBF controller on top of this algorithm
to achieve better safety at an additional computational cost.
We showed through simulations that our algorithm can
trade-off safety and efficiency through the use of ATONs
and CBFs, and that the number of informed agents and
compass influence can be used to trade-off exploration of
the environment with exploitation of possible target location
information. In complex environments (such as that with the
bowl-shaped obstacle), however, too much compass influence
can cause livelock scenarios in which informed agents are
unable to navigate around the obstacle to reach the target.

Our algorithm could be extended in various ways. We
made several simplifying assumptions in the derivation of
the safety constraint for the CBF, so our algorithm does not
guarantee safety. An interesting problem is how to construct a
safety constraint for the discrete-time dynamics that is always
feasible so that safety can be guaranteed. Another extension
is to design a high-level planner on top of our algorithm
to prevent agents from becoming stuck by obstacles. In this
work, we only considered the case where all informed agents
have access to the same single possible target location. In
a more realistic search and rescue scenario, there may be
many possible locations where the target may be located. The
algorithm should then trade-off the amount of effort spent
searching each of these possible target locations with the
rest of the environment. Beyond a finite number of single
points, we may in general have a probability distribution
over the environment that describes the probability that the
target is at any given location. In that case, we would want
to spend an amount of time in each region proportional to
the probability that the target is in that region. And finally,
implementing these algorithms on a physical swarm of robots
would provide valuable insight into their viability in realistic
search and rescue applications. While simulations provide
general insights, imperfect sensor readings and actuator con-
trol, dynamic terrain, different robot specifications, and more
will result in different performances in realistic applications.
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