
NORTHWESTERN UNIVERSITY

Analysis and Design of Algorithms for Dynamic Average Consensus and

Convex Optimization

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Electrical Engineering

By

Bryan R. Van Scoy

EVANSTON, ILLINOIS

June 2017

2

c© Copyright by Bryan R. Van Scoy 2017

All Rights Reserved

3

Abstract

Analysis and Design of Algorithms for Dynamic Average Consensus and Convex

Optimization

Bryan R. Van Scoy

Algorithms which are efficient and robust are essential to meet the increasing computa-

tional demands in the world today. In this thesis, we consider the analysis and design of

both distributed algorithms for dynamic average consensus and centralized algorithms for

convex optimization.

Dynamic average consensus consists of a group of agents, each with a local signal (such

as the output of a sensor), where the goal is for each agent to use communication with local

neighbors to estimate the global average of the signals. We analyze and design diffusion

algorithms based on local averaging to solve the dynamic average consensus problem for two

classes of signals. First, we consider signals whose frequency spectrum is nonzero only at a

finite number of discrete frequencies. In this case, the local agent dynamics use feedback to

converge to the exact average of the signals. Furthermore, we design estimators which (1) are

scalable to a large number of agents, (2) are robust to both initialization errors and agents

entering/leaving the group, (3) have internally stable dynamics, (4) use discrete-time local

broadcast communication, and (5) have fast convergence rates. The second class of signals

4

considered are bandlimited; that is, their frequency spectrum is nonzero in a continuous band

of frequencies. The feedback estimators designed previously are shown to be inadequate in

this case. Instead, we propose a feedforward estimator which can track the average with

arbitrarily small error under very limited assumptions, including when the communication

among the agents changes rapidly in time.

Dynamic average consensus can be formulated as a convex optimization problem, and we

show that the analysis and design of algorithms for the two problems are quite similar. In the

centralized setting, we design and analyze a novel gradient-based algorithm for unconstrained

convex optimization. When the objective function is strongly convex with strong convexity

parameter m, and its gradient is Lipschitz continuous with Lipschitz constant L, then the

iterates and function values converge linearly to the optimum at rates ρ and ρ2, respectively,

where ρ = 1−
√
m/L. These are the fastest known guaranteed linear convergence rates for

globally convergent first-order methods, and for high desired accuracies the corresponding

iteration complexity is within a factor of two of the theoretical lower bound. We use a

simple graphical design procedure based on integral quadratic constraints to derive closed-

form expressions for the algorithm parameters. The new algorithm, which we call the triple

momentum method, can be seen as an extension of gradient descent, Nesterov’s accelerated

gradient descent, and the heavy-ball method.

5

Acknowledgments

This thesis is the culmination of not only my efforts while at Northwestern, but also

all those who have poured into me and helped me along the way. With all the guidance

and encouragement that I received, this road has been quite enjoyable for which I am truly

thankful.

First of all, I would like to thank my advisor, Randy Freeman. He has guided me

through every step of this process, from choosing to come to Northwestern, to writing my

first research paper, and now in completing my PhD. His door has always been open for

me to ask questions, and his diligence to produce exceptional work has kept me striving to

improve my own capabilities.

I would also like to thank the others in my research group, Kevin Lynch, Matthew Elwin,

Jemin George, Daniel Burbano, and the others who have passed through. Hearing what they

had been working on each week has broadened my understanding, and their feedback along

the way was immensely valuable.

My other committee members, Randy Berry, Ermin Wei, and Jorge Cortés, have also

been instrumental in providing feedback and helping to produce this work.

While those within the academic world have played a crucial role in finishing this thesis,

an equally important role was played by those who have been in my life encouraging me along

the way. My mom and dad have helped me pursue my dreams from the very beginning. Too

many friends to name have been with me through this whole experience, from my roommates

6

Greg Kimmel, George Kacouris, and Mark Harmon to my brothers and sisters at Evanston

Bible Fellowship including Vlad Serban, Jacob DiEdwardo, Cristina Hunter, and so many

others. They pushed me to work hard, but also pulled me away from research to remind me

that there is more to life than just math.

7

Table of Contents

Abstract . 3

Acknowledgments . 5

List of Tables . 10

List of Figures . 11

Chapter 1. Introduction . 14

1.1. Dynamic Average Consensus . 14

1.2. Convex Optimization . 25

1.3. Notation . 28

Chapter 2. Dynamic Average Consensus . 30

2.1. Problem Definition . 30

2.2. Graph Theory . 32

2.3. Assumptions . 38

2.4. Estimator Properties . 41

2.5. Representation of Estimators . 45

2.6. Separated System . 49

2.7. Analysis of Estimators . 55

2.8. Palindromic Transformation . 61

8

Chapter 3. Asymptotic Mean Ergodicity Property of Estimators 64

3.1. Kronecker Product Covariance . 65

3.2. Asymptotic Mean Ergodicity of Random Processes 68

3.3. Asymptotic Mean Ergodicity of Estimators . 71

3.4. Examples . 79

3.5. Summary . 81

Chapter 4. Estimators for Signals with Discrete Frequency Spectrum 83

4.1. Static Estimator . 85

4.2. Dynamic Estimators with One Transmission Variable (P Estimator) 88

4.3. Dynamic Estimators with Two Transmission Variables (PI Estimator) 96

4.4. Polynomial Filter Estimator . 107

4.5. Edge Estimator . 124

4.6. Nonlinear Estimator . 126

4.7. Summary . 132

Chapter 5. Estimators for Signals with Continuous Frequency Spectrum 134

5.1. Analysis . 136

5.2. Feedback Estimators . 140

5.3. Feedforward Estimators . 148

5.4. Prefilter Design . 156

5.5. Simulations . 169

5.6. Summary . 177

Chapter 6. Convex Optimization . 178

6.1. Summary of Methods . 178

9

6.2. Analysis using Integral Quadratic Constraints . 184

6.3. Design using Integral Quadratic Constraints . 194

6.4. Gradient Descent . 197

6.5. Triple Momentum Method . 201

6.6. Simulations . 207

6.7. Alternative Convergence Proofs . 208

6.8. Summary . 214

Chapter 7. Conclusion . 215

7.1. Summary . 215

7.2. Future Directions . 216

References . 220

Vita . 227

10

List of Tables

2.1 Examples of ρ-palindromic rational function pairs. 62

3.1 Summary of properties for the P and PI estimators with E[Lk] balanced and

connected, and Lk i.i.d. for all k. 80

4.1 Normalized convergence rates of polynomial filter estimators. 122

4.2 Sumary of the properties of feedback estimators. 132

5.1 Maximum singular values of the error transfer function in the consensus and

disagreement directions and the passband and stopband. 137

5.2 Specific feedback estimators of the form considered in Fig. 5.2. 140

5.3 Bounds on the maximum absolute steady-state error and maximum singular val-

ues of the FIR and IIR prefilters. 174

6.1 Parameters of gradient-based optimization algorithms (up to a change of variables).180

6.2 Approximate iterations to converge for gradient optimization algorithms for large

κ (ignoring constant terms). 184

11

List of Figures

2.1 Obtaining a discrete-time signal from a continuous-time signal. 31

2.2 Frequency spectrum of example input signals. 39

2.3 Simulation of estimators with different types of robustness properties. 43

2.4 Block diagram of a general one-hop estimator. 47

2.5 Block diagram of a general feedback estimator. 49

2.6 Separated system of the general one-hop estimator in Fig. 2.4. 51

2.7 Separated system of the feedback estimator in Fig. 2.5. 51

2.8 Block diagram of a one-hop estimator which transmits one variable per iteration

and uses the Laplacian operator. 52

2.9 Separated system of the one-hop estimator in Fig. 2.8 which uses the Laplacian

operator. 54

2.10 Properties of a feedback estimator based on the structure of the block diagram. . 60

4.1 Block diagram of the static estimator. 86

4.2 Root locus of the static estimator. 88

4.3 Block diagram of the dynamic version of the static estimator where the signals

are applied as inputs to the system. 89

4.4 Block diagrams of proportional estimators. 90

4.5 Root locus design of the P estimator. 93

4.6 Convergence rate of the P estimator. 94

12

4.7 Block diagram of the proportional-integral estimator. 97

4.8 Root locus design of the PI estimator with two internal state variables per agent. 101

4.9 Root locus design of the PI estimator with four internal state variables per agent. 103

4.10 Convergence rate of the PI estimator. 106

4.11 Block diagrams of polynomial filter estimators. 109

4.12 Closed-loop pole of the non-robust one-state polynomial filter estimator. 111

4.13 Normalized convergence rate of the non-robust one-state polynomial filter esti-

mator. 112

4.14 Normalized convergence rates of polynomial filter estimators. 123

4.15 Block diagram of the edge estimator. 124

4.16 Block diagram of the nonlinear estimator. 129

4.17 Summary of the convergence rates of feedback estimators 133

5.1 Block diagram of the general cascade estimator structure. 140

5.2 Block diagrams of cascaded feedback estimators. 141

5.3 Simulation of the feedback estimators showing their robustness properties. 145

5.4 Block diagrams of the cascaded feedforward estimators. 149

5.5 Plot of the Dolph-Chebyshev window function. 160

5.6 Bode plot of the prefilter. 165

5.7 Plot of the error of the FIR and IIR prefilters as a function of the cutoff frequency.168

5.8 Example input signals used for simulations. 170

5.9 Undirected graphs used in the simulations. 171

5.10 Directed graphs used in the simulations. 171

13

5.11 Simulations of different estimators using the input signals with cutoff frequency

θc = π/10 in Fig. 5.8 and the undirected graphs in Fig. 5.9. The graph changes

at iteration 100 and every iteration past 300, and is constant otherwise. 173

5.12 Simulation of the feedforward estimator using the FIR and IIR prefilter designs. . 175

5.13 Simulation of the feedforward estimator with the FIR prefilter where packets are

dropped randomly with probability p. 176

6.1 Theoretical properties of gradient optimization algorithms for f ∈ Sm,L. 185

6.2 Block diagram of a known linear system G in feedback with an unknown function

∆. The system has input u and output y. 186

6.3 Block diagram showing the IQC setup. 188

6.4 Equivalent system with the unknown function ∆ replaced by an IQC. 189

6.5 Design of gradient descent. 199

6.6 Phase plot of ∠(1−H(ρejθ)) for H(z) = 0, H(z) = ρ2/z, and H(z) = ρ4/z2. 202

6.7 Design of the parameters (α, β, γ, ρ) in the TM method. 203

6.8 Simulation results of several optimization algorithms. 208

7.1 Block diagram of a generalized proportional-integral estimator. 217

7.2 Block diagram of the proposed nonlinear estimator based on the triple momentum

method. 218

14

CHAPTER 1

Introduction

Algorithms which are efficient and robust are essential to meet the increasing compu-

tational demands in the world today. Applications in distributed multi-agent systems as

well as centralized systems require algorithms with provable guarantees on properties such

as convergence rate, steady-state error, robustness to initial conditions, etc. In order to

develop such algorithms we must not only be able to analyze existing algorithms, but also

have methods of designing new algorithms to achieve the required specifications. In this the-

sis, we consider the analysis and design of both distributed algorithms for dynamic average

consensus and centralized algorithms for convex optimization.

1.1. Dynamic Average Consensus

Consider a group of agents where each agent has a time-varying local input signal and

is capable of local communication with neighboring agents in a communication network

which may change over time. The dynamic average consensus problem is for each agent to

maintain a running local estimate of the current global average of the time-varying input

signals. Hence we say that the dynamic average consensus algorithm running on each agent

is an estimator.

Estimators for dynamic average consensus have many applications in the decentralized

control of multi-agent systems, and are fundamental building blocks of many other dis-

tributed algorithms. Some distributed applications include

15

• environmental monitoring [1, 2, 3, 4, 5, 6],

• sensor fusion [7],

• formation control [8],

• dynamic merging of feature-based maps [9], and

• optimization [10].

We consider diffusive approaches to this problem which are inherently scalable, dis-

tributed, indifferent to network structure, and frugal in their use of agent memory, com-

putation, and communication resources. Diffusive estimators spread information through

the network of agents using local averaging. With diffusive algorithms, agents can aver-

age internal variables with their local neighbors as well as perform any necessary internal

calculations.

Estimators for dynamic average consensus are designed to have desired properties such

as robustness and fast convergence. In particular, we design estimators to have the following

properties:

Exactness: Under constant inputs, all agent outputs converge to the exact global average

of the input signals.

Initialization robustness: The initial values of the internal agent states have no effect on

the steady-state estimates.

Time-invariance: The estimator dynamics are time-invariant (in particular, transient char-

acteristics like settling time do not change as the estimator runs).

Internal stability: The estimator dynamics are bounded-input, bounded-state stable.

Fast convergence: The estimates converge to steady state quickly.

16

Robustness to changes in the graph: The estimates have the same properties when the

communication graph is time-varying as when it is constant.

Discrete time updates: Local communication with neighboring agents occurs at discrete

time steps.

Local broadcast communication: At each discrete-time update, each agent broadcasts

a single message to all of its immediate neighbors.

Exactness is desirable not only because it guarantees zero steady-state error for constant

inputs, but also because it leads to small steady-state error for slowly-varying inputs. Ini-

tialization robustness makes it easy for the network to recover from changes in the network

topology, temporary asymmetries in communication, or the addition or deletion of agents;

the estimators can just keep running as usual and no special action is required. Robustness

to changes in the communication graph is an important property of a distributed estimator,

as network changes can occur due to

• mobile agents with range-limited communication,

• noisy communication in which packets are dropped at random,

• agent failure, and

• addition of agents to the network.

We now show how our work relates to the vast literature on dynamic average consensus.

1.1.1. Literature Review

If the agent inputs are constants, then their average can be computed using a variety of

diffusive methods in which the inputs are used as initial states and the agent outputs converge

17

to the average of the initial states. Such methods are known as static average consensus and

have been studied extensively since the work of Tsitsiklis in 1984 [11].

Since static average consensus algorithms were first introduced, a big concern has been

optimizing the convergence rate. When the topology of the communication graph is known

and the edge weights can be chosen in a centralized manner, semidefinite programming can be

used to optimize the convergence rate if the graph is undirected [12]. Besides optimizing the

edge weights, the convergence rate can also be improved through the use of a local predictor

at each agent [13]. Another approach to improve convergence is to use the alternating

direction method of multipliers (ADMM) and distributed optimization to select optimal

parameters [14].

Static estimators calculate the average of the inputs, but are incapable of tracking the

average of a time-varying input. Furthermore, they are inherently not robust to communica-

tion faults since a single dropped packet can cause the estimator to converge to an incorrect

value [15]. In 2005, Spanos et al. [16] introduced dynamic average consensus in which the

agent inputs appear explicitly in the update equations themselves, not just as initial states.

In the dynamic case, agent inputs can change with time without the need for any reinitial-

ization, and each agent maintains a running local estimate of the current global average of

the input signals.

Dynamic average consensus in continuous time has also received much attention [17, 18].

Estimators in continuous time can converge to the exact average of the time-varying input

signals in finite time so long as the derivatives of the input signals are bounded [18]. However,

this requires communication between neighboring agents to occur continuously which is not

realistic in many scenarios. Furthermore, many continuous-time estimators use high-gain

18

approaches which require very small step sizes when discretized. Therefore, we focus on the

more practical scenario when communication occurs at discrete time steps.

Many diffusive estimators for dynamic average consensus in discrete time have been

proposed [16, 19, 20, 21, 22, 23, 24, 25]. Each estimator has different properties based

on the assumptions made on both the communication graph and the input signals.

As a first step to tracking time-varying inputs, the static estimator was modified so that

the input signals enter as the inputs of a dynamical system, not as the initial state [16].

Since the input is no longer the initial state, estimators are referred to as robust to initial

conditions if the steady-state value is independent of the initial state. Estimators which are

robust to initial conditions can track slowly-varying inputs and can recover from changes

in the communication graph. Furthermore, zero steady-state error can be achieved if the

feedback loop contains an integrator.

The estimators in [23, 26, 27] lack initialization robustness and consequently must take

care to correctly handle these situations without introducing additional errors in steady

state. For example, [23] suggest that an agent send a particular message to its neighbors

upon leaving the network, but an abruptly failing agent is unlikely to send such a message.

Therefore, we design estimators which are robust to initial conditions.

Several techniques have been proposed to make dynamic estimators which are robust to

initial conditions. A simple method is to perform the diffusion step after the integrator in

the feedback path. However, if only a single variable is transmitted to neighboring agents at

each iteration, then this method sacrifices stability of the internal agent states [20].

To have both robustness to initial conditions and internal stability, we could use multiple

rounds of communication per iteration to produce the polynomial filter estimator. Static

versions of this estimator were first designed numerically in [28], and closed-form expressions

19

in terms of Chebyshev polynomials were given in [29]. We extend this to time-varying signals

by producing an equivalent dynamic estimator, although the estimator is not robust to initial

conditions. With a simple modification, however, we can make the estimator robust. The

resulting polynomial filter estimator is both robust to initial conditions and internally stable.

We also show that, for estimators which are not robust to initial conditions, the optimal

convergence rate is achieved by an estimator with two internal state variables which uses

one round of communication per iteration. The cost of making the estimator robust to

initial conditions is that the convergence rate is slower for any finite number of rounds of

communication per iteration, although the same convergence rate as the non-robust case is

obtained in the limit as the number of rounds of communication per iteration approaches

infinity.

Another method of making an estimator robust to initial conditions is to use time-varying

dynamics [27]. This exploits a tradeoff between convergence rate and robustness to initial

conditions. The approach is attractive in theory since it is robust to initial conditions and

achieves zero steady-state error, but does not work well in practice. In the beginning phase

the estimator recovers from changes in the graph quickly, but the error is large. As the

estimator dynamics change, the estimator takes longer and longer to recover from changes

in the graph; robustness slowly deteriorates while the steady-state error is improved, but at

any finite time there is a trade-off between the two properties.

A time-invariant approach which is both robust to initial conditions and internally stable

is to apply both proportional and integral terms in the feedback loop [19]. The resulting

estimator, called the proportional-integral (PI) estimator, has convergence rate which is

quite slow compared to other methods. Elwin et al. [30, 31] optimize the worst-case

convergence rate by applying global numerical optimization solvers, but no guarantees are

20

given of finding the global optimum. To fix this issue, we first calculate closed-form solutions

for the estimator parameters which optimize the convergence rate. We then show that extra

dynamics can be introduced on each agent to further increase the convergence rate, and give

closed-form expressions for the optimal parameters. This requires each agent to have four

internal state variables instead of just two, but still uses the same amount of communication

(each agent must broadcast two state variables in the same packet to neighboring agents at

each iteration).

The PI estimator has another desireable property in that it can track the average of the

input signals even when the communication graph changes randomly at each iteration. When

the graph is time-varying, the estimator outputs converge to a random signal whose time

average is equal to its statistical average. We call this property asymptotic mean ergodicity.

In this case, each agent can apply a local lowpass filter to recover the average of the input

signals. Others have studied the properties of static estimators over time-varying graphs

[32, 33, 34, 35, 36], but our result applies to general dynamic estimators.

Another method of achieving both robustness to initial conditions and internal stability

is to factor the graph Laplacian matrix and move the integrator between each of the factors.

We call the resulting algorithm the edge estimator because the number of states in the system

corresponds to the number of edges in the communication graph instead of the number of

agents. To implement this estimator, each agent must maintain an internal state variable for

each agent from which it receives information. This approach is not scalable to large dense

networks, but can be used if each agent has sufficient memory to store the required number

of variables.

21

The last approach we consider to obtaining robustness to initial conditions and internal

stability is to change the state-space of the estimator. We start with the form of the pro-

portional estimator which is robust to initial conditions but not internally stable. We then

change the state-space of the integrator states from Euclidean space to the multi-dimensional

torus (which is compact). The result is that the integrator states are inherently bounded,

so both properties are achieved. The nonlinear state-space requires nonlinear dynamics in

the estimator. To do this, we generalize the Laplacian matrix of a graph to the nonlinear

Laplacian operator. This type of estimator was studied in the static case in [37] and [38,

Chapter 2]. Our dynamic estimator has zero steady-state error if the initial state is located

within an open region of attraction. In other words, the estimator is locally convergent but

not globally convergent. For linear estimators these properties are equivalent, and we refer

to an estimator which is globally convergent as robust to initial conditions. In the nonlinear

case, however, we must distinguish between local and global convergence. Although the non-

linear estimator only has local convergence, its convergence rate is equivalent to the fastest

known methods.

Dynamic estimators which are robust to initial conditions and contain an integrator in

the feedback loop can track slowly-varying inputs and can recover from changes in the com-

munication graph after a transient. They are restricted to slowly-varying inputs, however,

since they are designed to track constant inputs with zero steady-state error.

Several steps have been taken towards tracking fast time-varying signals. To accom-

modate arbitrarily fast time-varying input signals with a known model (or frequency), the

internal model estimator was introduced [16, 21]. Instead of an integrator, the internal

model of the input is placed in the feedback loop causing the estimator to have zero steady-

state error for input signals at that frequency. This estimator can track arbitrarily fast

22

time-varying signals, but the model of the input must be known a priori to design the esti-

mator. In the case when the signal frequency is unknown, it was shown that the frequency

can be estimated and the estimate used in the internal model estimator [22]. This method

also achieves zero steady-state error, but the signal must be composed of a single frequency.

Another approach is to design the estimator using a very general internal model so that it

applies to a large set of input signals. This approach is taken in [23] where an estimator is

designed using a fixed degree polynomial as the internal model. The resulting estimator can

track input signals whose derivatives are bounded with finite steady-state error.

All of the previous approaches rely on using a model (or approximate model) of the input

signals in the feedback loop. This implies that the input signals have such a model, which is

only the case if their frequency spectrum is nonzero at a finite number of discrete frequencies.

In practice, the input signals will often come from the output of sensors after applying a

lowpass filter. Therefore, we also consider the case when the input signals have a continuous

frequency spectrum (e.g., the signals are bandlimited).

To track the average of input signals with continuous frequency spectrum, we propose a

feedforward estimator as opposed to the feedback estimators mentioned previously. When

the input signals are bandlimited with known cutoff frequency, the estimates track the global

average of the input signals with bounded error and no delay, i.e., the estimate of the global

average is known on each agent at every iteration and it approximates the average of the

inputs at that time instant. Furthermore, the proposed estimator is robust to changes in

the graph, meaning that the performance is no worse when the graph is time-varying than

when it is constant. Distinct characteristics of the design are that the estimator applies the

Laplacian in the feedforward path, and each agent applies a prefilter to the input signal before

any communication with neighbors. The estimator can be decomposed into two components:

23

a bandlimited prediction filter followed by a feedforward averaging filter. A bandlimited

prediction filter with finite impulse response (FIR) is given in [39]. As an alternative, we

design an infinite impulse response (IIR) filter. We show how to design both filters to

minimize the error in the prediction while taking into account the precision of the arithmetic

used to implement the filter. In particular, we do not assume exact precision arithmetic.

Using either of these filters, we show that the steady-state error of the feedforward estimator

can be made arbitrarily small if (1) enough state variables are used on each agent, (2) enough

variables are transmitted in each packet, and (3) exact arithmetic is used. The error is finite

when using finite-precision arithmetic and a finite number of state variables and transmitted

variables. However, we show that the error using our IIR filter is smaller than when using

the FIR filter, although the transient response takes longer to decay.

There is a vast amount of literature related to the dynamic average consensus problem,

and we have presented only a brief review. A few examples of topics not covered in this

thesis are

• privacy of estimator inputs and internal states [24, 40],

• estimators for unbalanced directed graphs [41, 42],

• consensus of quantized values, [43, 44] and

• event-triggered estimators [45, 46].

1.1.2. Contributions

To summarize, our main contributions to the dynamic average consensus problem are as

follows:

24

• We characterize the asymptotic mean ergodicity property of estimators. For one-

hop estimators with this property, each agent can apply a local lowpass filter to

recover the average of the inputs when the communication graph is time-varying.

• Closed-form solutions are found for the PI estimator parameters which optimize the

convergence rate. We also show that additional dynamics can be introduced into

the PI estimator to achieve even faster convergence and give the optimal parameters

in that case as well.

• We design and analyze a nonlinear estimator which has the following properties: 1)

exact, 2) scalable, 3) internally stable, 4) time-invariant, 5) one-hop local broadcast

communication, and 6) locally convergent with convergence rate equivalent to the

fastest known methods.

• We design and analyze a feedforward estimator to solve the dynamic average consen-

sus problem when the input signals are bandlimited and the communication graph

is time-varying. The estimator can achieve arbitrarily small steady-state error, even

when the graph changes at each iteration.

• We design and analyze an IIR bandlimited prediction filter. We also show how

to minimize the error in the prediction while taking into account the precision

arithmetic used for both the FIR and IIR filters. If exact arithmetic is used, both

filters can predict the signal with arbitrary accuracy so long as the cutoff frequency

is strictly less than the Nyquist frequency. Using finite-precision arithmetic, our IIR

filter has smaller steady-state error but a longer transient than the FIR filter.

The design and analysis of dynamic average consensus estimators is very similar to that

of gradient-based algorithms for the unconstrainted optimization of convex functions. This

problem is described in the following section.

25

1.2. Convex Optimization

Consider the optimization problem

minimize
x∈Rn

f(x)(1.1)

where f : Rn → R is continuously differentiable, strongly convex with parameter m, and has

a Lipschitz continuous gradient with Lipschitz constant L. Since f is strongly convex, it has

a unique global minimizer x? ∈ Rn. We consider first-order (gradient-based) algorithms to

solve (1.1).

Perhaps the simplest algorithm which solves (1.1) is gradient descent with constant step

size, which has the form

xk+1 = xk − α∇f(xk), x0 ∈ Rn.

Using α = 2/(L+m), the iterates converge globally and linearly to the optimizer with rate

(L−m)/(L+m).1

Due to the slow convergence of gradient descent, many methods have been proposed to

obtain faster convergence. In general, faster convergence rates can be achieved by introducing

momentum. Examples of methods which incorporate momentum include the heavy-ball

method [47],

xk+1 = (1 + β)xk − βxk−1 − α∇f(xk),

1Throughout the thesis, the phrase “linear convergence with rate ρ” means R-linear convergence, i.e., having
errors bounded by cρk for some constant c > 0 and for all k ≥ 0.

26

and Nesterov’s accelerated gradient descent [48],

xk+1 = yk − α∇f(yk)

yk = (1 + β)xk − βxk−1.

Although heavily studied, it remains an open question how to choose the parameters α

and β in order to achieve global convergence while optimizing the convergence rate. For

the heavy-ball method, one can choose parameters to achieve a local convergence rate of

(
√
L − √m)/(

√
L +
√
m), but the resulting method does not converge globally [49]. For

other parameter choices, the heavy-ball method converges globally to the optimizer with a

linear rate, although a tight bound on the rate has not been found [50].

Other attempts have been made at developing algorithms with optimal convergence rates.

Regularized update descent [51] generalizes the heavy-ball and Nesterov’s method, but the

convergence rate has not been found. The convergence rate of a general multi-step method

was optimized numerically, but no closed-form solution was found [49]. The optimal param-

eters can be found by solving semidefinite programs [52], and closed-form solutions for the

time-varying parameters were found for the case when f is weakly-convex [53].

In his book [48], Nesterov gives several choices of both constant and time-varying pa-

rameters which guarantee that the function values generated by his algorithm converge with

linear rate 1−
√
m/L if f is strongly convex and sublinearly asO(1/k2) if f is weakly convex.2

The derived bound on the corresponding iteration complexity (i.e., the number of iterations

required to minimize the objective function to within a given tolerance) is proportional to

a theoretical lower bound, so his method is often called optimal [48, Thm. 2.2.2]. It has

2Throughout the thesis, “weakly convex” means convex but not necessarily strongly convex.

27

recently been shown, however, that for weakly convex objective functions, other algorithms

can achieve bounds on the iteration complexity that are about a factor of
√

2 smaller than

the bound for Nesterov’s method [52, 53]. Similarly, in this paper we achieve a reduction

of a factor of about two for the class of strongly convex objective functions.

1.2.1. Contributions

We develop a novel algorithm to solve (1.1) when the objective function is m-strongly convex

and its gradient is L-Lipschitz continuous with m and L known. Our algorithm, called

the triple momentum (TM) method, uses three momentum terms to achieve global linear

convergence to the optimizer. The iterates and function values converge linearly to the

optimum at rates ρ and ρ2, respectively, where ρ = 1 −
√
m/L. These are the fastest

known guaranteed linear convergence rates for globally convergent first-order methods. For

high desired accuracies the corresponding iteration complexity is a factor of two better

than Nesterov’s method and within a factor of two of the theoretical lower bound. The

new algorithm can be seen as an extension of methods such as gradient descent, Nesterov’s

accelerated gradient descent, and the heavy-ball method.

Inspired by [49], we use integral quadratic constraints from robust control to both analyze

and design our algorithm. A simple graphical design procedure based on integral quadratic

constraints is used to derive closed-form expressions for the constant algorithm parameters.

We also provide an alternative convergence proof of the triple momentum method which

does not use control theory.

28

1.3. Notation

Linear algebra: Define the n×1 vectors 1n and 0n of all ones and zeros, respectively, and In

as the n× n identity matrix. Denote Πn = 1n1
T
n/n. The spectral radius is denoted

ρ(·). The transpose of A is denoted by AT . The Moore-Penrose pseudoinverse of

a matrix A is denoted A†. A diagonal matrix with entries αi on the diagonal is

denoted diag(α). A � 0 and A � 0 mean that the matrix A is positive definite and

positive semidefinite, respectively. The Kronecker product is denoted ⊗. Denote

the set of real symmetric n×n matrices as Sn. For a matrix, cond(·) is the condition

number and σmin(·) is the minimum singular value.

Norms and sequences: The 2-norm is denoted ‖ · ‖ : Rn → R. Define `n2e as the set of

all one-sided sequences x : N → Rn. The subset `n2 ⊂ `n2e consists of all square-

summable sequences, i.e., x ∈ `n2 if and only if
∑∞

k=0 ‖xk‖2 <∞. The limit superior

of a sequence is lim supk→∞ ck = limk→∞ supj≥k cj. The term linear convergence is

used to denote R-linear convergence, i.e., we say the sequence xk converges linearly

to x? with rate ρ if ‖xk − x?‖ ≤ cρk for all k ≥ 0 with c > 0.

Statistics: The expectation of a random variable x is denoted E[x], and the expectation of

a matrix A is denoted E[A] and is the element-wise expectation of each element.

Complex numbers: Denote the n-dimensional complex plane by Cn. The unit circle in

the complex plane is denoted S1 = {z ∈ C : |z| = 1}, and the n-dimensional torus

is Tn = S1 × · · ·S1 (n times).

29

Linear systems: The z-transform of a sequence x ∈ `2e is denoted x(z) =
∑∞

k=−∞ xk z
−k. A

linear system G : `2e → `2e defines the map y = G(u) which describes the recursion

ξk+1 = Aξk +Buk

yk = Cξk +Duk

where ξ0 is the initial condition. The transfer function (with zero initial conditions)

is G(z) = C(zI − A)−1B +D, and we write

G =



A B

C D


 .

For block systems, we use the notation

G⊗ I =



A B

C D


⊗ I =



A⊗ I B ⊗ I

C ⊗ I D ⊗ I


 .

30

CHAPTER 2

Dynamic Average Consensus

In this chapter we setup the dynamic average consensus problem. First, we describe

the problem along with the various assumptions we will make on both the communication

among the agents and the signals which they are tracking. We then discuss the different

properties that we would like estimators to have. To represent estimators for dynamic average

consensus, we give both block diagram and state-space forms. We then present some basic

analyais tools such as the separated system and the palindromic transformation that will be

used to design and analyze the estimators.

2.1. Problem Definition

Consider a group of n agents where each agent has a discrete-time local scalar input signal.

The input at time k at agent i is denoted uik. The discrete-time signal can be obtained from

a continuous-time signal by sampling and then applying an anti-aliasing filter to obtain a

discrete-time bandlimited signal as shown in Fig. 2.1. Each agent runs an estimator with

state xik ∈ Rp using its own local input signal along with information from its neighbors to

produce a local scalar output signal yik. The dynamic average consensus problem is for the

output of each agent to track the global average of the input signals. We define the error at

agent i at time k to be the difference between the output of the agent and the global average

31

of the input signals at the same time instant,

eik = yik −
1

n

n∑

i=1

uik.(2.1)

We also define an iteration to be the computations performed when each agent can broadcast

no more than a single packet of information to its local neighbors, i.e., single-hop communi-

cation is used. To use compact notation, the variables associated to each agent are stacked

to form vectors,

uk =




u1
k

...

unk



, xk =




x1
k

...

xnk



, yk =




y1
k

...

ynk



, ek =




e1
k

...

enk



.(2.2)

ũ(t) Anti-aliasing filter Sample uk

Figure 2.1. Obtaining a discrete-time signal from a continuous-time signal.
The continous-time signal ũ(t) is passed through an anti-aliasing filter and
sampled to obtain a discrete-time signal uk.

The dynamic average consensus problem can be described as follows.

Problem 1 (Distributed algorithm design). Given:

(1) assumptions on the input signals

(2) assumptions on the communication among agents

(3) desired properties of the algorithm

Design a distributed algorithm such that, under the given assumptions on the input signals

and the communication among agents, the algorithm satisfies the desired properties.

32

Desired properties of estimators for dynamic average consensus include requirements on

the error in (2.1). Some examples include

• the steady-state error is either zero or bounded,

• the error converges at a specified rate (e.g., linear, quadratic, finite time),

• the steady-state error is independent of the initial conditions.

Other algorithm properties that we consider are the following:

• the memory and computations required to implement the algorithm scale with the

number of agents,

• the internal estimator states remain bounded for all time if the input signals are

bounded.

The communication among the agents is represented by a graph, as described in the

following section.

2.2. Graph Theory

The communication topology is modeled as a weighted directed graph given by the triple

G = (V , E , A), where V = {1, . . . , n} is the node set, E ⊆ V × V is the edge set, and

A = [aij] ∈ Rn×n is the weighted adjacency matrix. We associate each node in the graph

with an agent, and the directed links in the graph as communication channels between agents.

We label and number the edges, writing E = {e1, . . . , em} where m = |E|. There is a directed

edge from node i to node j, i.e., (i, j) ∈ E , if agent i receives information from agent j, and

the edge weight is aij. By convention, (i, i) 6∈ E . We set aij = 0 if agent i does not receive

information from agent j, i.e., (i, j) 6∈ E . The in-neighbors of node i, denoted Nin(i), is the

set of nodes such that (i, j) ∈ E for some j ∈ V . The out-neighbors of node i, denotedNout(i),

is the set of nodes such that (j, i) ∈ E for some j ∈ V . The weighted in-degree and weighted

33

out-degree of node i are din(i) =
∑

j∈Nin(i) aij and dout(i) =
∑

j∈Nout(i)
aji, respectively. A

directed path is a sequence of nodes i1, i2, . . . , ip such that (i`, i`+1) ∈ E for ` = 1, . . . , p− 1.

The graph is strongly connected when there is a directed path between any pair of nodes.

The graph is called undirected if aij = aji for all i, j ∈ V .

The Laplacian matrix is L = diag(A1n)−A which satisfies L1n = 0n. The graph is said to

be balanced if the weighted in-degree of each node is equal to its weighted out-degree, which

is equivalent to the condition 1TnL = 0Tn . The Laplacian matrix can be decomposed by its

eigenvalues and eigenvectors as L = V ΛV −1 where V = [v1, . . . , vn] and Λ = diag(λ1, . . . , λn).

For i = 1, . . . , n, vi is an eigenvector of L with eigenvalue λi. Without loss of generality, we

assume that v1 = 1n/
√
n and λ1 = 0. It can be shown that the eigenvalues of the Laplacian

have nonnegative real parts, and we order them by Re{λi} ≤ Re{λj} for i < j. Zero is a

simple eigenvalue of L for strongly connected graphs.

For undirected graphs, the Laplacian matrix is symmetric (L = LT) so the eigenvectors

are orthogonal and the eigenvalues are real, i.e., V TV = V V T = In and Im{λi} = 0 for

i ∈ {1, . . . , n}. Furthermore, the Laplacian matrix of an undirected graph can be decomposed

as L = BWBT where B ∈ {−1, 0, 1}n×m is the oriented incidence matrix for the graph and

W ∈ Rm×m is a diagonal weight matrix. Specifically, B is defined as

Bi` =





1 if i ∈ e` and i = min{j : j ∈ e`}

−1 if i ∈ e` and i = max{j : j ∈ e`}

0 if i 6∈ e`

(2.3)

and W = diag{w1, . . . , wm} where w` is the weight of edge e`, i.e., w` = aij where e` = (i, j).

34

The Laplacian matrix is a linear diffusion operator associated with a graph. Likewise, we

associate to each undirected graph a (possibly nonlinear) Laplacian operator L : Ωn → Rn

defined as

L(x) = BWf(BTx)(2.4)

where f : Ω → R is odd with f(0) = 0. We interpret f as acting element-wise on vector

arguments to produce vector values, and we interpret BT as a Z-linear map from Ωn to Ωm.

Note that the case f = I and Ω = R gives the Laplacian matrix, i.e., L = L.

To analyze the estimators, it is useful to define the set of graph Laplacians which are

balanced and satisfy a norm condition,

Ln(α) = {L ∈ Rn×n : L1n = 0n, 1T

nL = 0T

n, ‖In − L− Πn‖2 ≤ α}(2.5)

where α < 1 and Πn = 1n1
T
n/n. The following lemma characterizes this set of Laplacian

matrices in the case when the graph is undirected.

Lemma 1. Consider a connected and undirected graph with Laplacian matrix L ∈ Rn×n.

Assume the nonzero Laplacian eigenvalues are in the interval [λmin, λmax]. Then kpL ∈ Ln(α)

where

α =
λmax − λmin

λmax + λmin

, kp =
2

λmax + λmin

.(2.6)

Proof. All undirected graphs are balanced, so 1TnL = 0Tn . Since the graph is connected

with nonzero eigenvalues in [−α, α], the matrix I − kpL has a single eigenvalue at one with

eigenvector 1n, and the remaining eigenvalues are in [−α, α]. Then I−kpL−Π has the same

eigenvalues, except the eigenvalue at one is shifted to zero. The Laplacian is symmetric

35

since the graph is undirected, and the 2-norm is equal to the spectral radius for symmetric

matrices, so ‖I − kpL− Π‖2 ≤ α. Then we have kpL ∈ Ln(α). �

For connected and undirected graphs, we let λmin and λmax with 0 < λmin ≤ λmax denote

lower and upper bounds on the nonzero eigenvalues of L. Then L has a simple eigenvalue at

zero and all other eigenvalues are in the interval [λmin, λmax].

To connect the dynamic average consensus problem with convex optimization, we can

show that the Laplacian operator is the gradient of a scalar function.

Lemma 2. If the graph is undirected and f : Tn → Rn is odd, then the Laplacian

operator is the gradient of a scalar function. Specifically, we have L(x) = ∇1T
mWφ(BTx)

where ∇φ = f and φ(0) = 0.

Proof. Since the graph is undirected, we can write the Laplacian operator as L(·) =

BWf(BT ·). Similar to [54, Section IV.A], let ∂ denote the unit vector field pointing in the

counterclockwise direction on T. Since f is odd, the integral of the 1-form f ·〈∂, ·〉 around any

smooth closed curve in T is zero. Thus, this 1-form is the differential of a smooth function

φ : T→ R, which is unique up to an additive constant (which we choose so that φ(0) = 0).

Therefore, d/dt(φ ◦ x) ≡ f(x)ẋ for any curve x : R → T. We then define V : Tm → [0,∞)

as the sum

V (θ) = 1T

mWφ(θ) =
m∑

k=1

wk φ(θk)(2.7)

36

where θ = [θ1, . . . , θm]T ∈ Tm and we interpret φ as acting element-wise on each element in

the vector. Then the composition V ◦BT is

V (BTx) =
∑

(i,j)∈E
aij φ(xi − xj)(2.8)

where x = [x1, . . . , xn]T ∈ Tn. Taking the derivative with respect to xi gives

∂

∂xi
V (BTx) =

∑

j∈Nin(i)

aij f(xi − xj) = [L(x)]i.(2.9)

Therefore, L(x) = ∇1T
mWφ(BTx) so the Laplacian is the gradient of a scalar function. �

2.2.1. Choosing the Edge Weights

The performance of estimators for dynamic average consensus depends on the edge weights

used to form the Laplacian matrix. Specifically, the convergence rate is a monotonically non-

increasing function of the ratio λmin/λmax where λmin and λmax are bounds on the nonzero

eigenvalues of the weighted Laplacian matrix (see Lemma 4). Therefore, the design of optimal

estimators can be decomposed into two problems:

• choose the edge weights in a distributed manner to maximize λmin/λmax, and

• design the estimator to have the desired properties for any connected undirected

weighted graph having Laplacian eigenvalues in the interval [λmin, λmax].

If the graph topology is unknown, it is often useful to choose the weights to bound the

eigenvalues of the Laplacian. For example, inverse out-degree weighting assigns

aij =
1

dout(i) + dout(j)
.(2.10)

37

This decentralized weighting scheme restricts the eigenvalues of L to the region D0 ∩ D1

where Dx ⊂ C denotes the closed unit disc centered at x [15]. In particular, we have

ρ(L) ≤ 1. This upper bound is tight in the sense that ρ(L) = 1 for some graphs using

these weights (e.g., the graph having just two nodes connected by an edge). It also has

the added advantage of producing symmetric (and therefore balanced) expected Laplacians

under suitably symmetric packet-loss probability distributions (see [15] for details).

If the graph topology is known, more sophisticated methods can be used to design the

weights. For undirected graphs, a semidefinite program can be solved to calculate the optimal

weights which minimize α in Lemma 1 [55]. The case of directed graphs is studied in [56], but

the optimization problem is non-convex since the spectral radius of I −L−Π is minimized.

Instead, we minimize the 2-norm, ‖I − L − Π‖2, which results in the convex optimization

problem in Problem 2 for both directed and undirected graphs. Furthermore, we show in

Chapter 5 this is the appropriate quantity to minimize when the graph is time-varying and

balanced at each iteration.

Problem 2. Given the node set V and the edge set E, the Laplacian matrix in Ln(α)

which minimizes α and conforms to the graph is the solution to the following convex opti-

mization problem:

min
L∈Rn×n

‖In − L− Πn‖2(2.11)

s.t. 0n = L1n

0Tn = 1TnL

0 = Lij, (i, j) 6∈ E and i 6= j.

38

2.3. Assumptions

The dynamic average consensus problem requires two types of assumptions; something

must be known about both the signals and the communication graph. Information requires

time to diffuse through the graph. If no assumptions are made on the signals, then the signals

can change arbitrarily quickly causing the global average to change to any amount before

the information has time to reach all the nodes. We now describe the types of assumptions

we will make.

2.3.1. Input signals

Consider the input signal to agent i given by uik. Denote its z-transform as

ui(z) =
∞∑

k=−∞
uik z

−k.(2.12)

The frequency spectrum of ui is given by ui(z) evaluated on the unit circle in the complex

plane, i.e., ui(ejθ) for θ ∈ [0, 2π). Define the support of ui(ejθ) as

Γ := {θ ∈ [0, 2π) : |ui(ejθ)| > 0}.(2.13)

We consider two classes of input signals. First, we design estimators for input signals whose

frequency response has known discrete support, i.e., Γ is composed of a finite set of discrete

frequencies. This class includes signals which are constant, polynomial, sinusoidal, and any

linear combination of such signals. In general, this class includes signals with a known model,

i.e., ui(z) = ni(z)/di(z) where ni(z) and di(z) are polynomials in z and di(z) is known. If

di(z) is not known, it was shown in [22] that a frequency estimator can be used to estimate

the frequency (i.e., the model di(z)) and the estimate used to design the estimator. For this

39

class of signals, zero steady-state error can be achieved by putting a model of the input in

the feedback loop of the estimator [21]. We design estimators for this class of signals in

Chapter 4.

0 π/3 2π/3 π
0

Frequency (θ)

∣∣ui(ejθ)
∣∣

(a) Discrete frequency spectrum. The input signal is the sum of two sinusoids with different
frequencies and amplitudes. In this case, Γ = {π/3, 2π/3}.

0 π/3 2π/3 π
0

Frequency (θ)

∣∣ui(ejθ)
∣∣

(b) Continuous frequency spectrum. The input signal is a bandlimited signal with cutoff frequency
2π/3. In this case, Γ = [0, 2π/3].

Figure 2.2. Frequency spectrum of example input signals. Plotted is the mag-
nitude of the frequency response |ui(ejθ)| as a function of the frequency θ.

The second class of signals that we consider includes signals with continuous support,

i.e., Γ contains intervals of frequencies. This includes signals which are bandlimited, and we

assume that the cutoff frequency is known. If the cutoff frequency is unknown, it could first

be estimated and then the estimate used to design the estimator. For this class of signals, we

first show that feedback designs as in the previous case are unsuitable to solve the dynamic

average consensus problem. Instead, we propose a feedforward estimator design which can

40

solve the problem with arbitrarily small (although nonzero) steady-state error. Estimators

for this class of signals are designed in Chapter 5.

Examples of the two types of input signals are shown in Fig. 2.2. If the signals have

both discrete and continuous frequencies in their spectrum, then estimators from the previ-

ous cases can be designed for each section of frequencies (either discrete or continous) and

cascaded in series. This allows for a flexible design method based on whatever information

is known about the signals.

2.3.2. Communication graph

Various assumptions can be made about the communication graph. One choice is whether the

graph is assumed to be constant or time-varying. Time-varying graphs model many useful

scenarios such as unreliable communication, asynchronous updates, as well as mobile agents

capable of range-limited communication. Another consideration is whether communication

is undirected or directed. Even in undirected networks, unreliable communication can cause

communication links to become directed when packets are dropped. In the case of directed

communication, a common assumption is that the graph is balanced [15]. This is equivalent

to each agent having access to its out-degree, which is a restrictive assumption since this

information is not available in general on directed graphs. However, it has been shown

that the balanced assumption is a fundamental limitation of computing averages over a

network. In fact, the dynamic average consensus problem is non-computable when (1) the

communication is directed, (2) each node does not have (and make use of) global node

identifiers, (3) the algorithm is deterministic, and (4) the communication is synchronous

[57]. Therefore, we focus on the case of balanced graphs in this paper.

To summarize, common assumptions are that the communication graph

41

• is either constant or time-varying,

• is either balanced, undirected, or directed,

• is randomly generated from a given distribution,

• drops packets independently with a given probability distribution,

• has a known upper bound on the number of nodes, and/or

• has Laplacian matrix with nonzero eigenvalues contained in a known region.

2.4. Estimator Properties

We now define several properties of estimators for dynamic average consensus.

Definition 1 (Scalable). An estimator is said to be scalable if the total number of vari-

ables and computations in the system scales linearly with the number of agents.

Definition 2 (Exact). Given a set of signals U , an estimator is said to be exact when

for any input signals u ∈ U , the error of the estimator converges to zero when the internal

states are initialized to zero.

Definition 3 (Internally stable). An estimator is said to be internally stable when for

any initial internal states and any bounded input signals, all internal states remain bounded

in forward time.

Definition 4 (Time-invariant). An estimator is said to be time-invariant when the esti-

mator dynamics do not change with time.

Definition 5 (p internal states variables). An estimator is said to use p internal state

variables when each agent has p local scalar variables which it updates internally at each

iteration.

42

Definition 6 (q transmission variables). An estimator is said to use q transmission

variables when each agent broadcasts q scalar variables in each packet.

Recall that we define an iteration to be the computations that can be performed when

each agent broadcasts no more than a single packet to its local neighbors. Therefore, we use

the following definition for r-hop communication.

Definition 7 (r-hop communication). An estimator is said to use r-hop communication

when each agent requires the past r packets of information from its neighbors in order to

update the internal state variables and/or the output of the estimator.

For an r-hop estimator, each agent must store the received packets of information from

its neighbors for the past r iterations.

To implement an estimator with p internal state variables which uses r-hop communi-

cation with q transmission variables in each packet, agent i must have enough memory to

store p+ q r |Nin(i)| variables.

We now discuss robustness properties of estimators for dynamic average tracking. There

are many forms of robustness to consider. For example, estimators may be robust to

(1) initial conditions,

(2) changes in the communication graph,

(3) noise in the input signals,

(4) delays in the communication, etc.

Robustness to initial conditions and robustness to changes in the communication graph

are sometimes used interchangeably. When the graph changes, it can be viewed as restarting

the estimator from a different set of initial conditions. If the estimator is robust to initial

43

conditions and the graph is constant for a sufficient length of time after the change, then

the estimator will converge to tracking the average of the inputs. For example, consider the

simulation of the estimator which is not robust to changes in the graph in Fig. 2.3. The error

converges to zero while the graph is constant, but then the graph is changed at iteration

300. The error immediately increases substantially, but then converges back to zero since

the graph remains constant and the estimator is robust to initial conditions. After iteration

600, however, the graph changes at each iteration; the transient does not have time to decay,

so the error remains large. For this reason, we refer to such estimators as robust to initial

conditions, but not robust to changes in the graph.

We say that an estimator is robust to changes in the graph when the error remains the

same whether the graph is changing at each iteration or is constant. An example is shown

in Fig. 2.3. After the initial transient, the error remains small after both isolated and

continuous changes in the graph.

100 200 300 400 500 600 700 800 900 1,000
10−17

10−11

10−5

101

Not robust

Robust

Iteration

E
rr
or

Figure 2.3. Simulation of estimators with different types of robustness prop-
erties. The estimators are (1) robust to initial conditions but not robust to
changes in the graph (blue), and (2) robust to both initial conditions and
changes in the graph (green). The graph changes at iteration 300 and then
every iteration past 600.

44

The types of robustness described are now defined. First, we consider two ways in which

an estimator can be robust to initial conditions.

Definition 8 (Locally convergent). An estimator is said to be locally convergent when

there exists an open set of states such that the steady-state output is the same when the

estimator states are initialized to any point in set.

Definition 9 (Globally convergent). An estimator is said to be globally convergent when

the steady-state of the output does not depend on the initial internal states.

The steady-state value value does not depend on the initial conditions for estimators

which are globally convergent. Therefore, we also use the term robust to initial conditions

to describe estimators which are globally convergent (which is equivalent to being locally

convergent for linear estimators).

Definition 10 (Ergodic). Suppose the input u is constant, and suppose the weighted

communication graph changes at each time step according to some random process. Here

we assume only that the expected graph is connected and balanced; the graph at each time

step need not be connected nor balanced. Let Lk denote the resulting Laplacian at time

k, and assume Lk is i.i.d. and independent of the input and any initial states. Then we

call an estimator ergodic when for any sufficiently small nonzero variance of the Laplacian

process Lk, the output process yk is asymptotically ergodic in the mean, i.e., its time average

converges to its statistical average as k →∞.

Definition 11 (Robust to changes in the graph). Given a set of graphs G, consider

implementing an estimator in the following two scenarios:

(1) The graph G ∈ G is fixed.

45

(2) The graph at time k is Gk ∈ G for k = 1, 2,

An estimator is said to be robust to changes in the graph when the steady-state error using

any sequence of graphs in (2) is no greater than the steady-state error using the worst-case

constant graph in (1).

For one-hop estimators in which agents communicate only with their one-hop neighbors

at each time step, the statistical average of the output yk is the output of the estimator

when the switching Laplacian Lk is replaced by its expected value. For multi-hop estimators

in which higher powers of the Laplacian appear, the statistical average of the output yk is

the output of the estimator when each power of Lk is replaced by its expected value. If an

ergodic estimator is exact under these expected Laplacian powers, then under the switching

Laplacian a local low-pass filter can be applied to each local output to obtain the exact

global average. Conditions for an estimator to be ergodic are given in 3.

These properties of the estimator may depend on the graph; for example, typically an

estimator can be exact only for connected graphs, and typically an estimator can be internally

stable only for graphs whose Laplacian eigenvalues satisfy a known upper bound.

2.5. Representation of Estimators

We now consider how to represent estimators for dynamic average consensus. A single

type of representation (e.g., the state-space form) could always be used to describe the

estimators. However, it is often useful to consider different representations since these can

lead to various insights into the algorithm. The two main types of representations that we

consider are the state-space representation (in the time-domain) which is useful for analysis,

and the block diagram (in the frequency-domain) which is useful for design.

46

Throughout the paper, we consider diffusion algorithms which are characterized by each

agent taking weighted averages among its neighbors. We use the Laplacian operator to

implement diffusion algorithms on graphs. Consider applying the Laplacian operator to a

vector x ∈ Rn. This is implemented on agent i by taking a weighted average of the difference

between neighbors passed through the function f ,

[L(x)]i =
∑

j∈Nin(i)

aijf(xi − xj).(2.14)

This operation only requires information from the in-neighbors of agent i and is therefore

able to be implemented in a distributed manner.

The first estimator representation we consider is the polynomial linear protocol [15] which

uses the Laplacian matrix for diffusion.

Definition 12. An r-hop polynomial linear protocol (PLP) of dimension p is the collec-

tion Σ(L) = [A(L), B(L), C(L), D(L)] where

A(L) =
r∑

i=0

Ai ⊗ Li B(L) =
r∑

i=0

Bi ⊗ Li

C(L) =
r∑

i=0

Ci ⊗ Li D(L) =
r∑

i=0

Di ⊗ Li
(2.15)

are polynomials in the Laplacian matrix L which describe the linear system

xk+1 = A(L)xk +B(L)uk, x0 ∈ Rnp

yk = C(L)xk +D(L)uk.

(2.16)

The sizes of matrices and vectors are L ∈ Rn×n, Ai ∈ Rp×p, Bi ∈ Rp, CT
i ∈ Rp, Di ∈ R,

uk ∈ Rn, xk ∈ Rnp, and yk ∈ Rn.

47

In all of the block diagrams, a line indicates a signal composed of q variables per agent

for some q. That is, the signal can be decomposed as x = [xT
1 , . . . , x

T
q]T ∈ Rnq where the ith

component of xj is associated with agent i. In order for the estimator to be distributed, the

block diagram may contain two types of blocks:

Diagonal blocks: The element on the ith diagonal is implemented on agent i and no com-

munication is required.

Diffusion blocks: These blocks must have sparsity structure corresponding to the edges in

the graph and require communication among neighboring agents. We use the graph

Laplacian for diffusion.

u G⊗ In

Iq ⊗ L
ζ

e

η

Πn

y
−

Figure 2.4. Block diagram of a general one-hop estimator.

We now give a block diagram representation of a one-hop polynomial linear protocol

estimator in Fig. 2.4. This representation is useful in that it allows us to determine exactly

how many variables must be transmitted in each packet. Since q variables are multiplied by

the Laplacian matrix, each agent must broadcast a single packet containing q variables to

48

neighboring agents at each iteration. The state-space representation is given by

xk+1 = (A⊗ In)xk + (B1 ⊗ In)uk + (B2 ⊗ In)ζk, x0 ∈ Rnp

yk = (C1 ⊗ In)xk + (D11 ⊗ In)uk + (D12 ⊗ In)ζk

ηk = (C2 ⊗ In)xk + (D21 ⊗ In)uk

ζk = (Iq ⊗ Lk)ηk

ek = yk − Πnuk

(2.17)

where A ∈ Rp×p, B1 ∈ Rp, B2 ∈ Rp×q, C1 ∈ R1×p, C2 ∈ Rq×p, D11 ∈ R, D12 ∈ R1×q, and

D21 ∈ Rq. We set D22 = 0q×q so that the system is well-posed. This is a polynomial linear

protocol where the state-space matrices in (2.15) are given by



A(L) B(L)

C(L) D(L)


 =



A B1

C1 D11


⊗ In +




B2C2 B2D21

D12C2 D12D21


⊗ L.(2.18)

Another useful block diagram with feedback structure is shown in Fig. 2.5. In the block

diagram, each signal is n-dimensional with the ith component associated with agent i. In

order for the estimator to use one-hop communication, there must be a strictly proper transfer

function on the path between any two connected Laplacian blocks. In this case each agent

can broadcast a single packet at each iteration, and the number of variables in the packet

corresponds to the number of Laplacian blocks in the diagram. For example, the estimator

in Fig. 2.5 requires three variables to be transmitted in each packet, although the ellipses

indicate how to generalize the diagram for a general number of transmission variables. This

representation is useful because many properties of the estimator can be identified simply

from the structure of the block diagram, as we will show shortly.

49

u

h1(z)In L

h2(z)In

g1In

L

h3(z)In

g2In

L

Πn

e
−

y −

...
Figure 2.5. Block diagram of a general feedback estimator.

Bai et al. [21] give the block diagram for the generalized PI estimator in which each

agent has a general number of internal state variables and two variables are communicated

with neighboring agents at each iteration. The estimator in Fig. 2.5 generalizes this to allow

for a general number of variables to be transmitted to neighboring agents at each iteration.

Each of the estimator representations have been presented using the Laplacian matrix for

diffusion. These can all be trivially generalized to use the more general Laplacian operator.

2.6. Separated System

Instead of analyzing the entire system at once, we can decompose estimators into smaller

systems and analyze the resulting systems separately. First, we show how to separate a

polynomial linear protocol according to the eigenvalues of the Laplacian matrix when the

graph is constant.

Theorem 1 (Separated system (PLP)). Let G be a constant graph with Laplacian matrix

L. Let L = V ΛV −1 where V = [v1, . . . , vn], V −1 = [v̄1, . . . , v̄n]T , and Λ = diag(λ1, . . . , λn).

Consider a polynomial linear protocol Σ(L) with initial condition x0. Define the ith separated

50

system as

x̄ik+1 = A(λi)x̄
i
k +B(λi)(v̄

T

i uk), x̄i0 = (v̄T

i ⊗ Ip)x0 ∈ Rp

ȳik = C(λi)x̄
i
k +D(λi)(v̄

T

i uk)

(2.19)

for i = 1, . . . , n. Then the output of Σ(L) is

yk =
n∑

i=1

vi ȳ
i
k.(2.20)

Proof. Apply the change of variable x̄k = (V −1 ⊗ Ip)xk to the estimator in (2.16). This

gives the equivalent diagonal system,



A(L) B(L)

C(L) D(L)


 ∼




(V −1 ⊗ Ip)A(L)(V ⊗ Ip) (V −1 ⊗ Ip)B(L)

C(L)(V ⊗ Ip) D(L)




=




A(Λ) B(Λ)V −1

V C(Λ) V D(Λ)V −1




=




A(λ1) B(λ1)v̄T
1

. . .
...

A(λn) B(λn)v̄T
n

v1C(λ1) · · · vnC(λn)
∑n

i=1(viv̄
T
i)D(λi)




whose output is given by (2.20). �

Theorem 1 separates the system according to the eigenvalues of the Laplacian matrix

when the graph is constant. For any λ ∈ eig(L) with left and right eigenvectors v̄ and v,

respectively, the separated system is constructed as follows:

• Replace the input with v̄Tu.

51

• Replace the Laplacian matrix with λ.

• Multiply the output by v.

Then the output of the estimator is the sum over all eigenvalues of L of each of the resulting

outputs. We refer to the separated system corresponding to the eigenvalue λ1 = 0 as the

consensus system and to λi, i = 2, . . . , n as the disagreement systems.

v̄Tu G

λIq

v̄Ty

(Iq ⊗ v̄T)η(Iq ⊗ v̄T)ζ

Figure 2.6. Separated system of the general one-hop estimator in Fig. 2.4.

Since the estimators in Figs. 2.4 and 2.5 are polynomial linear protocols, they can also

be separated using this procedure. In that case, the block diagram of the separated system

for each estimator is shown in Figs. 2.6 and 2.7, respectively.

v̄Tu

h1(z) λ

h2(z)

g1

λ

h3(z)

g2

λ

v̄Ty
−

...
Figure 2.7. Separated system of the feedback estimator in Fig. 2.5.

In order to separate the system using Theorem 1, the graph must be constant and the

Laplacian matrix must be used for diffusion. We can still separate the system when the

graph is time-varying and/or the Laplacian operator is used, but then the system can only

be separated into the consensus system and disagreement system.

52

u G⊗ In

Lζ

e

η

Πn

y
−

Figure 2.8. Block diagram of a one-hop estimator which transmits one variable
per iteration and uses the Laplacian operator.

Consider the estimator in Fig. 2.8. This is simply the estimator in Fig. 2.4 with q = 1

and the Laplacian matrix L replaced with the Laplacian operator L. To separate the system,

we first define the reduced Laplacian.

Definition 13 (Reduced Laplacian). Let v1 = 1n/
√
n and Q ∈ Rn×(n−1) be such that the

matrix [v1 Q] is orthogonal. Then the reduced Laplacian operator is defined as L̃ : Ωn−1 →

Rn−1 where

L̃(x) = QTBWf(BTQx).(2.21)

We now separate the system into the consensus system and the disagreement system.

Theorem 2 (Separated system). Let G be a graph which is connected and undirected

at each iteration with Laplacian operator Lk at time k. Let Q ∈ Rn×(n−1) be such that

V := [v1 Q] is orthogonal where v1 = 1n/
√
n. Consider the estimator in Fig. 2.8 with initial

53

condition x0. Define the consensus system as

xck+1 = (A⊗ In)xck + (B1 ⊗ In)uck, xc0 = (Ip ⊗ vT

1)x0

yck = (C1 ⊗ In)xck + (D11 ⊗ In)uck

eck = yck − uck.

(2.22)

where uck = vT
1 uk, and the disagreement system as

xdk+1 = (A⊗ In)xdk + (B1 ⊗ In)udk + (B2 ⊗ In)ζdk , xd0 = (Ip ⊗QT)x0

ydk = (C1 ⊗ In)xdk + (D11 ⊗ In)udk + (D12 ⊗ In)ζdk

ηdk = (C2 ⊗ In)xdk + (D21 ⊗ In)udk + (D22 ⊗ In)ζdk

ζdk = L̃k(ηdk)

edk = ydk

(2.23)

where udk = QTuk. Then the error of the estimator in Fig. 2.8 is

ek = v1e
c
k +Qedk.(2.24)

Proof. Since the graph is undirected at each iteration, we have Lkv1 = LT
kv1 = 0n for all

k ≥ 0 where v1 = 1n/
√
n. Let Q ∈ Rn×(n−1) be such that V := [v1 Q] is orthogonal. Then

In = V V T = v1v
T
1 +QQT . Define the consensus and disagreement variables as

xck = (Ip ⊗ vT

1)xk yck = vT

1 yk ηck = vT

1 ηk ζck = vT

1 ζk eck = vT

1 ek uck = vT

1 uk

xdk = (Ip ⊗QT)xk ydk = QTyk ηdk = QTηk ζdk = QTζk edk = QTek udk = QTuk,

54

respectively. Since L(·) = BWf(BT ·) with BTv1 = 0m, we have

ζck = vT

1Lk(ηk) = 0

for all k ≥ 0, and

ζdk = QTLk((v1v
T

1 +QQT)ηk) = QTLk(QQTηk) = L̃k(ηdk).

Writing the system in Fig. 2.8 in terms of the consensus and disagreement variables produces

the consensus system in (2.22) and the disgreement system in (2.23) where the output is

ek = (v1v
T
1 +QQT)ek = v1e

c
k +Qedk. �

For the estimator in Fig. 2.8, the block diagrams of the consensus and disagreement

systems are shown in Fig. 2.9.

uc G ec
yc

−

(a) Consensus system.

ud G

L̃ζd

ed

ηd

(b) Disagreement system.

Figure 2.9. Separated system of the one-hop estimator in Fig. 2.8 which uses
the Laplacian operator.

The separated system gives insight into the design of dynamic average tracking estima-

tors. When the graph is both connected and balanced, the Laplacian matrix has a single

eigenvalue at zero and the corresponding left and right eigenvectors are both 1n/
√
n. In that

case, if the consensus system has unity gain and all the disagreement systems have zero gain,

then yk = Πnuk so the estimator solves the dynamic average consensus problem. Therefore,

55

we want to design the system to have unity gain in the consensus direction and zero gain in

the disagreement directions.

2.7. Analysis of Estimators

We can now characterize properties of the estimators in Figs. 2.4 and 2.5 by analyzing

their separated systems. We focus on the case when the input signals are constant, the linear

Laplacian matrix is used, and the graph is constant, connected, and undirected. The case for

time-varying inputs with a known internal model is similar where the integrator is replaced

by the model of the input; see [21] for details.

Theorem 3 (Estimator properties, Fig. 2.4). Let G be a constant, connected, and bal-

anced graph with Laplacian matrix L, and let the input signals be given by u(z) = n(z)/d(z)

where n(z) and d(z) are polynomials in z. Then the estimator in Fig. 2.4 has the following

properties:

Robust to initial conditions ⇐⇒ lim
k→∞

C(λ)A(λ)k = 01×p for all λ ∈ eig(L)

Internally stable ⇐⇒ (A(λ), B(λ)) is bounded-input, bounded state

stable for all λ ∈ eig(L)

Exact ⇐⇒ H(z, λ) =





1, λ = 0

0, λ ∈ eig(L) \ {0}

for all z s.t. d(z) = 0

Ergodic ⇐= D12C2 = 01×p and D12D21 = 0 and robust to ICs

56

where H(z, λ) := C(λ)[zI −A(λ)]†B(λ) +D(λ) with A(λ), B(λ), C(λ), and D(λ) defined in

(2.18). Furthermore, the estimator has convergence rate

ρ = max
λ∈eig(L)

ρ
(
Ã(λ)

)
(2.25)

where (Ã(λ), B̃(λ), C̃(λ), D̃(λ)) is an observable decomposition of the system.

Proof. Since the graph is constant, we can separate the system according to the eigen-

values of L using Theorem 1. Then transfer function of each subsystem from input vT
i u to

output yi is given by (2.18) with L replaced by λi. The output of the subsystem at time k is

yik = C(λ)A(λ)k(Ip ⊗ v̄T

i)x0 + C(λ)
k−1∑

j=0

A(λ)k−j−1B(λ)uj +D(λ)uk.(2.26)

The steady-state output does not depend on the initial conditions if and only if 01×p =

limk→∞C(λ)A(λ)k for each subsystem. Also, the complete system is bounded-input, bounded-

state stable if and only if each subsystem is bounded-input, bounded-state stable. The

condition for the estimator to be exact is from [15, Thm. 5]. In Chapter 3 we show that

a sufficient condition for ergodicity is that the system is robust to initial conditions and

the output is independent of the Laplacian matrix, which is the case if D12C2 = 01×p and

D12D21 = 0. The convergence rate is then the maximum convergence rate of each of the

subsystems. Since the subsystem may contain unobservable states, we use an observable

decomposition to only take into account the states which affect the output. �

Theorem 3 implies that an estimator must contain an internal model of the input signals

in order to be exact, and the internal model must be uncontrollable and unobservable for

the estimator to be internally stable and robust to initial conditions, respectively (see [15]

for details). These conditions could be used to design estimators, although they do not lead

57

to a simple design procedure. Instead, we consider the feedback structure in Fig. 2.5. The

properties of this estimator can easily be determined from the structure of the block diagram.

Before we restate Theorem 3 for the estimator in Fig. 2.5, we need the following lemma.

Lemma 3. The transfer function of the separated system in Fig. 2.7 is

v̄Ty(z)

v̄Tu(z)
=

1

F (z, λ)
(2.27)

where

F (z, λi) = 1 +

q∑

`=1

f`(z)λ`i and f`(z) = g`
∏̀

j=1

hj(z), ` = 1, . . . , q(2.28)

with gq = 1 where q is the number of Laplacian blocks.

We make the following assumption which excludes algebraic loops in Fig. 2.5.

Assumption 1. The transfer functions f`(z) for ` = 1, . . . , q are either strictly proper

or identically zero.

We can now restate Theorem 3 for the estimator in Fig. 2.5. This characterizes the

properties of the estimator based on the structure of the block diagram.

Theorem 4 (Estimator properties, Fig. 2.5). Let G be a constant, connected, and bal-

anced graph with Laplacian matrix L, and let the input signals be given by u(z) = n(z)/d(z)

where n(z) and d(z) are polynomials in z. Assume that transfer function (2.27) has all poles

strictly inside the unit circle for all λ ∈ eig(L)\{0}. Then the estimator in Fig. 2.5 has the

58

following properties:

Robust to initial conditions ⇐⇒ h1(z) is stable

Internally stable ⇐⇒ for all ` = 1, ...q, h`(z) has no poles strictly outside the

unit circle and no repeated poles on the unit circle

Exact ⇐⇒ for each z? such that 0 = d(z?),

h`(z) has a pole at z? for some ` = 1, . . . , q

Ergodic ⇐= h1(z) is strictly proper, and robust to ICs.

Furthermore, the estimator has convergence rate

ρ = max {ρcons, ρdis}(2.29)

where

ρcons = max
z∈C
|z| s.t. 0 = d1(z)(2.30)

ρdis = max
z∈C

λ∈eig(L)

|z| s.t. 0 = F (z, λ)(2.31)

with h1(z) = n1(z)/d1(z).

Proof. Since the graph is balanced and connected, the Laplacian has a single eigenvalue

at zero and all other eigenvalues are positive, so we can order them as 0 = λ1 < λ2 ≤

λ3 ≤ . . . ≤ λn with corresponding eigenvectors vi where v1 = 1n/
√
n. The output of the

full system is given by equation (2.20), so we can analyze the separated system for each λi,

i = 1, . . . , n.

59

1) Applying the final value theorem to the output of the separated system with input

u(z) = n(z)/d(z),

lim
k→∞

vTi yk = lim
z→1

(z − 1)vTi y(z) = lim
z→1

vT

i

n(z)

d(z)

z − 1

1 +

q∑

`=1

f`(z)λ`i

if the limit exists. For i = 2, . . . , n, the limit on the right exists if and only if f`(z) contains a

pole at each root of d(z) for some ` so that the system multiplied by the input has all poles

strictly inside the unit circle. Then the output only depends on the λ1 = 0 system. From the

block diagram, it is clear that vT
1 yk = vT

1 uk for all k (when the states of h1(z) are initialized

to zero). Therefore, the output of the full system from equation (2.20) is limk→∞ yk = v1v
T
1 u

which is the exact average of the inputs.

2) For i = 2, . . . , n, the separated system is internally stable since the transfer function

(2.27) has all poles strictly inside the unit circle. For i = 1, the input to h`(z) for ` = 1, . . . , q

is zero since it is first multiplied by λ1 = 0. The output of h`(z) is guaranteed to be bounded

if and only if h`(z) has no poles strictly outside the unit circle and no repeated poles on the

unit circle for all ` = 1, . . . , q.

3) For i = 2, . . . , n, the separated system is stable so the output due to the initial

conditions is zero. For i = 1, the output due to the initial conditions of h1(z) is zero if and

only if h1(z) is stable.

4) From Thm. 9 in Chapter 3, an estimator is ergodic if it achieves consensus for the

expected Laplacian, the consensus system does not have an observable eigenvalue at z =

1, and each local output yik at time k depends only on the local input uik and the local

internal state at time k, not on any information collected from neighbors. The output of

60

each estimator only depends on the internal state at time k if and only if h1(z) is strictly

proper. �

Theorem 4 shows that the properties of the estimator depend on how the model of the

input appears in the block diagram. Specifically, we have the following properties as shown

in Figure 2.10:

• To be exact, the estimator must contain a model of the input in the feedback path.

• To be internally stable, the output must pass through the Laplacian before reaching

any marginally stable transfer functions.

• To be robust to initial conditions, the output of any marginally stable transfer

function must pass through the Laplacian before reaching the output.

• To be ergodic, it is sufficient that the estimator is robust to initial conditions and any

state passed through the Laplacian is filtered by a strictly proper transfer function

before reaching the output.

L
1

d(z)
L

1

z − p

Internally
stable

ExactRobust
to ICs

Ergodic
|p| < 1

Figure 2.10. Properties of a feedback estimator based on the structure of the
block diagram.

An important parameter in the design of estimators is the ratio λr := λmin/λmax where

λmin and λmax are lower and upper bounds, respectively, on the nonzero eigenvalues of the

Laplacian matrix (in the case of undirected graphs). This can be interpreted as the inverse

condition number of the reduced Laplacian matrix, i.e., the Laplacian matrix in directions

61

orthogonal to 1n. We now show that the convergence rate in (2.29) is a monotonically

non-increasing function of λr.

Lemma 4. The convergence rate ρ is a monotonically non-increasing function of the

ratio λmin/λmax.

Proof. Instead of designing the estimator for λ ∈ [λmin, λmax], we can do the design for

λ ∈ [λr, 1] where λr = λmin/λmax and then scale h`(z) by λmax in Figure 2.5. Define ρ(λ)

to be the worst-case asymptotic convergence rate over [λ, 1]. Then for any λ > λr, the

interval [λ, 1] is a subset of [λr, 1]. Therefore, ρ(λ) cannot be greater than ρ(λr), so ρ is a

monotonically non-increasing function of λmin/λmax. �

2.8. Palindromic Transformation

In this section, we develop a general way of accelerating the convergence rate of estimators

when the graph is undirected. Suppose we have an estimator which converges linearly with

rate 2ρ. Furthermore, suppose the closed-loop poles are all contained in the real interval

[−2ρ, 2ρ] for all λ ∈ [λmin, λmax] where λmin and λmax are lower and upper bounds on the

nonzero Laplacian eigenvalues, respectively. Then we can perform a transformation which

maps the interval [−2ρ, 2ρ] to the circle ρT, so the resulting estimator has convergence rate

ρ. To do this mapping, we use palindromic polynomials which are defined below.

Definition 14 (ρ-palindromic polynomial). A polynomial p of degree at most 2d is called

ρ-palindromic if and only if there exists a polynomial q of degree at most d such that

p(z) = zd q(z + ρ2/z).(2.32)

Remark 1. The function z + ρ2/z maps ρT to the interval [−2ρ, 2ρ].

62

Definition 15 (ρ-palindromic rational function). A rational function P is called ρ-

palindromic if and only if there exists a rational function Q such that P (z) = Q(z + ρ2/z).

Table 2.1. Examples of ρ-palindromic rational function pairs.

P (z) Q(z)

z

z2 − βz + ρ2

1

z − β
z

(z − 1)(z − ρ2)

1

z − (1 + ρ2)

z(z2 − γz + ρ2)

(z2 − β1z + ρ2)(z2 − β2z + ρ2)

z − γ
(z − β1)(z − β2)

z(z2 − γz + ρ2)

(z2 − 2 cos(θ)z + 1)(z2 − 2ρ2 cos(θ)z + ρ4)

z − γ
z2 − 2(1 + ρ2) cos(θ)z + (1 + 2ρ2 cos(2θ) + ρ4)

Lemma 5. Suppose the rational function F is ρ-palindromic and that the zeros of F are

all on ρT. Then there exists a rational function F̃ such that F (z) = F̃ (z + ρ2/z) and the

zeros of F̃ are all real and contained in the interval [−2ρ, 2ρ].

Proof. Since F is ρ-palindromic, there exists a rational function F̃ such that F (z) =

F̃ (z + ρ2/z). Since the zeros of F are on ρT, each zero has the form z = ρ ejθ for some

θ ∈ [−π, π] where j =
√
−1. The zeros of F are the solutions to

0 = F (z) = F̃ (z + ρ2/z) = F̃
(
ρ ejθ +

ρ

ejθ

)
= F̃ (2ρ cos θ)

for some θ ∈ [−π, π], so the zeros of F̃ are real and contained in the interval [−2ρ, 2ρ]. �

Lemma 5 shows that if the roots of F are on ρT and F is ρ-palindromic, then there is

a function F̃ of less degree whose roots are in the real interval [−2ρ, 2ρ]. Each real root

63

of F̃ corresponds to two complex conjugate roots of F , so F̃ is half the degree in z as F .

If 0 = F̃ (z, λ) is the characteristic equation for an estimator which has all of its poles in

[−2ρ, 2ρ], then the estimator with characteristic equation 0 = F (z, λ) = F̃ (z + ρ2/z, λ) has

all of its poles on ρT. This is summarized in the following corollary.

Theorem 5. Let G be a constant, undirected graph with nonzero Laplacian eigenvalues

in the interval [λmin, λmax]. Consider an estimator with characteristic equation 0 = F (z, L).

Suppose 0 = F (1+ρ2, λ) and all solutions of 0 = F (z, λ) are in the real interval [−2ρ, 2ρ] for

every λ ∈ [λmin, λmax]. Then the estimator with characteristic equation 0 = F (z + ρ2/z, L)

is exact for constant inputs and converges linearly with rate ρ.

Proof. First, note that F (z + ρ2/z, λ)|z=1 = F (1 + ρ2, λ) = 0. The estimator has a pole

at z = 1 and is therefore exact for constant inputs. Next, we show that it converges linearly

with rate ρ. Using the separated system, the solutions to 0 = F (z + ρ2/z, L) are the union

of the solutions to 0 = F (z + ρ2/z, λ) for λ ∈ eig(L). Since all solutions to 0 = F (z, λ) are

in [−2ρ, 2ρ], each solution has the form z = 2ρ cos θ for some θ ∈ [−π, π]. Then we have

0 = F (2ρ cos θ, λ) = F (z + ρ2/z, λ)|z=ρ exp(jθ)

so all of the estimator poles are on ρT. Therefore, the output converges with rate ρ. �

We will use this result in Chapter 4 to design feedback estimators which are exact and

have fast convergence rates.

64

CHAPTER 3

Asymptotic Mean Ergodicity Property of Estimators

In this chapter we analyze the convergence properties of estimators for dynamic average

consensus when the input signals are constant and the communication graph is time-varying,

modeling noisy communication channels where packets are dropped randomly. The graph

process is assumed to be i.i.d. and connected and balanced on average, but need not be

connected or balanced at each time step. While the random graphs prevent asymptotic

convergence of each agent’s estimate to the average of the input signals, here we pose a

slightly weaker question: Under what conditions do the time-averaged values of the estimator

outputs converge to the actual average of the inputs? With this property, estimator outputs

can be lowpass filtered to obtain the correct average.

When the communication graph is time-varying, the output of the estimator converges

to a random process. We want to characterize when the time-average of the process is equal

to its statistical average, which is a property known as mean ergodicity. By calculating the

statistics of the steady-state process, we can apply an ergodic theorem to determine whether

the steady-state process is ergodic in the mean. For estimators with this property, which we

call asymptotic mean ergodicity, a local lowpass filter can be applied to the output of each

agent to recover the global average of the input signals.

To study the steady-state behavior of estimators over random graphs, we first state an

ergodic theorem which gives necessary and sufficient conditions on the steady-state covari-

ance for a discrete-time random process to have the asymptotic mean ergodicity property.

65

For estimators with this property, the time-average of the output converges to the ensemble

average of the steady-state process. We then derive an expression for the steady-state co-

variance of the output of a polynomial linear protocol. We then apply the ergodic theorem

to the polynomial linear protocol to identify conditions under which the estimator is ergodic.

We first analyze a general one-hop polynomial linear protocol, and then apply these

results to several specific estimators.

The subsequent sections are organized as follows. We define the covariance using the

Kronecker product in Section 3.1 and establish several useful results of the covariance. In

Section 3.2, we give sufficient conditions on the steady-state covariance for a random pro-

cess to be asymptotically mean ergodic. We present our main theorem in Section 3.3 which

develops the steady-state covariance for a general polynomial linear protocol using the sep-

arated system. We then apply these results to the P and PI estimators in Section 3.4 and

summarize the results in Section 3.5.

3.1. Kronecker Product Covariance

Given random matrices A ∈ Rm×n and B ∈ Rp×q, we would like a way of representing

the covariances between Ai,j and Bk,l for all i, j, k, l. The covariance matrix between two

random vectors x ∈ Rn and y ∈ Rm is generally defined as the n×m matrix

C(x, y) := E
[
(x− E[x]) (y − E[y])T

]
.(3.1)

This definition was generalized to tensors in [58]. Similarly, we generalize this definition to

matrices using the Kronecker product in Definition 16.

66

Definition 16. The covariance between A ∈ Rm×n and B ∈ Rp×q is defined as

COV[A,B] := E[(A− E[A])⊗ (B − E[B])](3.2)

which has dimensions mp× nq, and where ⊗ denotes the Kronecker product. The variance

is the covariance between a matrix and itself and is denoted

VAR[A] := COV[A,A] .(3.3)

In the vector case, the covariances using the Kronecker product definition and the stan-

dard definition are related by COV[x, y] = vec[C(y, x)] where vec[A] is the vectorization [59]

of a matrix formed by stacking the columns of A. Equation (3.1) is valid only for random

vectors while (3.2) is valid for both random vectors and matrices of any size, so we use

the latter definition. Theorems 6 and 7 provide useful results for the Kronecker product

covariance which are analogous to those of the scalar case.

Theorem 6. Given matrices A ∈ Rm×n, B ∈ Rp×q and vectors x ∈ Rn, y ∈ Rq where A

and B are uncorrelated with x and y, the covariance of the product is

COV[Ax,By] = COV[A,B] (E[x]⊗ E[y]) + (E[A]⊗ E[B]) COV[x, y] + COV[A,B] COV[x, y]

= COV[A,B] E[x⊗ y] + (E[A]⊗ E[B]) COV[x, y]

= COV[A,B] (E[x]⊗ E[y]) + E[A⊗B] COV[x, y] .(3.4)

67

Proof.

COV[Ax,By] = E[Ax⊗By]− E[Ax]⊗ E[By]

= E[(A⊗B)(x⊗ y)]− E[A] E[x]⊗ E[B] E[y]

= E[A⊗B] E[x⊗ y]− (E[A]⊗ E[B]) (E[x]⊗ E[y])

= (E[A⊗B]− E[A]⊗ E[B]) (E[x]⊗ E[y]) + (E[A]⊗ E[B]) (E[x⊗ y]− E[x]⊗ E[y])

+ (E[A⊗B]− E[A]⊗ E[B]) (E[x⊗ y]− E[x]⊗ E[y])

= COV[A,B] (E[x]⊗ E[y]) + (E[A]⊗ E[B]) COV[x, y] + COV[A,B] COV[x, y]

= COV[A,B] E[x⊗ y] + (E[A]⊗ E[B]) COV[x, y]

= COV[A,B] (E[x]⊗ E[y]) + E[A⊗B] COV[x, y] . �

For scalar random variables A,B, x, y, this result reduces to the standard result

COV[Ax,By] = COV[A,B] E[x] E[y] + E[A] E[B] COV[x, y] + COV[A,B] COV[x, y] .(3.5)

Theorem 7. Given sets of vectors xi ∈ Rm and yj ∈ Rn, the covariance of the sum is

COV

[∑

i

xi,
∑

j

yj

]
=
∑

i

∑

j

COV[xi, yj] .(3.6)

Proof. This is a straightforward extension of the covariance of sums of scalars. �

We also use the following definition to simplify notation.

Definition 17. Let k be a non-negative integer. The kth Kronecker power is defined as

X⊗k ≡ X ⊗ . . .⊗X︸ ︷︷ ︸
k

.(3.7)

68

3.2. Asymptotic Mean Ergodicity of Random Processes

Consider a discrete-time random process {Xk}∞k=k0
where Xk ∈ Rn for k ≥ k0. We extend

the ergodic theorem for a wide-sense stationary random process in [60] to an asymptotically

wide-sense stationary random process. This establishes conditions under which the time

average of the process converges to the ensemble average as k approaches infinity.

Definition 18 (Asymptotically wide-sense stationary). The process Xk is asymptotically

wide-sense stationary if and only if the mean and covariance of the steady-state process do

not change with time; that is, the limits

mX := lim
n→∞

E[Xn] and CX(k) := lim
n→∞

COV[Xk+n, Xn](3.8)

exist and are finite where mX is the mean and CX(k) is the covariance of the steady-state

process.

Definition 19 (Time average). The time-average mean of a random process Xk starting

at k0 is given by

〈Xn〉T =
1

T

T+k0−1∑

k=k0

Xk+n.(3.9)

We now state conditions under which the process is asymptotically ergodic in the mean.

Theorem 8 (Asymptotic mean ergodicity). Let {Xk}∞k=k0
be a single-sided asymptoti-

cally wide-sense stationary discrete-time random process with limiting mean mX and limiting

covariance CX(k). The process is asymptotically mean ergodic, that is,

lim
T→∞

lim
n→∞
〈Xn〉T = mX ,(3.10)

69

in the mean square sense if and only if the quantity

AME(X) := lim
T→∞

1

T

T−1∑

k=−(T−1)

(
1− |k|

T

)
CX(k)(3.11)

is zero.

Proof. Similar to [60], the limiting variance of 〈Xk〉T is

lim
n→∞

VAR[〈Xn〉T] = lim
n→∞

E

[(
1

T

T+k0−1∑

k=k0

(
Xk+n − E[Xk+n]

)
)(

1

T

T+k0−1∑

l=k0

(
Xl+n − E[Xl+n]

)
)T]

=
1

T 2

T+k0−1∑

k=k0

T+k0−1∑

l=k0

lim
n→∞

COV[Xk+n, Xl+n]

=
1

T 2

T−1∑

k=0

T−1∑

l=0

CX(k − l)

=
1

T 2

T−1∑

k=−(T−1)

(T − |k|) CX(k)

=
1

T

T−1∑

k=−(T−1)

(
1− |k|

T

)
CX(k).(3.12)

Thus, if the limiting correlation goes to zero as

lim
T→∞

1

T

T−1∑

k=−(T−1)

(
1− |k|

T

)
CX(k) = 0,(3.13)

then the limiting time average converges to the limiting sample average in the mean square

sense,

lim
T→∞

lim
n→∞

E
[(
〈Xn〉T − E[〈Xn〉T]

)(
〈Xn〉T − E[〈Xn〉T]

)T]
= 0.(3.14)

�

70

Corollary 1. An asymptotically wide-sense stationary random process Xk with steady-

state covariance given by

CX(k) = λ|k|(3.15)

is asymptotically mean ergodic if and only if |λ| ≤ 1 and λ 6= 1.

Proof. For the given covariance function, (3.11) evaluates to

AME(X) =





0, |λ| ≤ 1 and λ 6= 1

1, λ = 1

∞, otherwise.

�

Definition 20 (Convergent). A square matrix A is convergent when its power sequence

{Ak}∞k=1 converges to a finite constant matrix as k → ∞. From the Jordan decomposition,

A is convergent if and only if all Jordan blocks associated with eigenvalues at λ = 1 are of

size one, and all other eigenvalues have magnitude less than one.

Corollary 2. An asymptotically wide-sense stationary random process Xk with steady-

state covariance given by

CX(k) = CA|k|B(3.16)

where A ∈ Rn×n is convergent, B ∈ Rn×1, C ∈ R1×n, and any eigenvalue of A at one is

either uncontrollable through B or unobservable through C, is asymptotically mean ergodic.

Proof. Perform the decomposition A = P−1JP where P is invertible and J is in Jordan

form. Then J = diag(J1, . . . , Jn) where each Ji, i = 1, . . . , n is a Jordan block of size mi

71

with eigenvalue λi. Then we have

Jki =




λki k
λk−1
i

1!
. . . k!

[k−(mi−1)]!

λ
k−(mi−1)
i

(mi−1)!

0 λki . . . k!
[k−(mi−2)]!

λ
k−(mi−2)
i

(mi−2)!

...
...

. . .
...

0 0 . . . λki




.(3.17)

where
(
n
k

)
= n!/[(n − k)!k!]. Each term in (3.11) corresponding to a Jordan block Ji with

|λi| < 1 is zero by Corollary 1. All other Jordan blocks have λi = 1 and mi = 1, so Ji = 1. If

the eigenvalue is uncontrollable through B or unobservable through C, then the respective

entry of B or C corresponding to Ji is zero. Thus (3.11) evaluates to zero, so the process is

asymptotically mean ergodic by Theorem 8. �

3.3. Asymptotic Mean Ergodicity of Estimators

To analyze the asymptotic mean ergodicity property of estimators, we represent the

estimator as a polynomial linear protocol from Definition 12. In this section, we present

our main theorem which provides conditions under which the output of a polynomial linear

protocol is asymptotically mean ergodic by examining the covariance of the output process.

Ergodicity implies that time averages are equal to ensemble averages, so the low-pass filtered

output of each agent converges to the ensemble average as time approaches infinity if the

process is asymptotically mean ergodic. For one-hop estimators, Corollary 3 shows that the

expected output is the output of the deterministic system using the expected Laplacian.

We now state our main theorem which gives conditions under which an estimator is

asymptotically mean ergodic.

72

Theorem 9. Let G be a time-varying graph with Laplacian matrix Lk at iteration k.

Assume that E[Lk] is balanced and connected, and Lk are i.i.d. and independent of the

initial state for all k. Consider an r-hop polynomial linear protocol Σ(Lk). The output

process due to a constant input is asymptotically mean ergodic if the following hold:

(1) A0 is convergent,

(2) any eigenvalues of A0 with magnitude one are unobservable through C0,

(3) ρ
(
E[A(L̂k)]

)
< 1, and

(4) Ci = Di = 0 for 0 < i ≤ r.

Remark 2. The assumptions on the Laplacian in Theorem 9 do not require the Laplacian

to be balanced or connected at any individual time step.

Remark 3. Requirements (1) and (2) in Theorem 9 are also necessary for the estimator Σ

to be robust to initial conditions [15]. Requirement (3) eliminates the possibility of E[A(L̂k)]

having simple eigenvalues at one, and requirement (4) is needed to evaluate the expression

for the covariance of the output.

Proof of Theorem 9. Similar to Section 2.6, we can separate the system into the con-

sensus and disagreement directions. Let Q ∈ Rn×n be an orthogonal matrix such that

Q = [v S] where v = 1n/
√
n and S ∈ Rn×(n−1). Define the reduced Laplacian to be

L̂ := STLS. Since S and v are orthogonal, we have vTS = 0. To simplify notation, let

ṽ = v ⊗ I and S̃ = S ⊗ I so that Q̃ = Q ⊗ I = [ṽ S̃]. Performing the change of variable

73

x̃k = Q̃Txk, the separated system Σ̃(L) is

Ã(L) = Q̃TA(L)Q̃ =



ṽTA(L)ṽ ṽTA(L)S̃

S̃TA(L)ṽ S̃TA(L)S̃


 =



A0 ṽTA(L)S̃

0 A(L̂)


(3.18)

B̃(L) = Q̃TB(L) =



ṽTB(L)

S̃TB(L)


(3.19)

C̃(L) = C(L)Q̃ =

[
C(L)ṽ C(L)S̃

]
=

[
v ⊗ C0 C(L)S̃

]
(3.20)

D̃(L) = D(L)(3.21)

which is equivalent to the original system. The system is then



zk+1

wk+1


 =



A0 ṽTA(Lk)S̃

0 A(L̂k)






zk

wk


+



ṽTB(Lk)

S̃TB(Lk)


u(3.22)

yk =

[
v ⊗ C0 C(Lk)S̃

]


zk

wk


+D(Lk)u(3.23)

for k ≥ 0 with initial conditions z0 and w0. We can also write the system using

A(L) = L̃Ã B(L) = L̃B̃

C(L) = L̄C̃ D(L) = L̄D̃(3.24)

74

where

L̃ =

[
In ⊗ Ip L⊗ Ip . . . Lr ⊗ Ip

]
,(3.25)

L̄ =

[
In L . . . Lr

]
(3.26)

and

Ã =




In ⊗ A0

...

In ⊗ Ar




B̃ =




In ⊗B0

...

In ⊗Br




C̃ =




In ⊗ C0

...

In ⊗ Cr




D̃ =




In ⊗D0

...

In ⊗Dr



.(3.27)

Define the steady-state covariance between two random vectors xk and yk as

σ2
x,y ≡ lim

k→∞
COV[xk, yk] .(3.28)

We want to determine the steady-state covariance of the output in (3.23),

Cy(k) ≡ lim
n→∞

COV[yn+k, yn] ,(3.29)

to determine if the system is asymptotically mean ergodic using Theorem 8. Note that zk

and wk are uncorrelated with Lj for j ≥ k. Using the Kronecker product relations from

75

Section 3.1, the following covariances are zero,

COV
[
A0zk, ṽ

TA(Lk)S̃wk

]
= (A0 ⊗ ṽTE

[
L̃k

]
ÃS̃)COV[zk, wk] = 0(3.30)

and

COV
[
A0zk, ṽ

TB(Lk)u
]

= (A0 ⊗ ṽT)COV
[
zk, L̃k

]
(I ⊗ B̃u) = 0(3.31)

since E[Lk] is balanced and zk is uncorrelated with Lk, respectively. Define the variance

σ̂2(k) ≡ VAR
[
A(Lk)S̃wk +B(Lk)u

]

= VAR
[
L̃k(ÃS̃wk + B̃u)

]

= E
[
L̃⊗2
k

]
(ÃS̃)⊗2VAR[wk] + VAR

[
L̃k

]
(ÃS̃ E[wk] + B̃u)⊗2.(3.32)

Taking the limit as k →∞ of (3.32),

σ̂2 ≡ lim
k→∞

σ̂2(k) = E
[
L̃⊗2
k

]
(ÃS̃)⊗2σ2

w + VAR
[
L̃k

]
(ÃS̃w̄ + B̃u)⊗2(3.33)

where w̄ = limk→∞wk. The variances and covariances of the state can be found recursively

using the Kronecker product relations from Section 3.1. Using (3.30) and (3.31), the variance

of zk+1 is

VAR[zk+1] = A⊗2
0 VAR[zk] + (ṽT)⊗2σ̂2

x(k).(3.34)

76

Similarly, the other variances and covariances of the state are

VAR[wk+1] = (S̃T)⊗2σ̂2
x(k)

= E
[
A(L̂k)

⊗2
]

VAR[wk] + (S̃T)⊗2VAR
[
L̃k

]
(ÃS̃ E[wk] + B̃u)⊗2,(3.35)

COV[zk+1, wk+1] =
(
A0 ⊗ E

[
A(L̂k)

])
COV[zk, wk] + (ṽT ⊗ S̃T)σ̂2

x(k),(3.36)

COV[wk+1, zk+1] =
(

E
[
A(L̂k)

]
⊗ A0

)
COV[wk, zk] + (S̃T ⊗ ṽT)σ̂2

x(k).(3.37)

The steady-state variance of zk may be infinite due to the possible eigenvalue of A0 at one.

The other systems all have eigenvalues with magnitude less than one, so the steady-state

variances and covariances are given by

σ2
w =

[
I − E

[
A(L̂k)

⊗2
]]−1

(S̃T)⊗2VAR
[
L̃k

]
(ÃS̃w̄ + B̃ū)⊗2,(3.38)

σ2
z,w =

[
I − A0 ⊗ E

[
A(L̂k)

]]−1

(ṽT ⊗ S̃T)σ̂2
x,(3.39)

σ2
w,z =

[
I − E

[
A(L̂k)

]
⊗ A0

]−1

(S̃T ⊗ ṽT)σ̂2
x.(3.40)

The covariance between the state at iteration k + i and k is

COV[zk+i, zk] =
(
Ai0 ⊗ I

)
VAR[zk] ,(3.41)

COV[wk+i, wk] =

(
E
[
A(L̂k)

]i
⊗ I
)

VAR[wk] ,(3.42)

COV[zk+i, wk] =
(
Ai0 ⊗ I

)
COV[zk, wk] ,(3.43)

COV[wk+i, zk] =

(
E
[
A(L̂k)

]i
⊗ I
)

COV[wk, zk] .(3.44)

77

For the steady-state process, the covariances are

lim
k→∞

COV[zk+i, zk] =
(
Ai0 ⊗ I

)
σ2
z ,(3.45)

lim
k→∞

COV[wk+i, wk] =

(
E
[
A(L̂k)

]i
⊗ I
)
σ2
w,(3.46)

lim
k→∞

COV[zk+i, wk] =
(
Ai0 ⊗ I

)
σ2
z,w,(3.47)

lim
k→∞

COV[wk+i, zk] =

(
E
[
A(L̂k)

]i
⊗ I
)
σ2
w,z.(3.48)

Using the assumption that Ci = Di = 0 for 0 < i ≤ l, the steady-state covariance of the

output at time step k + i and k is

Cy(i) = lim
k→∞

COV[yk+i, yk](3.49)

= lim
k→∞

[(ve ⊗ C0)⊗ (ve ⊗ C0)] COV[zk+i, zk]

+ [(ve ⊗ C0)⊗ (S ⊗ C0)] COV[zk+i, wk]

+ [(S ⊗ C0)⊗ (ve ⊗ C0)] COV[wk+i, zk]

+ [(S ⊗ C0)⊗ (S ⊗ C0)] COV[wk+i, wk] .(3.50)

Using the expressions in (3.45) to (3.48),

Cy(i) =
[
(ve ⊗ C0A

i
0)⊗ (ve ⊗ C0)

]
σ2
z

+
[
(ve ⊗ C0A

i
0)⊗ (S ⊗ C0)

]
σ2
z,w

+ [(S ⊗ C0)⊗ (ve ⊗ C0)]
(

E
[
A(L̂k)

]
⊗ I
)i
σ2
w,z

+ [(S ⊗ C0)⊗ (S ⊗ C0)]
(

E
[
A(L̂k)

]
⊗ I
)i
σ2
w.(3.51)

78

Both A0 and E[L̂k] are convergent. Any eigenvalues at one of A0 are unobservable through

C0, and E[L̂k] has no eigenvalues at one. Therefore we can apply Corollary 2. The steady-

state variance σ2
z may be infinite, however, which would cause the system to not be ergodic.

σ2
z may only have infinite values in positions corresponding to an eigenvalue at one of A0,

but this does not affect the output since the eigenvalue at one is unobservable through C0.

Therefore the output yk is ergodic by Corollary 2. �

Remark 4. If Ci and Di are nonzero for 0 < i ≤ r in Theorem 9, then the steady-state

covariance of the output is

Cy(i) = lim
k→∞

COV[(ve ⊗ C0)zk+i, (ve ⊗ C0)zk] + COV[(ve ⊗ C0)zk+i, D(Lk)u]

+ COV[D(Lk+i)u, (ve ⊗ C0)zk] + COV
[
(ve ⊗ C0)zk+i, S̃C(L̂k)wk

]

+ COV
[
S̃C(L̂k+i)wk+i, (ve ⊗ C0)zk

]
+ COV

[
S̃C(L̂k+i)wk+i, S̃C(L̂k)wk

]

+ COV
[
S̃C(L̂k+i)wk+i, D(Lk)u

]
+ COV

[
D(Lk+i)u, S̃C(L̂k)wk

]

+ COV[D(Lk+i)u,D(Lk)u] .(3.52)

For one-hop estimators, the system is linear in Lk which results in the following.

Corollary 3. Under the same assumptions as Theorem 9, the time-averaged output of

each agent converges to the same output as Σ(E[Lk]) if the protocol is one-hop.

Proof. Since the process is linear in Lk,

E[A(Lk)] = A(E[Lk]) E[B(Lk)] = B(E[Lk])

E[C(Lk)] = C(E[Lk]) E[D(Lk)] = D(E[Lk]).(3.53)

79

The expected system is then

E[xk+1] = A(E[Lk])E[xk] +B(E[Lk])uk(3.54)

E[yk] = C(E[Lk])E[xk] +D(E[Lk])uk.(3.55)

since xk is independent of Lk. The expected output is the output of Σ(E[Lk]). Since the

output process is ergodic by Theorem 9, the time-averaged output of each agent converges

to the expected output. �

3.4. Examples

Our results hold for a general polynomial linear protocol. We now apply the results to

the following two estimators.

Example 1. The P estimator [19] is a one-hop polynomial linear protocol with parame-

ters γ and kp where



A(L) B(L)

C(L) D(L)


 =




1− γ 0

1 1


⊗ In +



−kp −kp

0 0


⊗ L.(3.56)

Example 2. The PI estimator [19] is a one-hop polynomial linear protocol with param-

eters γ, kp, and kI where



A(L) B(L)

C(L) D(L)


 =




1− γ 0 γ

1 0 0

1 0 0



⊗ In +




−kp kI 0

−kI 0 0

0 0 0



⊗ L.(3.57)

80

Both the P and PI estimators are one-hop polynomial linear protocols, so asymptotic

mean ergodicity implies that the time-averaged output of each agent converges to the output

of the estimator using the expected Laplacian by Corollary 3. The expected steady-state error

and robustness to initial conditions is known for the deterministic system [15]. The ergodicity

property of each estimator is discussed below, and the results are shown in Table 3.1.

Table 3.1. Summary of properties for the P and PI estimators
with E[Lk] balanced and connected, and Lk i.i.d. for all k.

Estimator Ergodic Robust to ICs lim
k→∞

E[ek] = 0

P, γ = 0 7 7 31

P, γ 6= 0 3 3 7
PI 3 3 3

1 If the expectation of the initial state sums to zero.

3.4.1. P Estimator

Consider the P estimator in Example 1. The estimator has different properties depending

on the forgetting factor γ since A0 has an eigenvalue at one if γ = 0. We analyze the two

cases separately.

3.4.1.1. Case 1: γ 6= 0. In this case, the eigenvalue of A0 is 1 − γ which must have

magnitude less than one, so we require 0 < γ < 2. In order for the eigenvalues of E[A(L̂k)]

to have magnitude less than one, kp must be chosen such that |(1− γ)− kpλi| < 1 for each

eigenvalue λi of E[L̂k]. If both constraints are satisfied, then the four conditions in Theorem 9

are satisfied so the protocol is asymptotically mean ergodic. The expected output, however,

does not converge to the correct average with zero steady-state error. Therefore the time

average converges to the ensemble average, but neither is the average of the input signals.

81

3.4.1.2. Case 2: γ = 0. In this case, the pair (A0, C0) has an observable eigenvalue at

one, so the estimator is not ergodic. The system can be made ergodic, however, with extra

restrictions. If the Laplacian is balanced at each time step, then σ2
z,w = 0. In addition,

σ2
z = 0 if VAR[z0] = 0. Using (3.51), the output is ergodic if Lk is balanced for all k and

VAR[z0] = 0. In this case the estimator does converge to the average of the inputs, so

ergodicity gives that the time-averaged output of each agent converges to the average of the

inputs, but this requires the extra restrictions on the Laplacian and initial state.

3.4.2. PI Estimator

Consider the PI estimator in Example 2. The eigenvalue at one of A0 is unobservable through

C0, and the other eigenvalue of A0 is 1−γ so we require 0 < γ < 2. The constants kp and kI

must be chosen such that the eigenvalues of A(E[L̂k]) have magnitude less than one. If these

conditions are satisfied, then the output yk is asymptotically mean ergodic by Theorem 9, so

the time-averaged output of each agent converges to the ensemble average. Since the expected

steady-state error is zero independent of initial conditions, the time-averaged output of each

agent converges to the average of the inputs for any initial conditions.

3.5. Summary

We studied the convergence properties of the P and PI estimators when packets are

dropped at random. Dropped packets were modeled by i.i.d. random Laplacians assumed

to be balanced and connected on average, although the Laplacian need not be balanced or

connected at any time step. This model is limited to situations in which the packet drop

probabilities are symmetric between two agents, so that the expected Laplacian is balanced.

82

To study the convergence properties of average consensus estimators over random graphs,

the covariance was defined using the Kronecker product in order to obtain an expression for

the steady-state covariance of the system output. An ergodic theorem then gave conditions

under which the output of a polynomial linear protocol is asymptotically mean ergodic.

Results were applied to the P and PI estimators, and it was shown that the P estimator is

ergodic either if γ 6= 0, or the Laplacian is balanced at each time step and the initial state is

deterministic. The PI estimator, however, is always ergodic (provided that γ, kp, kI satisfy

the conditions in Section 3.4.2), has zero expected steady-state error, and is robust to initial

conditions. For the PI estimator, the time-averaged output of each agent converges with

zero steady-state error in the presence of dropped packets independent of initial conditions.

83

CHAPTER 4

Estimators for Signals with Discrete Frequency Spectrum

In this chapter we design estimators to solve the dynamic average consensus problem

when the frequency spectrum of the input signals is composed of discrete frequencies. For

example, the input signal for agent i could be any of the following:

uki =





ui, constant

ui,0 + ui,1 k + ui,2 k
2 + . . .+ ui,m k

m, polynomial with degree m

ui cos(ωk − θi), sinusoidal with frequency ω

(4.1)

with corresponding z-transforms

ui(z) =





z

z − 1
ui, constant

ui,0 z + ui,1 z
2 + ui,2 z

3 + . . .+ ui,m z
m+1

(z − 1)m+1
, polynomial with degree m

z(z cos(θi)− cos(ω + θi))

z2 − 2z cos(ω) + 1
u, sinusoidal with frequency ω.

(4.2)

We refer to the denominator of the z-transform as the model of the signal. Throughout this

chapter we assume that each of the input signals has the same model, and that the model

is known. If the signals are known to be sinusoidal but with unknown frequency, then the

frequency may first be estimated and the estimate used to design the estimator [22]. For

simplicity we design the estimators to track constant input signals with zero steady-state

error. However, all of the designs can be extended to track other types of signals as long

84

as the model is known. For models with high-degree (e.g., signals with multiple frequencies

or high-degree polynomials), we factor the model as d(z) = d1(z) d2(z) . . . dm(z). Multiple

estimators are then cascaded together in series where the ith stage is designed using di(z) as

the model.

For input signals with discrete frequency spectrum, a model of the inputs can be placed

in the feedback loop to achieve zero steady-state error. Therefore, all of the estimators in

this chapter are feedback designs.

Throughout this chapter we assume that the communication graph is constant and undi-

rected. Furthermore, we assume knowledge of lower and upper bounds on the nonzero

eigenvalues of the graph Laplacian, denoted λmin and λmax, respectively. The lower bound is

soft in the sense that if it is violated, then our estimators will still converge but without any

guarantees on their rates of convergence. We accept such a soft bound as it may be difficult

to obtain a non-conservative hard lower bound on the nonzero eigenvalues of L. As we will

see below, the convergence rates of our estimators will depend on the ratio λr = λmin/λmax.

See Section 2.2.1 for how to choose the edge weights to either maximize λr (if the graph

topology is known) or obtain the bounds λmin and λmax (if the graph topology is unknown).

Therefore, we solve the following problem in this chapter.

Problem 3. Suppose G is a constant, connected, and undirected graph whose Laplacian

matrix has nonzero eigenvalues in the interval [λmin, λmax] with 0 < λmin ≤ λmax. Also,

suppose the input signals have a known model, i.e., d(z) is known where u(z) = n(z)/d(z)

with u(z) and d(z) polynomials in z. Design an estimator which

(1) uses one-hop local broadcast communication,

(2) is scalable,

85

(3) is internally stable,

(4) is time-invariant,

(5) and has error that converges to zero linearly with rate ρ < 1 from any initial state.

Furthermore, the estimator should have the minimum attainable value of ρ.

4.1. Static Estimator

Perhaps the simplest estimator for dynamic average consensus is the static estimator

which has been studied at least as far back as [11]. The term “static” is used to describe

the estimator because it is only capable of tracking input signals which are constant, i.e.,

uk = u for all k ≥ 0. To implement the static estimator, agent i uses the equations

yik+1 = yik − kp
∑

j∈Ni

aij(y
i
k − yjk), yi0 = ui(4.3)

where yk is the estimate of the average at time k and kp is a parameter. By stacking the

agent variables into vectors, we can write this compactly as

yk+1 = (I − kpL)yk, y0 = u.(4.4)

The state-space representation is



A(L) B(L)

C(L) D(L)


 =




1 0

1 0


⊗ I +



−kp 0

0 0


⊗ L(4.5)

and the block diagram is given in Fig. 4.1. Note that the input u is not a signal but a

constant initial state, so this estimator is only capable of tracking the average of constant

signals.

A standard convergence result for this estimator is given below.

86

kp
z − 1

In L

y(z)

y0

−

Figure 4.1. Block diagram of the static estimator. The input signals are as-
signed to the initial conditions, i.e., y0 = u.

Theorem 10 (Static estimator [12, Thm. 1]). Suppose that G is constant, connected,

balanced, and has Laplacian matrix which satisfies ρ := ρ(In − kpL− Πn) < 1, and that the

input signals are constant. Then the error of the static estimator converges to zero linearly

with rate ρ.

4.1.1. Optimizing the convergence rate

From Theorem 10, we want to design the estimator such that ρ := ρ(In − kpL− Πn) < 1.

First, consider the case when the graph topology is known. Then we can choose the

parameter kp and the edge weights aij in a centralized manner to minimize ρ. If the graph is

undirected, then the Laplacian is symmetric so ρ = ‖In−kpL−Πn‖. The problem is convex

in this case so we can set kp = 1 and solve the convex optimization problem in Problem 2 to

calculate the optimal weights. When the graph is directed, the problem is no longer convex

[56]. We can still solve for the weights from Problem 2 since ρ(I−kpL−Π) ≤ ‖I−kpL−Π‖,

although they are not optimal in this case.

We now consider the case when the graph topology is unknown. A simple choice for kp

which statisfies the condition ρ(I − kpL−Π) < 1 and does not require a lower bound on the

nonzero eigenvalues of L is 0 < kp < 2/‖L‖, and a standard choice is kp = 1/‖L‖. If a lower

87

bound is available and the graph is undirected, a better choice is

kp =
2

λmin + λmax

.(4.6)

This choice optimizes the worst-case convergence rate in the sense that it minimizes the

maximum modulus of the non-unity eigenvalues of I − kpL over all Laplacian matrices L

having nonzero eigenvalues in the interval [λmin, λmax]. The resulting convergence rate is

ρ =
1− λr
1 + λr

(4.7)

where λr = λmin/λmax. To see why this choice of kp is used, consider the characteristic

equation of the static estimator,

0 = zI − (I − kpL).(4.8)

Separating the system according to the eigenvalues of L gives

0 = 1 + λ
kp

z − 1
.(4.9)

To observe how the roots move as a function of the parameter λ, we use the root locus.

For (4.9), the root locus is shown in Fig. 4.2. This shows how the poles of the estimator

move as a function of the Laplacian eigenvalues λ. Note that ρ is the maximum magnitude of

the closed-loop poles corresponding to nonzero eigenvalues of L. Since all nonzero eigenvalues

are in the interval [λmin, λmax], we want to choose kp to minimize ρ such that the root locus

is inside ρT for all λ ∈ [λmin, λmax]. This is achieved when the pole is at z = ρ when λ = λmin

88

and at z = −ρ when λ = λmax, i.e.,

ρ = 1− kpλmin(4.10)

−ρ = 1− kpλmax.(4.11)

Solving these conditions for kp and ρ gives the values in (4.6) and (4.7), respectively.

−1 −ρ ρ 1 Re(z)

Im(z)

Figure 4.2. Root locus of the static estimator.

4.2. Dynamic Estimators with One Transmission Variable (P Estimator)

The static estimator in the previous section cannot track time-varying signals since the

signals only enter the system as initial conditions. In contrast, dynamic estimators, intro-

duced by [16], continuously inject the signals as inputs into the dynamical system. Dy-

namic estimators for dynamic average consensus in discrete time have been considered in

[15, 21, 23, 26, 27, 30, 31, 61, 62].

In this section, we consider dynamic estimators which have each agent broadcast a single

scalar variable to neighboring agents at each time step. Estimators with one variable trans-

mitted at each iteration are characterized by their block diagrams having only one Laplacian

block. For example, the static estimator in the previous section has one transmission variable

per iteration, and the estimator can be made dynamic by applying the signals as inputs as

shown in Fig. 4.3. This is sometimes referred to as the proportional (P) estimator [19].

89

u(z)

kp
z − 1

In L

y(z)

x0

−

Figure 4.3. Block diagram of the dynamic version of the static estimator where
the signals are applied as inputs to the system.

One can show that if kp‖L‖ < 2, if G is connected and balanced, and if the inputs are

constant (i.e., uk = u for all k ≥ 0), then as k → ∞, all entries of the output vector yk

converge to avg(x0) + avg(u), where avg(x0) denotes the average of the entries in the initial

state vector x0. In other words, the steady-state error vector under constant inputs is just

avg(x0)1n. Thus if avg(x0) = 0, the steady-state error will be zero for constant inputs and

small for slowly-varying inputs. Furthermore, this estimator can be cascaded to achieve zero

steady-state error for inputs that are polynomial functions of the discrete-time variable k:

simply feed the output of the first stage into the input of the second, and so on as needed.

As explained in [23], a cascade of m estimator stages will achieve zero steady-state error

for polynomial inputs of degree up to m − 1. However, this estimator in Fig. 4.3 lacks

initialization robustness: there is no open set of initial states that all lead to the same

steady-state estimates. In other words, this estimator is not robust to initial conditions.

Note that here we inject uk at the output of the integrator block and take the output

yk at the input to the Laplacian block. Other dynamic feedback estimators with different

properties can be obtained by changing the orders of the blocks as well as where the inputs

and outputs are taken. For example, the estimator in Fig. 4.4b switches the order of the

Laplacian and integrator blocks, and the estimator in Fig. 4.4c applies the input before the

integrator. Each of these estimators has different properties as described in Fig. 4.4. Also,

90

instead of using a pure integrator 1/(z−1), each agent can apply any strictly proper transfer

function h(z). In order for the estimator to achieve zero steady-state error, h(z) must be in

the feedback loop and contain a pole at z = 1.

u(z)

h(z)In L

y(z)

x0

−

(a) Estimator which is internally stable, but not robust to initial conditions.

u(z)

L h(z)In

y(z)

x0

−

(b) Estimator which is robust to initial conditions, but not internally stable.

u(z) h(z)In

L

y(z)

x0
−

(c) Estimator which is neither robust to initial conditions nor internally stable.

Figure 4.4. Block diagrams of proportional estimators.

The filter h(z) must be strictly proper so that Fig. 4.4 does not contain algebraic loops,

so we can write

h(z) =



a b

c 0


 .(4.12)

91

The state-space representation of each of the estimators is then



A(L) B(L)

C(L) D(L)


 =








a 0

−c 1


⊗ I +



−bc b

0 0


⊗ L, Fig. 4.4a




a b

0 1


⊗ I +



−bc 0

−c 0


⊗ L, Fig. 4.4b




a b

c 0


⊗ I +



−bc 0

0 0


⊗ L, Fig. 4.4c

(4.13)

and the estimators are implemented on agent i using the equations

xik+1 = a xik + kp b
∑

j∈Nin(i)

aij(y
i
k − yjk)

yik = uik − c xik

Fig. 4.4a(4.14)

xik+1 = a xik + kp b
∑

j∈Nin(i)

aij(y
i
k − yjk)

yik = uik − kp c
∑

j∈Nin(i)

aij(x
i
k − xjk)

Fig. 4.4b(4.15)

xik+1 = a xik − kp b c
∑

j∈Nin(i)

aij(x
i
k − xjk) + b uik

yik = c xik

Fig. 4.4c(4.16)

where xi0 ∈ Rp with a ∈ Rp×p, b ∈ Rp, and cT ∈ Rp.

92

Each of the estimators in Fig. 4.4 have different properties which depend on the filter

h(z). In order for the estimator to have zero steady-state error for constant inputs, there

must be an integrator in the feedback loop. This is satisfied for the estimators in Figs. 4.4a

and 4.4b if h(z) has a pole at z = 1. This can be generalized to other classes of inputs with a

given model, i.e., the inputs are u(z) = n(z)/d(z) where n and d are polynomials and d(z) is

known. In that case, the estimators achieve zero steady-state error if h(z) contains a model

of the input, i.e., d(z) divides dh(z) where h(z) = nh(z)/dh(z).

If h(z) contains a model of the (non-trivial) input, then the estimator in Fig. 4.4a is

internally stable but not robust to initial conditions, while the estimator in Fig. 4.4b is robust

to initial conditions but not internally stable. In particular, neither estimator is capable of

achieving zero steady-state error, internal stability, and robustness to initial conditions.

The estimator in Fig. 4.4c cannot achieve zero steady-state error, even if h(z) contains

a model of the input, since h(z) is in the forward path. However, this estimator with h(z)

strictly stable is robust to initial conditions, internally stable, and can be cascaded to achieve

arbitrarily small steady-state error for bandlimited input signals; see Chapter 5.

4.2.1. Optimizing the convergence rate

We now optimize the convergence rate while requiring that the estimator contain the model

for constant inputs, i.e., h(z) must contain a pole at z = 1. Suppose the graph is undirected,

connected, and has Laplacian eigenvalues in [λmin, λmax]. Each estimator in Fig. 4.4 has the

characteristic equation

0 = 1 + λh(z)(4.17)

93

−1 1

ρT

Re(z)

Im(z)

(a) h(z) = kp/(z − 1)

−1 ρ2 1

ρT

Re(z)

Im(z)

(b) h(z) = kp z/((z − ρ2)(z − 1))

Figure 4.5. Root locus design of the P estimator.

where λ ∈ eig(L). Since the graph is undirected, λ is real and the closed-loop poles can be

found using the root locus of (4.17). The simplest choice for the filter h(z) is a system with

one state, h(z) = kp/(z − γ), where we need γ = 1 in order for the estimator to be exact.

To optimize the convergence rate, we want to minimize ρ such that the closed-loop poles of

the system are inside ρT for all λ ∈ [λmin, λmax]. For h(z) = kp/(z − 1) this is the same as

the static estimator case, and the root locus is shown in Fig. 4.5a. However, the convergence

rate can be improved when the graph is constant by introducing more dynamics. Instead of

94

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

λr

ρ

P-1
P-2

Figure 4.6. Convergence rate of the P estimator.

having the pole move straight across ρT on the real axis, the closed-loop poles can be inside

ρT for a larger interval [λmin, λmax] if we have two poles which go around the circle ρT. This

is accomplished using

h(z) =
kp z

(z − ρ2)(z − 1)
(4.18)

which produces the root locus in Fig. 4.5b. The conditions used to solve for kp and ρ similar

to those from the static estimator case. We want both poles at z = ρ when λ = λmin and

both poles at z = −ρ when λ = λmax, i.e.,

0 = 1 + λmin h(ρ) and 0 = 1 + λmax h(−ρ).(4.19)

Solving these equations for kp and ρ gives

kp =
4

(
√
λmax +

√
λmin)2

and ρ =
1−
√
λr

1 +
√
λr

(4.20)

95

where λr := λmin/λmax. The extra dynamics are often referred to as adding momentum to

the system. Note that this design only works when the graph is constant.

A simple way of producing the same result is to begin with the one-state transfer function

and apply the palindromic transformation in Theorem 5. In particular, replacing z with

z + ρ2/z in the transfer function kp/(z − (1 + ρ2)) results in (4.18). The parameters kp and

ρ can then be found by solving

0 = 1 + λmin

(kp
z − (1 + ρ2)

)∣∣∣
z=2ρ

and 0 = 1 + λmax

(kp
z − (1 + ρ2)

)∣∣∣
z=−2ρ

(4.21)

which gives the same solution as (4.20). The benefit of using the palindromic transformation

to design the estimator is that h(z) has degree one instead of two.

P-1. The P-1 (proportional with one state) estimator is the estimator in Fig. 4.4 with

h(z) =
kp

z − 1

where

kp =
2

λmax + λmin

and ρ =
λmax − λmin

λmax + λmin

.

Specifically, we use the terms P-1a, P-1b, and P-1c to refer to the estimators in

Fig. 4.4(a,b,c), respectively.

96

P-2. The P-2 (proportional with two states) estimator is the estimator in Fig. 4.4 with

h(z) =
kp z

(z − 1)(z − ρ2)

where

kp =
4

(
√
λmax +

√
λmin)2

and ρ =

√
λmax −

√
λmin√

λmax +
√
λmin

.

Specifically, we use the terms P-2a, P-2b, and P-2c to refer to the estimators in

Fig. 4.4(a,b,c), respectively.

4.3. Dynamic Estimators with Two Transmission Variables (PI Estimator)

The dynamic estimators in which each agent broadcasts one scalar variable per iteration

in Fig. 4.4 can track the average of time-varying inputs. None of the estimators, however,

are robust to initial conditions, internally stable, and exact for constant inputs. In this

section, we consider feedback estimators which transmit two state variables per iteration.

The block diagram of such an estimator contains two Laplacian blocks as shown in Fig. 4.7,

where both proportional and integral terms appear in the feedback loop; for this reason it is

referred to as the proportional-integral (PI) estimator [19]. This makes it possible to design

an estimator which has all of the properties listed in Problem 3.

From the analysis in Chapter 2, we want the filter h2(z) to have a pole at z = 1 so that

the estimator is both internally stable and robust to initial conditions. Also, the filters h1(z)

and h2(z) must be strictly proper so that the estimator can be implemented using one-hop

97

u(z)

h1(z)In L

h2(z)In L

y(z)
−

Figure 4.7. Block diagram of the proportional-integral estimator.

communication. Then we can write

h1(z) =



a1 b1

c1 0


 and h2(z) =



a2 b2

c2 0


(4.22)

where the dimensions are a1 ∈ Rp1×p1 , b1 ∈ Rp1 , cT1 ∈ Rp1 , a2 ∈ Rp2×p2 , b2 ∈ Rp2 , cT2 ∈ Rp2 .

The estimator is implemented on agent i using the equations

νik+1 = a1 ν
i
k + b1

∑

j∈Nin(i)

aij(y
i
k − yjk) + b1

∑

j∈Nin(i)

aij(c2η
i
k − c2η

j
k)

ηik+1 = a2 η
i
k + b2

∑

j∈Nin(i)

aij(y
i
k − yjk)

yik = uik − c1 ν
i
k

(4.23)

where νi0 ∈ Rp1 and ηi0 ∈ Rp2 are the initial conditions on agent i, and νik and ηik are the

internal states on agent i at time k. At time k, agent i broadcasts the two scalar variables

yik and c2η
i
k to neighboring agents. In compact form, this can be written



A(L) B(L)

C(L) D(L)


 =




a1 0 0

0 a2 0

−c1 0 1



⊗ I +




−b1c1 b1c2 b1

−b2c1 0 b2

0 0 0



⊗ L.(4.24)

98

4.3.1. Convergence Rate Optimization

We now consider how to design h1(z) and h2(z) to find the minimum ρ such that the error

converges linearly to zero with rate ρ when the input signals are constant. Using the sepa-

rated system, we see that the convergence rate is the maximum modulus of the closed-loop

poles of the separated system. The closed-loop poles of the PI estimator are the solutions to

0 = 1 + λh1(z) [1 + λh2(z)] := F (z, λ)(4.25)

where λ ∈ eig(L). Recall that we need h1(z) and h2(z) to be strictly proper so that the

estimator can be implemented in one-hop, and h2(z) must have a pole at z = 1 to achieve

zero steady-state error for constant input signals.

Solving (4.25) is a quadratic root locus problem which has been studied in [63]. However,

instead of viewing the problem as a quadratic root locus, we do the design as two nested

linear root locus problems. For fixed λ̄, the closed-loop poles of the system are on the h1-locus

0 = 1 + λh1(z)
[
1 + λ̄h2(z)

]
(h1-locus)

when λ = λ̄. To design the h1-locus, we need the roots of

0 = 1 + λ̄h2(z)(h2-locus)

which is a root locus in the parameter λ̄. Using the decomposition h2(z) = n2(z)/d2(z), we

see that

1 + λ̄h2(z) =
d2(z) + λ̄n2(z)

d2(z)
=

closed-loop poles

open-loop poles
,

99

so the closed-loop poles of the h2-locus become open-loop zeros in the h1-locus, and open-loop

poles of the h2-locus remain open-loop poles in the h1-locus.

To design the estimator, we first choose the poles and zeros of h2(z) such that the closed-

loop poles are inside ρT with ρ < 1, keeping in mind that the closed-loop poles become the

open-loop zeros of the h1-locus. Then we choose the poles and zeros of h1(z) such that the

h1-locus remains inside ρT for all λ ∈ [λmin, λmax]. Conditions from locations on the root

loci are used to solve for ρ and the gains of h1(z) and h2(z). Then the estimator satisfies all

of the conditions in Problem 3 where ρ is the convergence rate.

We now use the developed root locus technique to design the PI estimator for two choices

of h1(z) and h2(z) which have two and four internal state variables per agent, respectively.

4.3.2. Case: Two internal state variables per agent

When each agent has two internal state variables, we can parameterize h1(z) and h2(z) as

h1(z) =
kp

z − γ and h2(z) =
kI

z − 1
.(4.26)

Since the poles of h1(z) must lie inside ρT, we must have γ ∈ [−ρ, ρ]. To design the h2-locus,

we choose the gain kI such that the pole is at z = ρ when λ̄ = λmin as shown in Figure 4.8a.

Therefore, we have

0 = 1 + λmin h2(ρ)(4.27)

which gives

kI =
1− ρ
λmin

.(4.28)

100

The h1-locus has relative degree one, so the closed-loop pole approaches z = −∞ along the

negative real axis as λ→∞. To stabilize the pole for the largest ratio λmin/λmax, we choose

γ = ρ. Two conditions are needed to solve for kp and ρ. The root loci are shown for small

λr in Figure 4.8. Due to the shape of the locus, the closed-loop poles can only exit ρT at

z = −ρ or when the closed-loop poles are complex conjugates with magnitude ρ. To force

the closed-loop poles to be on ρT when λ = λmax, we use c0/c2 = ρ2 from Vieta’s formulas

where cj are the coefficients of n(z, λmax) with F (z, λ) = n(z, λ)/d(z, λ), i.e.,

n(z, λmax) =
2∑

j=0

cj z
j,(4.29)

For small λr, we prohibit the poles from crossing the point z = −ρ more than once by setting

0 = r(−ρ) where r(z) is the discriminant of F (z, λ) with respect to λ, i.e.,

r(z) = h1(z) [h1(z)− 4h2(z)] .(4.30)

For large λr, however, the pole is outside ρT for λ < λmin, so we force it back inside ρT at

λ = λmin using 0 = F (−ρ, λmin).

To summarize, the conditions from the root locus are

0 = ρ2 − c0

c2

(4.31)

0 =





r(−ρ), λr small

F (−ρ, λmin), λr large.

(4.32)

101

−1 1

ρT

Re(z)

Im(z)

(a) h2-locus, λ = λmin

−1 1

ρT

Re(z)

Im(z)

(b) h1-locus, λ = λmin

−1 1

ρT

Re(z)

Im(z)

(c) h2-locus, λ = (λmin + λmax)/2

−1 1

ρT

Re(z)

Im(z)

(d) h1-locus, λ = (λmin + λmax)/2

−1 1

ρT

Re(z)

Im(z)

(e) h2-locus, λ = λmax

−1 1

ρT

Re(z)

Im(z)

(f) h1-locus, λ = λmax

Figure 4.8. Root locus design of the PI estimator with two internal state vari-
ables per agent using λr = 0.3 (small λr case). ×’s are open-loop poles, ©’s
are open-loop zeros, and �’s are closed-loop poles at the given value of λ.

102

We can solve the conditions for both the small and large λr cases, and then use the condition

0 = r(−ρ) = F (−ρ, λmin) to find the transition point between the two solutions. Doing so

produces the PI-2 estimator which is summarized below.

PI-2. The PI-2 (proportional integral with two states) estimator is the estimator in

Fig. 4.7 with

h1(z) =
kp

z − ρ and h2(z) =
kI

z − 1

where the parameters are

kp =
1

λmax

ρ(1− ρ)λr
ρ+ λr − 1

and kI =
1− ρ
λmin

and the convergence rate is

ρ =





λ2
r − 8λr + 8

8− λ2
r

, 0 < λr ≤ 3−
√

5

√
(1− λr)(5λ2

r − λ3
r + 4)− λr + λ2

r

2(λ2
r + 1)

, 3−
√

5 < λr ≤ 1.

The parameters γ, kp, kI , and ρ were optimized numerically in [64], and the global

optimum was found. The root locus design procedure, however, gives more insight along

with giving a closed-form solution. By comparing solutions, we see that the root locus

design gives the same solution as that of [64], and is therefore the optimal set of parameters.

4.3.3. Case: Four internal state variables per agent

We now consider the case when each agent has four internal state variables. To do the

analysis, we make use of the palindromic transformation in Theorem 5. In this case, we need

103

−1 1

ρT

Re(z)

Im(z)

(a) h2-locus, λ = λmin

−1 1

ρT

Re(z)

Im(z)

(b) h1-locus, λ = λmin

−1 1

ρT

Re(z)

Im(z)

(c) h2-locus, λ = (λmin + λmax)/2

−1 1

ρT

Re(z)

Im(z)

(d) h1-locus, λ = (λmin + λmax)/2

−1 1

ρT

Re(z)

Im(z)

(e) h2-locus, λ = λmax

−1 1

ρT

Re(z)

Im(z)

(f) h1-locus, λ = λmax

Figure 4.9. Root locus design of the PI estimator with four internal state
variables per agent using λr = 0.3 (small λr case). ×’s are open-loop poles,
©’s are open-loop zeros, and �’s are closed-loop poles at the given value of λ.

104

h̃1(z) to have a pole at z = 1 + ρ2 and the pole of h̃2(z) must be inside [−2ρ, 2ρ]. Therefore,

we have

h1(z) =
kp z

(z − ρ)2
, h2(z) =

kI z

(z − 1)(z − ρ2)
(4.33)

and the corresponding palindromic system is

h̃1(z) =
kp

z − 2ρ
, h̃2(z) =

kI
z − (1 + ρ2)

(4.34)

The analysis is now similar to that of the two-variable case, except that we use h̃1 and h̃2

and we need the roots to be in the real interval [−2ρ, 2ρ] for all λ ∈ [λmin, λmax]. Analogous

to before, we use the condition

0 = 1 + λmin h2(2ρ)(4.35)

to obtain

kI =
(1− ρ)2

λmin

.(4.36)

The poles can only exist [−2ρ, 2ρ] either at an endpoint or when the poles are repeated (at

a breakaway point). Define

F̃ (z, λ) := 1 + λh̃1(z)[1 + λh̃2(z)](4.37)

and the discriminant with respect to the palindromic system

r̃(z) = h̃1(z)
[
h̃1(z)− 4h̃2(z)

]
.(4.38)

105

For small λr, we use 0 = r̃(−2ρ) to force the poles not to cross z = −2ρ more than once.

For large λr, the pole leaves [−2ρ, 2ρ] for λ < λmin so we force it back in the interval using

0 = F̃ (−2ρ, λmin). Letting F̃ (z, λ) = ñ(z, λ)/d̃(z, λ) and defining

ñ(z, λmax) =
2∑

j=0

c̃j z
j,(4.39)

we force repeated poles at λ = λmax by setting the discriminant to zero, i.e., 0 = c2
1 − 4c0c2.

To summarize, the conditions are

0 = c2
1 − 4c0c2 and 0 =





r̃(−2ρ), λr small

F̃ (−2ρ, λmin), λr large.

(4.40)

Solving these conditions for the estimator parameters gives the PI-4 estimator. The conver-

gence rate of the PI estimator with both two and four internal state variables per agent is

plotted in Fig. 4.10 as a function of λr = λmin/λmax. Note this design could also be done

without the palindromic transformation, but would then require analyzing a system with

degree four instead of two. The h1 and h2 locus are shown in Fig. 4.9. Since the system is

palindromic, the closed-loop poles are always on ρT.

The results for the PI-2 and PI-4 estimators are summarized in the following theorem.

Theorem 11 (PI estimator). Suppose G is a constant, connected, and undirected graph

whose Laplacian matrix has nonzero eigenvalues in the interval [λmin, λmax], and suppose the

input signals are constant. Then the PI-2 and PI-4 estimators satisfy all of the conditions

in Problem 3, i.e., the error converges to zero linearly with rate ρ from any initial state.

106

PI-4. The PI-4 (proportional-integral with four states) estimator is the estimator in

Fig. 4.7 with

h1(z) =
kp z

(z − ρ)2
and h2(z) =

kI z

(z − 1)(z − ρ2)

where the parameters are

kp =
(1− ρ)2

λmin

(
2− λr + 2

√
1− λr

)
and kI =

(1− ρ)2

λmin

and the convergence rate is

ρ =





λr + 6− 2
√

1− λr − 4
√

2 + λr − 2
√

1− λr
2− λr + 2

√
1− λr

, 0 < λr ≤ 2(
√

2− 1)

λr − 1 + 2
√

1− λr
3 + λr

, 2(
√
λr − 1) < λr ≤ 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

λr

ρ

PI-2
PI-4

Figure 4.10. Convergence rate of the PI estimator.

107

4.4. Polynomial Filter Estimator

The previous feedback designs have all used one-hop communication. We designed more

complex estimators (such as the PI estimator) by introducing more dynamics on each agent.

In this section we design feedback estimators with simple dynamics (one or two states per

agent), but allow for an arbitrary number of communication hops. Since multiple rounds

of communication are required to obtain the output, we normalize the convergence rate by

the number of communication hops. For an r-hop estimator with convergence rate ρ, the

normalized convergence rate is defined as ρ̃ := r
√
ρ. We are able to show the following for

estimators with one or two internal states per agent:

• For estimators which are not robust to initial conditions, the optimal normalized

convergence rate is obtained by an estimator with two internal states per agent

using one-hop communication. This is equivalent to the P-2a estimator which has

convergence rate ρ = (1−
√
λr)/(1 +

√
λr).

• For estimators which are robust to initial conditions, the optimal normalized con-

vergence rate is the same as the previous case, but is only achieved (using either

one or two internal states per agent) in the limit as the number of communication

hops approaches infinity.

The design of multi-hop estimators uses a polynomial filter to shape the spectrum of the

Laplacian matrix [28], and are therefore called polynomial filter estimators. These estimators

apply a polynomial τr of degree r to the Laplacian to optimize the convergence rate. For

example, a one-state static polynomial filter estimator is given by

xk+1 = τr(L)xk, x0 = u(4.41)

108

where

τr(L) = I +
r∑

i=1

Li
i∏

j=1

τj = I + τ1L
(
I + τ2L

[
I + τ3L(. . .)

])
(4.42)

is a polynomial of degree r in the matrix L. A specific example is the static estimator in

Fig. 4.1 which uses the choice τ1(L) = I − kpL. For the separated system, τr is a polynomial

in the scalar λ ∈ eig(L) given by

τr(λ) = 1 +
r∑

i=1

λi
i∏

j=1

τj = 1 + τ1λ
(

1 + τ2λ
[
1 + τ3λ(. . .)

])
.(4.43)

The characteristic equation of the separated system is

0 = z − τr(λ)(4.44)

which has a single root at τr(λ). The convergence rate can then be optimized by designing

τr such that |τr(λ)| ≤ ρ for all λ ∈ [λmin, λmax].

The static polynomial filter is not capable of tracking time-varying input signals, but the

estimator in Fig. 4.11b with h(z) = 1/(z − 1) is dynamic and has the same characteristic

polynomial (and therefore same convergence rate). The estimator is not robust to initial

conditions since the integrator state does not pass through the Laplacian before reaching the

output. To make the estimator robust to initial conditions, we add a Laplacian block after

the integrator as shown in Fig. 4.11c.

The number of states variables on each agent corresponds to the degree of the transfer

function h(z). Similar to the P-1 and P-2 estimators, we consider the case of one and

two variables with h1(z) = 1/(z − 1) and h2(z) = z/((z − ρ2)(z − 1)), respectively. The

109

x0

τ1
z − 1

In L

τ2 In L

τ3 In L

y(z)
−

...
(a) Static polynomial filter estimator from [28] where x0 = u.

u(z)

x0

τ1 h(z) In L

τ2 In L

τ3 In L

y(z)
−

...
(b) Dynamic polynomial filter estimator which is not robust to initial conditions.

u(z)

L τ2 h(z) In L

τ3 In L

τ4 In L

y(z)
−

...
(c) Dynamic polynomial filter estimator which is robust to initial conditions.

Figure 4.11. Block diagrams of polynomial filter estimators.

characteristic equation of the separated system is

0 = 1 + h(z) τ(λ)(4.45)

110

where λ ∈ eig(L). For the different choices of h(z), the characteristic polynomial is

F (z, λ) =





z − [1− τ(λ)], h(z) = 1
z−1

z2 − [1 + ρ2 − τ(λ)] z + ρ2, h(z) = z
(z−ρ2)(z−1)

.

(4.46)

For the estimator to be exact, we need h(z) to have a pole at z = 1 and τ(0) = 0. To be

robust to initial conditions, λ2 must factor out of τ(λ) so that h(z) can be between the two

Laplacian blocks as in Fig. 4.11(c). This is the case if τ ′(0) = 0.

The design of the polynomial filter estimator can then be stated as follows.

Problem 4 (Polynomial filter design). Given lower and upper bounds on the nonzero

Laplacian eigenvalues λmin and λmax with 0 < λmin ≤ λmax, solve

ρ̃ = min
r, τ

max
z∈C

λ∈[λmin,λmax]

r
√
|z| s.t. 0 = F (z, λ)(4.47)

where F (z, λ) is given by (4.46), and τ is a polynomial of degree r that satisfies the following

conditions for the given estimator properties:

Exact: 0 = τ(0)

Robust to ICs: 0 = τ ′(0).

We first consider one- and two-state polynomial filter estimators which are exact but not

robust to initial conditions, and then show how to modify the design to achieve the extra

robustness condition.

111

4.4.1. Non-robust one-state polynomial filter estimator

The non-robust polynomial filter estimator with one state per agent is shown in Fig. 4.11b

with h(z) = 1/(z−1). The characteristic polynomial is given by (4.46). In this case, F (z, λ)

has a single root at 1 − τ(λ) so we want 1 − τ(λ) to have minimum absolute value on the

interval [λmin, λmax] as shown in Fig. 4.12. Chebyshev polynomials of the first-kind are known

to have the minimax property meaning that they have the smallest maximum absolute value

on the interval [−1, 1] (when normalized so that the leading coefficient is unity). As shown in

[29], the polynomial τ which minimizes the convergence rate ρ is obtained using Chebyshev

polynomials. In particular, we have

τ(λ) = 1− ρ Tr
(

2

λmax − λmin

λ− λmax + λmin

λmax − λmin

)
(4.48)

where Tr(·) is the rth Chebyshev polynomial of the first-kind. We then choose ρ such that

τ(0) = 0 so that the estimator is exact.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

λ

1
−
τ
(λ
)

Figure 4.12. Closed-loop pole of the non-robust one-state polynomial filter
estimator using r = 6, λmin = 0.1, and λmax = 1. The horizontal dashed lines
are at ±ρ. Note that the closed-loop pole has magnitude no larger than ρ for
λ in the interval [λmin, λmax].

112

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

λr = λmin/λmax

N
or
m
al
iz
ed

co
n
ve
rg
en
ce

ra
te

(
r√
ρ
) r = 1

r = 2
r = 3
r = 4
r = 5
r = 6
r → ∞

Figure 4.13. Normalized convergence rate of the PF-NR-1-r estimator. Theo-
rem 12 proves that the convergence rate approaches the dashed black line in
the limit as r →∞.

PF-NR-1-r. The PF-NR-1-r (non-robust, one-state, r-hop polynomial filter) estimator

is the estimator in Fig. 4.11b with

h(z) =
1

z − 1
and τ(λ) = 1− Tr(αλ− β)

Tr(−β)

where

α =
2

λmax − λmin

and β =
λmax + λmin

λmax − λmin

.

The convergence rate is

ρ =
(−1)r

Tr (−β)
.

113

The normalized convergence rate of the PF-NR-1-r estimator is plotted in Fig. 4.13 for

several values of r. In the limit as r →∞, the normalized convergence rate is given by the

following theorem.

Theorem 12. The PF-NR-1-r estimator is exact for constant input signals and inter-

nally stable, but not robust to initial conditions. Furthermore, the limit of the normalized

convergence rate as the number of communication hops approaches infinity is

lim
r→∞

r
√
ρ =

1−
√
λr

1 +
√
λr
.(4.49)

Before proving Theorem 12, we need the following lemma.

Lemma 6. For x ≥ 0, limr→∞
r
√

cosh(rx) = ex.

Proof. Since x ≥ 0, we can upper bound cosh(rx) by

cosh(rx) =
erx + e−rx

2
≤ erx + erx

2
= erx.

Since e−rx > 0, a lower bound is 1
2
erx ≤ cosh(rx). Using the squeeze theorem on the

inequalities

1
r
√

2
ex ≤ r

√
cosh(rx) ≤ ex

gives that limr→∞
r
√

cosh(rx) = ex. �

We now give the proof for Theorem 12.

Proof (Theorem 12): The estimator properties come directly from applying Thm. 4

to the estimator block diagram. Define β = (λmax +λmin)/(λmax−λmin). Using the fact that

114

Tr(x) = (−1)r cosh(r cosh−1(x)) for x ≤ −1,

lim
r→∞

r
√
ρ =

1

limr→∞
r
√

(−1)rTr(−β)
=

1

limr→∞
r

√
cosh

(
r cosh−1(β)

) .

Note that β ≥ 1 since 0 < λmin ≤ λmax, so cosh−1(β) ≥ 0. Then we can apply Lemma 6 to

obtain

lim
r→∞

r
√
ρ =

1

exp{cosh−1(β)} .

Using cosh−1(x) = ln[x+
√
x2 − 1] and simplifying gives

lim
r→∞

r
√
ρ =

1

exp{ln[β +
√
β2 − 1]}

=
1

β +
√
β2 − 1

=

√
λmax −

√
λmin√

λmax +
√
λmin

=
1−
√
λr

1 +
√
λr

where λr = λmin/λmax. �

Note that for r = 1, we have

r
√
ρ =

1− λr
1 + λr

(4.50)

which is the same as that of the optimal estimator found in [12] and is equivalent to the

P-1a estimator. By increasing the number of communication hops, not only does the con-

vergence rate ρ improve, but it also improves when normalized for the extra communication.

Therefore, using more communication hops improves the convergence rate for the PF-NR-1-r

(non-robust, one-state, r-hop polynomial filter) estimator.

115

4.4.2. Non-robust two-state polynomial filter estimator

The non-robust polynomial filter estimator with two states per agent is shown in Fig. 4.11b

with h(z) = z/((z − ρ2)(z − 1)). The characteristic polynomial of the separated system is

F (z, λ) = z2 − [1 + ρ2 − τ(λ)] z + ρ2.(4.51)

It can be shown that the roots of F (z, λ) are inside ρT if and only if |1 + ρ2 − τ(λ)| ≤ 2ρ

(see [65, Lemma 1] for details). Similar to the one-state estimator, the polynomial τ which

minimize ρ is given by a shifted and scaled Chebyshev polynomial,

τ(λ) = 1 + ρ2 − 2ρ Tr

(
2

λmax − λmin

λ− λmax + λmin

λmax − λmin

)
.(4.52)

Once again, we choose ρ such that 0 = τ(0) so that the estimator is exact.

PF-NR-2-r. The PF-NR-2-r (non-robust, two-state, r-hop polynomial filter) estimator

is the estimator in Fig. 4.11b with

h(z) =
z

(z − ρ2)(z − 1)
and τ(λ) = 1 + ρ2 − 2ρ Tr(αλ− β)

where

α =
2

λmax − λmin

and β =
λmax + λmin

λmax − λmin

.

The convergence rate is

ρ = (−1)r Tr(−β)−
√
T 2
r (−β)− 1.

116

Theorem 13. The PF-NR-2-r estimator is exact for constant input signals and inter-

nally stable, but not robust to initial conditions. Furthermore, the normalized convergence

rate is

r
√
ρ =

1−
√
λr

1 +
√
λr

(4.53)

for all r ≥ 1.

Proof. Similar to the proof of Theorem 12, define β = (1 +λr)/(1−λr) and use the fact

that Tr(x) = (−1)r cosh(r cosh−1(x)) for x ≤ −1 to write

ρ = (−1)rTr(−β)−
√
T 2
r (−β)− 1 = cosh(r cosh−1(β))−

√
cosh2(r cosh−1(β))− 1.

Using the common identities cosh2(x)− 1 = sinh2(x) and cosh(x)− sinh(x) = e−x gives

ρ = cosh(r cosh−1(β))− sinh(r cosh−1(β)) = exp{−r cosh−1(β)}.

Once again using cosh−1(x) = ln[x+
√
x2 − 1] and simplifying gives

ρ = exp{−r ln[β +
√
β2 − 1]} = exp{ln[(β +

√
β2 − 1]−r}

=
1

(β +
√
β2 − 1)r

=

(
1−
√
λr

1 +
√
λr

)r
. �

Note that the performance of the two-state estimator is always better than that of the

one-state estimator, and the performance of the one-state estimator approaches that of the

two-state estimator as the number of communication hops approaches infinity.

Since it does not benefit the two-state estimator to use any additional communication

hops, the optimal use of memory in the non-robust case is to use the one-hop two-state

117

estimator, i.e., the PF-NR-2-1 estimator. Note that this is equivalent to the two-state

proportional estimator in Fig. 4.4(a), i.e., the P-2a estimator.

So far we have only considered polynomial filter estimators which are not robust to initial

conditions. We now analyze the polynomial filter estimator in Fig. 4.11c which is robust to

initial conditions.

4.4.3. Robust one-state polynomial filter estimator

For robust polynomial filter estimators, the characteristic polynomial is still given by (4.46),

although we now have the extra robustness condition τ ′(0) = 0. For low degree polynomials,

we can solve for the optimal solution. For example, when τ(λ) is degree two (the lowest

possible degree for robustness to initial conditions), we have τ(λ) = 1+τ2λ
2 with τ(λmin) = ρ

and τ(λmax) = −ρ which implies that

τ2 = − 2

λ2
max + λ2

min

and ρ =
1− λ2

r

1 + λ2
r

.(4.54)

This convergence rate is quite slow. It can be improved using a higher degree polynomial,

but this design process becomes infeasible. In the non-robust case, the optimal solution was

given by Chebyshev polynomials. These no longer work in the robust case since they do

not satisfy the robustness condition τ ′(0) = 0. To handle the extra condition, we multiply

a Chebyshev polynomial by a linear term and use the extra degrees of freedom from the

linear term to satisfy the robustness condition. This allows us to analyze the performance

of high-degree estimators (although it is not optimal for low-degree estimators). Therefore,

118

we let τ(λ) be given by

τ(λ) = 1− (a λ− b)Tr−1

(
2

λmax − λmin

λ− λmax + λmin

λmax − λmin

)
.(4.55)

We then choose a and b such that τ(0) = 0 and τ ′(0) = 0 so that the estimator is exact and

robust to initial conditions.

PF-R-1-r. The PF-R-1-r (robust, one-state, r-hop polynomial filter) estimator is the

estimator in Fig. 4.11c with

h(z) =
1

z − 1
and τ(λ) = 1−

(
1− αλ T

′
r−1(−β)

Tr−1(−β)

)
Tr−1(αλ− β)

Tr−1(−β)

where

α =
2

λmax − λmin

and β =
λmax + λmin

λmax − λmin

.

The convergence rate is

ρ =
(−1)r−1

Tr−1(−β)

(
1− 2

1− λr
T ′r−1(−β)

Tr−1(−β)

)

Theorem 14. The PF-R-1-r estimator is exact for constant input signals, internally

stable, and robust to initial conditions. Furthermore, the limit of the normalized convergence

rate as the number of communication hops approaches infinity is

lim
r→∞

r
√
ρ =

1−
√
λr

1 +
√
λr
.(4.56)

Before proving Theorem 14, we need the following lemma.

119

Lemma 7. For x > 1 and any γ > 0,

lim
r→∞

r

√
1− γ T

′
r(x)

Tr(x)
= 1.(4.57)

Proof. Let c =
√
x2 − 1 and a = x + c. Then 1/a = x − c and |a| < 1. Then we can

write Tr(x) and T ′r(x) as

Tr(x) =
ar + a−r

2
and T ′r(x) = r

ar − a−r
2c

.

Taking the logarithm of the left-hand side of (4.57), we have

lim
r→∞

log r

√
1− γ T

′
r(x)

Tr(x)
= lim

r→∞

log
[
1− γ T ′r(x)

Tr(x)

]

r
= lim

r→∞

log
[
1− γ r

c
ar−a−r

ar+a−r

]

r
.

Using L’Hôpital’s rule, this gives

lim
r→∞

γ 1−a4r−4ra2r log(a)
c(1+a2r)2

1− γ r
c
ar−a−r

ar+a−r

= lim
r→∞

−γ/c
−r γ/c = lim

r→∞
1/r = 0.

Since log(0) = 1 and the log(·) function is continuous, this gives the result. �

Proof (Theorem 14): The estimator is exact since h(z) contains a pole at z = 1 and

τ(0) = 0. To check robustness to initial conditions, we first compute

τ ′(λ) = α
T ′r−1(−β)

Tr−1(−β)

Tr−1(αλ− β)

Tr−1(−β)
−
(

1− α T
′
r−1(−β)

Tr−1(−β)
λ

)
α
T ′r−1(αλ− β)

Tr−1(−β)

from which we can see that τ ′(0) = 0, so the estimator is robust to initial conditions.

The convergence rate is given by

ρ = |1− τ(λmax)| = (−1)r−1 [1− τ(λmax)] =
(−1)r−1

Tr−1(−β)

(
1− 2

1− λr
T ′r−1(−β)

Tr−1(−β)

)
.

120

Splitting the limit to be evaluated, we have

lim
r→∞

r
√
ρ = lim

r→∞
r

√
(−1)r−1

Tr−1(−β)

[
1− 2

1− λr
T ′r−1(−β)

Tr−1(−β)

]

= lim
r→∞

(
r−1

√
(−1)r−1

Tr−1(−β)

) r−1
r
(

r−1

√[
1− 2

1− λr
T ′r−1(−β)

Tr−1(−β)

]) r−1
r

.

Theorem 12 provides the solution to the limit of the first expression while Lemma 7 gives

that the limit of the second expression is equal to one, so

lim
r→∞

r
√
ρ =

1−
√
λr

1 +
√
λr
. �

4.4.4. Robust two-state polynomial filter estimator

The design of the two-state robust estimator is similar to that of the two-state non-robust

estimator except for the additional robustness condition, τ(0) = 0, where the characteristic

polynomial is

F (z, λ) = z2 − [1 + ρ2 − τ(λ)] z + ρ2.(4.58)

Similar to the previous cases, we choose

τ(λ) = (1 + ρ2)

[
1− (aλ− b)Tr−1

(
2

λmax − λmin

λ− λmax + λmin

λmax − λmin

)]
.(4.59)

The conditions for the estimator to be exact and robust to initial conditions are the same

as the robust one-state case,

a = −αT
′
r−1(−β)

T 2
r−1(−β)

and b = − 1

Tr−1(−β)
.(4.60)

121

The asymptotic convergence rate ρ is then chosen so that |1 + ρ2 − τ(λ)| ≤ 2ρ for all

λ ∈ [λmin, λmax].

PF-R-2-r. The PF-R-2-r (robust, two-state, r-hop polynomial filter) estimator is the

estimator in Fig. 4.11c with

h(z) =
z

(z − ρ2)(z − 1)
and τ(λ) = (1 + ρ2)

[
1−

(
1− αλT

′
r−1(−β)

Tr−1(−β)

)
Tr−1(αλ− β)

Tr−1(−β)

]

where

α =
2

λmax − λmin

and β =
λmax + λmin

λmax − λmin

.

The convergence rate is ρ = (1−
√

1− ρ2
1)/ρ1 where

ρ1 =
(−1)r−1

Tr−1(−β)

(
1− 2

1− λr
T ′r−1(−β)

Tr−1(−β)

)

Theorem 15. The PF-R-2-r estimator is exact for constant input signals, internally

stable, and robust to initial conditions. Furthermore, the limit of the normalized convergence

rate as the number of communication hops approaches infinity is

lim
r→∞

r
√
ρ =

1−
√
λr

1 +
√
λr
.(4.61)

Proof. The convergence rate of the PF-R-2-r estimator is the minimum ρ such that

2ρ ≥ |(1 + ρ2)− τ(λ)| =
∣∣∣∣(1 + ρ2)

(
1− αλT

′
r−1(−β)

Tr−1(−β)

)
Tr−1(αλ− β)

Tr−1(−β)

∣∣∣∣

122

for all λ ∈ [λmin, λmax]. From the results for the PF-R-1-r estimator, we have that

∣∣∣∣
(

1− αλ T
′
r−1(−β)

Tr−1(−β)

)
Tr−1(αλ− β)

Tr−1(−β)

∣∣∣∣ ≤ ρ1

for all λ ∈ [λmin, λmax] where

ρ1 =
(−1)r−1

Tr−1(−β)

(
1− 2

1− λr
T ′r−1(−β)

Tr−1(−β)

)
and lim

r→∞
r
√
ρ1 =

1−
√
λr

1 +
√
λr
.

Comparing the two bounds, we have 2ρ/(1 + ρ2) = ρ1 which gives

ρ =
1−

√
1− ρ2

1

ρ1

.

Taking the limit, we have

lim
r→∞

r
√
ρ = lim

r→∞
r

√
1−

√
1− ρ2

1

ρ1

= lim
r→∞

r
√
ρ1 lim

r→∞
r

√√√√ 1

ρ2
1

−
√

1

ρ2
1

− 1.

The second limit is one, so

lim
r→∞

r
√
ρ = lim

r→∞
r
√
ρ1 =

1−
√
λr

1 +
√
λr
. �

Table 4.1. Normalized convergence rates of polynomial filter estimators. p is
the number of states on each agent, and r is the number of communication
hops required to implement the estimator.

Non-robust to ICs Robust to ICs

r = 1 r →∞ r = 2 r →∞

p = 1
1− λr
1 + λr

1−
√
λr

1 +
√
λr

p = 1

√
1− λ2

r

1 + λ2
r

1−
√
λr

1 +
√
λr

p = 2
1−
√
λr

1 +
√
λr

1−
√
λr

1 +
√
λr

p = 2

√
1− λr
1 + λr

1−
√
λr

1 +
√
λr

123

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

λr = λmin/λmax

r√
ρ

Robust, one state, two hop
Robust, two state, two hop
Non-robust, one state, one hop
Non-robust, two state, one hop

Figure 4.14. Normalized convergence rates of polynomial filter estimators. In
the limit as the number of hops approaches infinity, the convergence rate of
each polynomial filter approaches that of the non-robust, two-state, one-hop
estimator.

The results for both non-robust and robust polynomial filter estimators with one and

two states are summarized in Table 4.1 with the normalized convergence rates plotted in

Fig. 4.14. Note that the non-robust estimators achieve better performance for small values

of r, but their performance is the same in the limit as r →∞.

To summarize, we have shown the following:

• For estimators which are not robust to initial conditions, the optimal convergence

rate can be obtained using only two internal states per agent and one-hop commu-

nication. (This is obtained by the P-2a estimator.)

• For estimators which are robust to initial conditions, the same convergence rate as

the non-robust case is achieved in the limit as the number of communication hops

approaches infinity (using either one or two internal states per agent).

124

4.5. Edge Estimator

In this section, we design an estimator that uses one-hop communication, is internally

stable, is exact for constant inputs, is robust to initial conditions, and achieves the fastest

known linear rate of convergence. Unlike the previous estimators where each agent has a

fixed number of internal state variables, in this case each agent must have a state variable

for each incoming edge. The estimator is unscalable to large dense graphs, although it can

still be used when each agent has sufficient memory to store the variables for each edge (e.g.,

when the communication graph is sparse). Since the number of internal state variables in

the system scales with m (the number of edges) instead of n (the number of agents), we call

this the edge estimator.

u(z)

h1(z) In BW h2(z) Im

η0

BT

y(z)

RnRmRmRn

−

Figure 4.15. Block diagram of the edge estimator.

The block diagram of the edge estimator is shown in Fig. 4.15 with the space of the

signals shown. The state equations for agent i are

νik+1 = a1 ν
i
k + b1

∑

j∈Nin(i)

aij
(
c2 η

i,j
k + d2 (yik − yjk)

)

ηi,jk+1 = a2 η
i,j
k + b2 (yik − yjk), j ∈ Nin(i)

yik = uik −
(
c1 ν

i
k + d1

∑

j∈Nin(i)

aij
(
c2 η

i,j
k

))
(4.62)

125

where

h1(z) =



a1 b1

c1 d1


 and h2(z) =



a2 b2

c2 d2


 .(4.63)

The number of internal state variables on agent i is p1 + p2 |Nin(i)| where p1 and p2 are the

degrees of h1(z) and h2(z), respectively. For the estimator to be well-posed, we require the

product h1(z)h2(z) to be strictly proper, i.e, d1 d2 = 0.

From Chapter 2, we see that a Laplacian block is needed after the integrator (or more

generally, the model of the input) for robustness to initial conditions and before the integrator

for internal stability. However, we can get both properties using only one Laplacian matrix

by factoring the Laplacian. When the graph is undirected, the Laplacian matrix can be

factored using the oriented incidence matrix as L = BWBT where W is a diagonal matrix

of edge weights. By moving the integrator block between B and BT as shown in Fig. 4.15,

we can get both internal stability and robustness to initial conditions. This can easily be

seen by separating the system (see Section 2.6). Since 1T
nB = 0T

m, the separated system in

the consensus direction is simply a gain of one; in particular, the output does not depend on

the initial condition η0. (The output also does not depend on ν0 since h1(z) is chosen to be

strictly stable.) Then the output converges to avg(u)1n. Since BT1n = 0m, the input to the

integrator is zero in steady-state so the estimator is internally stable.

The edge estimator has the same transfer function as the proportional estimator in

Fig. 4.4(a,b). Therefore, h(z) can be chosen in the same way as the proportional estimator

to optimize the convergence rate.

126

Edge-1. The Edge-1 estimator is the estimator in Fig. 4.15 with

h1(z) = kp and h2(z) =
1

z − 1

where

kp =
2

λmax + λmin

and ρ =
λmax − λmin

λmax + λmin

.

Edge-2. The Edge-2 estimator is the estimator in Fig. 4.15 with

h1(z) =
kp

z − ρ2
and h2(z) =

z

z − 1

where

kp =
4

(
√
λmax +

√
λmin)2

and ρ =

√
λmax −

√
λmin√

λmax +
√
λmin

.

4.6. Nonlinear Estimator

All of the estimators described so far in this chapter have been linear. In this section,

however, we propose a nonlinear estimator for dynamic average consensus. This estimator is

exact for constant inputs, is time-invariant, is internally stable, uses one-hop local broadcast

communication, and has the fastest known convergence rate (equivalent to the P-2 estimator,

ρ = (
√
λmax −

√
λmin)/(

√
λmax +

√
λmin)). The estimator is also robust to initial conditions

in a restricted sense; there is an open set of initial conditions from which the error converges

linearly to zero. However, the set of initial conditions is not the entire space. In other words,

the estimator is locally convergent, but not globally convergent. Note that we have previously

127

used the term robust to initial conditions to denote both local and global convergence since

they are equivalent for linear estimators. For the nonlinear estimator we must now distinguish

the two types of robustness.

To develop the nonlinear estimator, first consider the proportional estimator in Fig. 4.4b.

Recall that this estimator is globally convergent (since there is a Laplacian block after the

integrator), but is not internally stable (since there is no Laplacian block before the inte-

grator). The problem is that the integrator states grow unbounded when the outputs have

converged to the average of the inputs. To fix this, we propose changing the state space on

each agent from the plane to the cylinder, and in doing so introduce nonlinearities into the

dynamics. To do this, we propose to have the integrator states take values on the compact

manifold S1 instead of the real line, where S1 denotes the unit circle. We must modify the

dynamics to make this work, but the result will be that the integrator states are automat-

ically bounded regardless of the other signals in the system. In essence, we are proposing

dynamic consensus via filtered oscillators, an extension of the unfiltered static oscillator

consensus method introduced in [38, Ch. 2].

Let I : R → T denote the covering projection s 7→ I(s) = exp{s
√
−1} for s ∈ R. We

identify S1 with the unit circle T in the complex plane, but to achieve notational consistency

we will write the group operator additively, using ⊕ and 	 to denote angle addition and

subtraction. When used with vector arguments, we interpret I, f , ⊕, and 	 as acting

element-wise on each element of the vector to produce vector values.

We assume that f ◦ I is odd, continuous, and satisfies (f ◦ I)′(0) = 1. Other than these

requirements, we are free to choose f ◦ I as desired; a simple choice is f ◦ I = sin.

128

Given a constant scaling parameter ζ > 0, the nonlinear estimator has the form shown

in Fig. 4.16 where

h1(z) =



a1 b1

c1 d1


 and h2(z) =



a2 b2

c2 d2


(4.64)

with d1 d2 = 0 so that the system is well-posed. On agent i this takes the form

νik+1 = a1 ν
i
k + b1

∑

j∈Nin(i)

aij f(ψik − ψjk)

ηik+1 = a2 η
i
k ⊕ b2 I

(yik
ζ

)

ψik = c2 η
i
k ⊕ d2 I

(uik
ζ
− c1 ν

i
k

)

yik = uik − ζ
(
c1 ν

i
k + d1

∑

j∈Nin(i)

aij f(ψik − ψjk)
)

(4.65)

where ηik and ψik take values in T, and ψik is transmitted to neighboring agents. Stacking the

variables into vectors, we can write the system compactly as

νk+1 = (a1 ⊗ In) νk + (b1 ⊗ In)L(ψk)

ηk+1 = (a2 ⊗ In) ηk ⊕ (b2 ⊗ In) I
(yk
ζ

)

ψk = (c2 ⊗ In) ηk ⊕ (d2 ⊗ In) I
(uk
ζ
− (c1 ⊗ In) νk

)

yk = uk − ζ
(
(c1 ⊗ In) νk + (d1 ⊗ In)L(ψk)

)

(4.66)

where ψ = [ψ1, . . . , ψn]T ∈ Tn (and similar for η).

129

u(z)

h1(z) ζ In L(•) h2(z) In
(

•

ζ

)

y(z)

η0

RnTnRn

−

Figure 4.16. Block diagram of the nonlinear estimator.

Observe that the nonlinear estimator is similar to the proportional estimator in Fig. 4.4b—

we have merely replaced the Laplacian and integrator blocks with nonlinear versions, intro-

duced the scaling parameter ζ, and moved the Laplacian block between the two factors of

h(z) = h1(z)h2(z).

We need the scaling parameter ζ here because the nonlinear Laplacian operator L has

a bounded image in Rn when Ω is compact. Indeed, the continuous function |f | achieves a

maximum value fmax on the compact set Ω = T, so the Laplacian is bounded as

‖L(·)‖∞ ≤ fmax‖BW‖∞ .(4.67)

Using (4.66), we have that

(In − Πn)uk = (y − Πnu) + ζ
(
(c1 ⊗ In) νk + (d1 ⊗ In)L(ψk)

)
(4.68)

= ek + ζ
(
(c1 ⊗ In) νk + (d1 ⊗ In)L(ψk)

)
.

The last term is the output of the filter h1(z) and therefore has ∞-norm bounded by the

`1-norm of h1(z), denoted ‖h1(z)‖1, multiplied by the ∞-norm of the input to h1(z). This

gives the bound

‖(In − Πn)u‖∞ ≤ ‖e‖∞ + ζ ‖h1(z)‖1 ‖L(·)‖∞(4.69)

130

which implies

ζ ≥ ‖(In − Πn)u‖∞ − ‖e‖∞
‖h1(z)‖1 fmax ‖BW‖∞

.(4.70)

We can view this inequality as a necessary condition on the scaling parameter ζ. However,

choosing ζ to satisfy (4.70) for a desired bound on the steady-state error requires knowledge

of an upper bound on the differences between the inputs ui and their global average 1T
nu.

Hence this estimator cannot achieve bounded error for general ramp inputs or other types

of unbounded input signals, even when the estimator is cascaded, because eventually the

bounded nonlinear Laplacian will be unable to produce large enough outputs. This is a clear

disadvantage of the nonlinear estimator. However, this is not an issue so long as the input

signals are bounded, as is the case in many practical applications.

Similar to the proportional estimator with two-states, we choose h1(z) and h2(z) so that

the zeros of 1+λh1(z)h2(z) are on ρT for all λ ∈ [λmin, λmax]. We also choose h1 to be strictly

proper so that the output only depends on the internal states (and not the Laplacian), and

we choose h2 to have a pole at z = 1 since this transfer function is implemented on the

compact manifold S1 (and therefore cannot become unbounded). This produces the NL-2

estimator summarized below.

NL-2. The NL-2 (nonlinear, two-state) estimator is the estimator in Fig. 4.16 with

h1(z) =
kp

z − ρ2
and h2(z) =

z

z 	 1

where

kp =
4

(
√
λmax +

√
λmin)2

and ρ =

√
λmax −

√
λmin√

λmax +
√
λmin

.

131

To analyze the NL-2 estimator, we assume for simplicity that there exists b∈ (0, π) such

that (f ◦ I)(s) = s when |s| ≤ b. In other words, we assume that the restriction of the

2π-periodic function f ◦ I to the interval [−b, b] is the identity map. This means that the

NL-2 estimator will generate the same output as the linear P-2 estimator in Fig. 4.4 when

all initial states are zero and the scaling parameter ζ is sufficiently large relative to the size

of the inputs. In this case, we can show that if u is constant and ζ satisfies

∥∥u− uave1
∥∥
∞ ≤

ζb
√
λr

2
√
n

(4.71)

where λr = λmin/λmax, then there is an open set of initial node states from which the

estimator outputs yik all converge to the global average 1T
nu as k → ∞. Furthermore, the

convergence is exponential with rate ρ (thus it is as fast as the P-2 estimator). Finally,

simulations suggest that this open set of initial agent states (namely, the estimator’s region

of attraction) is large for sufficiently large values of ζ.

The results for the NL-2 estimator are summarized in the following theorem.

Theorem 16 (NL-2). Consider the NL-2 estimator. Let G be a constant, connected,

undirected graph with Laplacian operator L : Tn → Rn defined by L(x) = BWf(BTx) where

f is continuous. Suppose there exists b ∈ (0, π) such that (f ◦ I)(s) = s when |s| ≤ b and

that ζ is sufficiently large. Then there is an open set of initial states from which the output

of the estimator converges to the average of the inputs. Furthermore, the rate of convergence

is ρ = (
√
λmax −

√
λmin)/(

√
λmax +

√
λmin).

132

4.7. Summary

Many feedback estimators for dynamic average consensus have been presented in this

chapter. To summarize the results, we give the properties of each estimator in Table 4.2 and

plot the corresponding convergence rates in Fig. 4.17. Only the PI estimator has all of the

desired properties in Problem 3. The convergence rate of the PI-4 is significantly faster than

the PI-2, although not quite as fast as the fastest known methods (i.e., the convergence rate

ρ = (1−
√
λr)/(1 +

√
λr)). Furthermore, the PI-4 only requires four internal state variables

on each agent, and each agent only broadcasts two scalar variables to its local neighbors at

each iteration.

Table 4.2. Sumary of the properties of feedback estimators.

Estimator In
te

rn
al

st
at

es
on

ag
en

t
i

Tra
ns

m
is
si
on

va
ri
ab

le
s

C
om

m
un

ic
at

io
n

ho
ps

T
im

e-
in

va
ri
an

t

Sc
al
ab

le

E
xa

ct

In
te

rn
al
ly

st
ab

le

Loc
al
ly

co
nv

er
ge

nt

G
lo
ba

lly
co

nv
er

ge
nt

P

P-1a 1 1 1 3 3 3 3 7 7
P-2a 2 1 1 3 3 3 3 7 7
P-1b 1 1 1 3 3 3 7 3 3
P-2b 2 1 1 3 3 3 7 3 3
P-1c 1 1 1 3 3 7 7 7 7
P-2c 2 1 1 3 3 7 7 7 7

PI
PI-2 2 2 1 3 3 3 3 3 3
PI-4 4 2 1 3 3 3 3 3 3

PF

PF-NR-1-r 1 1 r 3 3 3 3 7 7
PF-NR-2-r 2 1 r 3 3 3 3 7 7
PF-R-1-r 1 1 r 3 3 3 3 3 3
PF-R-2-r 2 1 r 3 3 3 3 3 3

Edge
Edge-1 |Nin(i)| 1 1 3 7 3 3 3 3
Edge-2 1+|Nin(i)| 1 1 3 7 3 3 3 3

NL NL-2 2 1 1 3 3 3 3 3 7

133

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λr = λmin/λmax

N
or
m
al
iz
ed

co
n
ve
rg
en
ce

ra
te

(
r√
ρ
)

P-1 or Edge-1
P-2 or Edge-2 or NL-2 or PF-∞
PI-2
PI-4

Figure 4.17. Summary of the convergence rates of feedback estimators. We
use PF-∞ to denote any of the polynomial filter estimators (either robust or
non-robust and one or two internal state variables) in the limit as r →∞.

134

CHAPTER 5

Estimators for Signals with Continuous Frequency Spectrum

In this chapter we design estimators to solve the dynamic average consensus problem

when the frequency spectrum of the input signals is composed of a continuous band of

frequencies. The design is given for frequency bands of the form [0, θc], but could be extended

to include passband and highpass designs as well. We assume that the cutoff frequency

is known; if unknown, the cutoff frequency may be estimated and the estimate used to

design the algorithm. If the input signals contain multiple frequency bands, then multiple

estimators, each designed for a single frequency band, may be cascaded together in series to

track the average of the signals.

Unlike the estimators for signals with discrete frequency spectrum, the estimators de-

signed in this chapter use a feedforward design. First, we show that the feedback estimators

considered previously are unsuitable for tracking the average of bandlimited signals. We

then propose a feedforward estimator which can achieve arbitrarily small steady-state error

even when the communication graph is time-varying. We bound the steady-state error of

the feedforward estimator for a general time-varying graph, and show that the error can be

made arbitrarily small when the graph is connected, balanced, and has Laplacian matrix

Lk ∈ Ln(α) for some α < 1 at each iteration. If the graph is constant and the graph topol-

ogy is known, the steady-state error can be minimized by choosing the edge weights using

the convex optimization problem specified in Problem 2 to minimize α. Furthermore, we

135

show through simulations that the performance degrades gracefully as these assumptions are

violated.

Therefore, we solve the following problem in this chapter.

Problem 5. Suppose G is a time-varying graph which on average is connected, balanced,

and has Laplacian matrix L ∈ Ln(α) where α < 1. Also, suppose the input signals are

bandlimited with known cutoff frequency θc, i.e., |u(ejθ)| = 0 for all θ ∈ [θc, π]. Design an

estimator which

(1) uses one-hop local broadcast communication,

(2) is scalable,

(3) is internally stable,

(4) is time-invariant,

(5) is robust to initial conditions,

(6) is robust to changes in the graph,

(7) and has bounded steady-state error.

Furthermore, the estimator should have the minimum attainable bound on the steady-state

error.

In contrast to the problem in the previous chapter, here we prioritize minimizing the

steady-state error instead of the convergence rate (since the steady-state error cannot be

made zero in this case). There is a trade-off, however, between steady-state error and

convergence rate as we will see. In particular, the settling time of the feedforward estimator

increases as we tighten the bound on the steady-state error.

This chapter is organized as follows. First, we analyze cascaded versions of two propor-

tional feedback estimators from Chapter 4 when the input signals are bandlimited, and it

136

is shown that neither estimator is capable of solving Problem 5. Then we analyze several

feedforward designs and show that there is a feedforward estimator which solves Problem 5

with arbitrarily small steady-state error.

5.1. Analysis

For this section, we relax the assumption of the communication graph being time-varying.

When the communication graph is constant, the estimators we consider are linear time-

invariant and can therefore be studied using standard frequency-domain techniques in con-

trol. In this case, the system is completely characterized by the transfer function from the

input to the output, denoted H(z, L). In this section, we give the block diagram of the

general estimator structure considered and setup the tools needed to characterize the error

of the estimator.

Denote the transfer function from the input to the error as

Herr(z, L) = H(z, L)− Πn(5.1)

where Πn := 1n1
T
n/n so that e(z) = Herr(z, L)u(z). For undirected graphs, L is symmetric

so the singular values of the error transfer function are

σ(θ, λ) =





|H(ejθ, 0)− 1|, λ = 0

|H(ejθ, λ)|, λ ∈ [λmin, λmax]

(5.2)

where the nonzero eigenvalues of L are in [λmin, λmax]. We analyze the response of the

system in the passband (θ ∈ [0, θc]), stopband (θ ∈ (θc, π]), consensus direction (λ = 0), and

disagreement directions (λ ∈ [λmin, λmax]) separately. The maximum singular value in each

case is given in Table 5.1.

137

Table 5.1. Maximum singular values of the error transfer function in the con-
sensus and disagreement directions and the passband and stopband.

Consensus Disagreement

Passband σpass
cons = sup

θ∈[0,θc]

σ(θ, 0) σpass
dis = sup

λ∈[λmin,λmax]
θ∈[0,θc]

σ(θ, λ)

Stopband σstop
cons = sup

θ∈[θc,π]

σ(θ, 0) σstop
dis = sup

λ∈[λmin,λmax]
θ∈[θc,π]

σ(θ, λ)

For a signal x(z), the 2-norm in the passband and stopband are defined as

‖x(z)‖pass
2 =

√
1

π

∫ θc

0

x(e−jθ)Tx(ejθ) dθ(5.3)

‖x(z)‖stop
2 =

√
1

π

∫ π

θc

x(e−jθ)Tx(ejθ) dθ.(5.4)

For a system H(z), we define ∞-norm in the passband and stopband as

‖H(z)‖pass
∞ = sup

θ∈[0,θc]

σ̄(H(ejθ))(5.5)

‖H(z)‖stop
∞ = sup

θ∈[θc,π]

σ̄(H(ejθ))(5.6)

where σ̄(H(ejθ)) indicates the maximum singular value of H(ejθ). The maximum error can

then be bounded using the maximum singular values and the size of the inputs as follows.

Lemma 8 (Error bound). Let G be a constant, connected, and undirected graph with

Laplacian matrix L. Consider an estimator with transfer function H(z, L) from the input

u(z) to the output y(z). The maximum absolute steady-state error is bounded by

lim sup
k→∞

‖ek‖∞ ≤ σpass
cons‖Πu(z)‖pass2 + σstop

cons‖Πu(z)‖stop2

+ σpass
dis ‖(I − Π)u(z)‖pass2 + σstop

dis ‖(I − Π)u(z)‖stop2

(5.7)

138

where the singular values are defined in (5.2) and Table 5.1.

Proof. Since the ∞-norm is bounded by the 2-norm, ‖ek‖∞ ≤ ‖ek‖2 =
√
eTk ek which

gives

lim sup
k→∞

‖ek‖2
∞ ≤ lim sup

k→∞
eTk ek ≤

∞∑

k=−∞
eTk ek.

Parseval’s theorem states that

∞∑

k=−∞
eTk ek =

1

π

∫ π

0

|e(ejθ)|2dθ = ‖e(z)‖2
2.

Combining these results gives lim supk→∞ ‖ek‖∞ ≤ ‖e(z)‖2. Decomposing the input into the

consensus component Πu and the disagreement component (I − Π)u,

‖e(z)‖2 = ‖Herr(z, L) [Π + (I − Π)]u(z)‖2

≤ ‖Herr(z, L) Πu(z)‖2 + ‖Herr(z, L) (I − Π)u(z)‖2.

Since ‖x(z)‖2 ≤ ‖x(z)‖pass
2 + ‖x(z)‖stop

2 for any x(z), each term can be separated into the

passband and stopband,

‖e(z)‖2 ≤ ‖Herr(z, L) Πu(z)‖pass
2 + ‖Herr(z, L) Πu(z)‖stop

2

+ ‖Herr(z, L) (I − Π)u(z)‖pass
2 + ‖Herr(z, L) (I − Π)u(z)‖stop

2 .

Since the graph is undirected, the singular values of Herr(e
jθ, L) are given by (5.2) with the

maximum singular values in Table 5.1. This gives the bound in (5.7). �

139

Lemma 8 shows that we want to minimize the singular values of the error transfer function

in order for the estimator to solve the dynamic average consensus problem with small steady-

state error.

If the input signals are bandlimited with cutoff frequency θc, then ‖Πu‖stop
2 = 0 =

‖(I − Π)u‖stop
2 in Lemma 8. When implemented using finite arithmetic, however, rounding

errors create small high-frequency components in the signals. These high frequencies can

cause the error to be large if the stopband singular values (σstop
cons and σstop

dis) are too large.

Many dynamic average consensus estimators use a cascade structure [23, 25, 27, 66].

Throughout the rest of this paper, we consider the cascade block diagram structure in

Fig. 5.1. The transfer function from the input to the output is

H(z, L) = hpre(z) [G(z, L)]`(5.8)

where hpre(z) is a prefilter and ` is the number of stages. The prefilter is applied directly to

the input signals and can be implemented independently on each agent without requiring any

communication with neighbors. The main estimatorG(z, L) involves both internal processing

and communication with local neighbors and is applied ` times in series. In order for the

estimator to be implementable using one-hop local broadcast communication, there must be

a strictly proper transfer function between each Laplacian block. This requires G(z, L) to

be a one-hop estimator with no direct feedthrough of the Laplacian. In other words, G(z, L)

must have the form

G(z, L) =



a(L) b(L)

c(L) d(L)


 =



a0 b0

c0 d0


⊗ In +



a1 b1

c1 0


⊗ L.(5.9)

140

u(z) hpre(z) G(z, L) . . . G(z, L) y(z)

` times

Figure 5.1. Block diagram of the general cascade estimator structure with
transfer function from the input to the output H(z, L) = hpre(z) [G(z, L)]`.

We now present some estimator designs, i.e., specific choices for the filters hpre(z) and

G(z, L). The designs are separated into two categories based on whether G(z, L) applies the

Laplacian in the feedback or feedforward path.

5.2. Feedback Estimators

We consider two feedback estimators in this section and show that neither adequately

solves the dynamic average consensus problem in Problem 5. The block diagrams of the

feedback estimators considered are shown in Fig. 5.2. Both estimators use a cascade of

simple one-variable feedback estimators from Chapter 4.

Both feedback estimators in Fig. 5.2 are generalizations of previously considered esti-

mators. Specifically, we show in Table 5.2 how these estimators compare to those in the

literature.

Table 5.2. Specific feedback estimators of the form considered in Fig. 5.2.

Estimator Fig. Parameters
Freeman, Yang, and Lynch [19] 5.2a hpre(z) = 1, ` = 1
Kia, Cortés, and Mart́ınez [24] 5.2a hpre(z) = 1, ` = 1 (and pole/zero cancellation)
Zhu and Mart́ınez [23] 5.2b hpre(z) = (1− z−1)`, γ = 1, kp = 1
Franceschelli and Gasparri [25] 5.2b hpre(z) = (1− γ)`

We now give a detailed analysis of each of the feedback estimators in Fig. 5.2.

141

u(z) hpre(z)In

kp
z − γ

In L

−
. . .

kp
z − γ

In L

y(z)
−

` times

(a) The transfer function 1/(z − γ) is applied in the feedback path.

u(z) hpre(z)In
1

z − γ
In

kpL

−
. . .

1

z − γ
In

kpL

y(z)
−

` times

(b) The transfer function 1/(z − γ) is applied in the forward path.

Figure 5.2. Block diagrams of cascaded feedback estimators.

5.2.1. Analysis of the estimator in Fig. 5.2a

For the separated system of the estimator in Fig. 5.2a, the transfer function of each stage is

G(z, λ) =
z − γ

z − (γ − kpλ)
,(5.10)

and the transfer function from the input to the output is H(z, λ) = hpre(z) [G(z, λ)]`.

Lemma 9. The convergence rate of the both estimators in Fig. 5.2 is

ρ = max{ρpre, |γ|, |γ − kpλmax|}(5.11)

where ρpre is the convergence rate of hpre(z).

142

Proof. Using the separated system, both estimators have ` closed-loop poles at z =

γ − kpλ where λ ∈ {0} ∪ [λmin, λmax] along with the poles of hpre(z). The convergence rate

is the maximum modulus of the closed-loop poles, which gives the result. �

Theorem 17. Consider the estimator in Fig. 5.2a with kp > 0. The maximum singular

values of the error transfer function in Table 5.1 are

σpass
cons = ‖1− hpre(z)‖pass∞(5.12)

σstop
cons = ‖1− hpre(z)‖stop∞(5.13)

σpass
dis = ‖hpre(z)‖pass∞

(
1− 2γ cos θc + γ2

1− 2(γ − kpλ∗) cos θc + (γ − kpλ∗)2

)`/2
(5.14)

σstop
dis = ‖hpre(z)‖stop∞

(
1 + γ

1 + γ − kpλmax

)`
(5.15)

where

λ∗ =





λmin, (γ − cos θc)/kp ≤ λmin,

(γ − cos θc)/kp, λmin < (γ − cos θc)/kp < λmax

λmax, λmax ≤ (γ − cos θc)/kp.

(5.16)

Proof. The transfer function of the consensus system is H(z, 0) = hpre(z) which gives the

singular values in the consensus direction. The singular values of the error transfer function

in (5.2) are

σ(θ, λ) =

(
1− 2γ cos θ + γ2

1− 2(γ − kpλ) cos θ + (γ − kpλ)2

)`/2
(5.17)

143

for λ ∈ [λmin, λmax]. In the passband, the maximum must occur either at an endpoint or

when the derivative is zero. Solving 0 = ∂
∂θ
σ gives θ = 0, but ∂2

∂θ2
σ|θ=0 > 0, so this is

a local minimum. The maximum must then occur at the endpoint θ = θc. Similarly, we

maximize over λ by solving 0 = ∂
∂λ
σ which gives λ = (γ−cos θ)/kp. This is a local maximum

since ∂2

∂θ2
σ|λ=(γ−cos θ)/kp < 0. The maximum occurs at λ = (γ − cos θ)/kp if (γ − cos θ)/kp ∈

[λmin, λmax], and otherwise occurs at the endpoint closest to (γ − cos θ)/kp.

In the stopband, the maximum singular value occurs when θ = π and λ = λmax. �

Corollary 4. For the estimator in Fig. 5.2a with kp = 2γ/(λmin +λmax) and hpre(z) = 1,

the convergence rate is γ, and σpass
dis < 1 if

0 < γ <

(
1 +

λmin

λmax

)
cos θc.(5.18)

Proof. The convergence rate can be found using Lemma 9. If λ∗ = (γ − cos θc)/kp or

λmax in Theorem 17, then σpass
dis ≥ 1. Setting σpass

dis < 1 in (5.14) with λ∗ = λmin gives the

result. �

The choice kp = 2γ/(λmin + λmax) in Corollary 4 minimizes the convergence rate in the

disagreement directions. Using this choice, however, restricts the set of graphs and input

signals that the estimator is capable of tracking with small error since (5.18) must be satisfied.

In particular, the estimator using this choice for kp cannot track bandlimited signals with

cutoff frequency θc ≥ π/2. For other parameter choices, however, the steady-state error can

be made arbitrarily small as shown in the following corollary.

Corollary 5. Consider the estimator in Fig. 5.2a with hpre(z) = 1, and let G be a

connected, undirected graph with nonzero Laplacian eigenvalues in [λmin, λmax]. Then the

144

steady-state error can be made arbitrarily small if cos θc > γ − kpλmin/2, ` is made large

enough, and exact arithmetic is used.

Proof. Since hpre(z) = 1, we have σpass
cons = σstop

cons = 0. The error in the disagreement

directions in the stopband can be made arbitrarily small since cos θc > γ − kpλmin/2, i.e.,

lim
`→∞

σpass
dis = 0.(5.19)

Using exact arithmetic, we have ‖u(z)‖stop
2 = 0. Then applying Lemma 8, the steady-state

error can be made arbitrarily small. �

Lemma 9 along with Corollaries 4 and 5 highlight the trade-off between convergence rate

and steady-state error. The convergence rate is optimized in Corollary 4, but the set of graphs

and input signals that the estimator can track with small error is limited by (5.18). The

parameter choices in Corollary 5 allow the estimator to have arbitrarily small steady-state

error, but the convergence rate becomes slow for graphs with low connectivity (λmin/λmax

small) and for fast time-varying input signals (θc large).

Simulations of the estimator in Fig. 5.2a are shown in Fig. 5.3. The error converges

close to zero when the graph is constant. The graph changes at iteration 500, and the

error converges back towards zero after a transient since the estimator is robust to initial

conditions. After iteration 800, however, the graph changes at every iteration; the transient

does not have time to decay and the error remains large. This indicates that the estimator

is not robust to changes in the graph.

The estimator is not robust to changes in the graph because the steady-state values of

the internal states depend on the Laplacian matrix. When the graph changes, the internal

states must converge to different values causing a transient.

145

0 100 200 300 400 500 600 700 800 900 1,000
10−8

10−3

102

107

1012

Iteration (k)

M
ax

|E
rr
or
|

Figure 5.3. Simulation of the feedback estimators in Fig. 5.2a (blue) using
hpre(z) = 1 and Fig. 5.2b (green) using hpre(z) = (1 − γ)` with parameters
θc = 0, ` = 20, and γ = kp = 0.8. The graph changes at iteration 500 and
then every iteration past 800.

To summarize the results for the estimator in Fig. 5.2a, the steady-state error can be

made arbitrarily small by making ` large, and there is a trade-off between steady-state error

and convergence rate that can be exploited through different choices of the parameters γ

and kp. However, the estimator is not robust to changes in the graph.

5.2.2. Analysis of the estimator in Fig. 5.2b

For the separated system of the estimator in Fig. 5.2b, the transfer function of each stage is

G(z, λ) =
1

z − (γ − kpλ)
,(5.20)

and the transfer function from the input to the output is H(z, λ) = hpre(z) [G(z, λ)]`.

146

Theorem 18. Consider the estimator in Fig. 5.2b with kp > 0. The maximum singular

values of the error transfer function in Table 5.1 are

σpass
cons =

∥∥∥∥∥1− hpre(z)

(
1

z − γ

)`∥∥∥∥∥

pass

∞
(5.21)

σstop
cons =

∥∥∥∥∥1− hpre(z)

(
1

z − γ

)`∥∥∥∥∥

stop

∞
(5.22)

σpass
dis = ‖hpre(z)‖pass∞ max{σ(0, λmin), σ(θc, λ

∗)}(5.23)

σstop
dis = ‖hpre(z)‖stop∞

(
1

1 + γ − kpλmax

)`
(5.24)

where

σ(θ, λ) =

(
1

1− 2(γ − kpλ) cos θ + (γ − kpλ)2

)`/2
(5.25)

and λ∗ is given by (5.16).

Proof. Equations (5.21) and (5.22) follow straight from the definition of the maximum

singular values. In the disagreement directions, the singular values of [G(z, λ)]` are given

by (5.25). The saddle points in the passband which are potential optima occur at (θ, λ) =

(0, λmin) and (θc, λ
∗). In the stopband, the maximum occurs at (θ, λ) = (π, λmax). �

The prefilter can be used to make the maximum singular value in the consensus direction

small. Ideally, we would like to use the prefilter hpre(z) = (z − γ)` so that the maximum

singular value in the consensus direction is zero. The ideal prefilter is non-causal, but it

could be approximated in the passband by a causal filter.

Corollary 6. Consider the estimator in Fig. 5.2b, and let G be a connected, undirected

graph with nonzero Laplacian eigenvalues in [λmin, λmax]. Then the steady-state error can be

147

made arbitrarily small if the prefilter is designed such that σpass
cons in (5.21) is arbitrarily small,

‖hpre(z)‖∞ is bounded, cos θc > γ − kpλmin/2, and ` is made large enough.

Proof. Designing the prefilter such that σpass
cons is arbitrarily small, we have hpre(z) ≈

(z − γ)` in the passband. The system transfer function in the passband is then

H(z, λ) ≈
(

z − γ
z − (γ − kpλ)

)`

which is the same as the estimator in Fig. 5.2a. Therefore, the singular values are also the

same so we can apply the results from Corollary 5 which gives the result. �

Corollary 6 shows that the steady-state error can be made arbitrarily small by designing

hpre(z) to approximate the ideal prefilter (z−γ)` in the passband. Although the ideal prefilter

is non-causal, it can be approximated arbitrarily closely in the passband by a causal filter.

Simulations of the estimator in Fig. 5.2b are shown in Fig. 5.3. The error converges close

to zero and remains small, even after the graph changes. Since the same results hold for

many simulations with various values of γ and kp so long as 0 < kp ≤ γ/λmax, we make the

following conjecture.

Conjecture 1. The estimator in Fig. 5.2b is robust to changes in the graph if 0 < kp ≤

γ/λmax.

To summarize the results for the estimator in Fig. 5.2b, the steady-state error can be

made arbitrarily small if the following hold:

• ` is large enough,

• the prefilter approximates (z − γ)` arbitrarily closely in the passband (and is finite

in the stopband), and

148

• the parameters are chosen such that cos θc > γ − kpλmin/2.

Furthermore, the estimator is robust to changes in the graph if 0 < kp ≤ γ/λmax.

In order for the estimator to achieve small steady-state error and be robust to changes

in the graph, we need cos θc > γ − kpλmin/2 and 0 < kp ≤ γ/λmax. These conditions imply

that θc < π/2 which limits the cutoff frequency that can be used. Therefore, the estimator

is not capable of tracking bandlimited signals with cutoff frequency θc < π with arbitrarily

small error over time-varying graphs.

The estimator in Fig. 5.2a can have arbitrarily small steady-state error for arbitrarily

fast time-varying input signals, but is not robust to changes in the graph. The estimator

in Fig. 5.2b can be robust to changes in the graph and have arbitrarily small steady-state

error, but can only achieve both when θc < π/2. A feedforward estimator is proposed

in the following section which is robust to changes in the graph and has arbitrarily small

steady-state error for bandlimited signals with cutoff frequency θc < π.

5.3. Feedforward Estimators

In this section, an estimator for dynamic average tracking is designed where G(z, L)

applies the Laplacian in the forward path. The estimator is:

(1) robust to initial conditions,

(2) robust to changes in balanced graphs,

(3) capable of tracking bandlimited signals with cutoff frequency θc < π with arbitrarily

small steady-state error.

None of the feedback estimators described in the previous section have all of these properties.

To design the estimator, first consider the estimator shown in Fig. 5.4a which simply

multiplies the input by the matrix (I − L)` where I − L is referred to as the consensus

149

u(z)

L

1

z
In−

. . .

L

1

z
In y(z)

−

` times

(a) Estimator consisting of ` steps of standard average consensus. The estimator is robust to
changes in the graph, but the output is delayed from the input by ` iterations.

u(z)

L

f(z)In
−

. . .

L

f(z)In y(z)
−

` times

(b) Estimator with the filter f(z) in both the consensus and disagreement directions. The output
is not delayed, but the estimator is not robust to changes in the graph.

u(z)

L f(z)In

−
. . .

L f(z)In

y(z)
−

` times

(c) Estimator with the filter f(z) only in the disagreement directions. The output is not delayed,
but the estimator is not robust to changes in the graph.

u(z) hpre(z)In

L

1

z
In−

. . .

L

1

z
In y(z)

−

` times

(d) Estimator where the prefilter hpre(z) = [z f(z)]` is implemented before passing through the
graph Laplacian. The output is not delayed and the estimator is robust to changes in the graph.

Figure 5.4. Block diagrams of the cascaded feedforward estimators.

matrix. Each iteration requires time since multiplication by L requires communication among

neighbors, so there is a delay of 1/z between each iteration. This design works well for any

150

inputs (not just bandlimited inputs), is robust to initial conditions, is robust to changes

in the graph, and can be applied to balanced graphs. The drawback, however, is that the

output is delayed by ` steps from the input, so achieving a better estimate requires more

delay.

To fix the delay, we could replace 1/z with a filter f(z) as shown in Fig. 5.4b. The

frequency response of the filter f(z) should be designed to approximate unity for inputs

with frequencies in [0, θc] where θc is the cutoff frequency of the input signals. Then the

transfer function approximates (I − L)` in the passband. We could choose f(z) = 1, but

this results in an `-hop estimator. In this case, each iteration would require ` rounds of

communication to be done sequentially since the result of each round is needed for the next.

This is due to Laplacian blocks being directly connected in the block diagram without any

delay between them. To prevent this, we require f(z) to be strictly proper so that there is

no direct feedthrough between Laplacian blocks. The estimator can then be implemented in

one hop, meaning that each agent can broadcast all of its information in a single packet at

each iteration. This fixes the delay problem, but the estimator is not robust to changes in

the graph.

The design in Fig. 5.4b filters both the consensus and disagreement directions. Since

we only require a strictly proper filter between consecutive Laplacian blocks, we could also

place the filter directly after each Laplacian block as in Fig. 5.4c. A benefit of this design is

that it has zero error for any signals (not only bandlimited signals) which are common to all

agents since the output is directly connected to the input in the consensus direction. This

estimator also has no delay at the output, but is still not robust to changes in the graph.

To see why the estimators in Figs. 5.4b and 5.4c are not robust to changes in the graph,

consider implementing the estimators on a time-varying graph. In each stage, the input to

151

f(z) is a linear function of the output of the previous stage. Linear functions of bandlimited

signals are also bandlimited. When the graph changes, however, different linear combinations

are taken at each iteration. This produces signals which are not bandlimited, in which case

f(z) does not approximate unity and the error is large.

We can make an estimator with the same transfer function as that in Fig. 5.4b which is

robust to changes in the graph by applying the filter f(z) before the signal passes through

the Laplacian as shown in Fig. 5.4d. After the prefilter [z f(z)]`, the rest of the estimator

is identical to that in Fig. 5.4a which works for any inputs (not just bandlimited inputs)

and is robust to changes in the graph. The problem with the estimator in Fig. 5.4a was

that the output was delayed, but this is offset in the estimator in Fig. 5.4d by the prefilter.

Therefore, we propose the estimator in Fig. 5.4d to solve the dynamic average consensus

problem without delay and over time-varying graphs.

The prefilter can be constructed by designing the filter f(z) to be strictly proper and to

approximate unity for z = exp{jθ}, θ ∈ [0, θc], and then setting hpre(z) = [z f(z)]`.

In many applications, power is a valuable resource for each agent. Communication with

neighbors can consume the majority of the available power, and should therefore only be

used when necessary. Since the prefilter occurs before any communication, each agent can

run its own local prefilter without communicating during the initial transient period to

save power. Once the prefilter has converged, the agent begins transmitting information to

local neighbors and the estimator only requires a finite number of iterations (specifically, `

iterations) to reach steady-state.

We now analyze the feedforward estimator in Fig. 5.4d.

152

Lemma 10. The estimator in Fig. 5.4d with hpre(z) strictly stable is robust to initial

conditions.

Proof. The system has ` poles at z = 0 and shares the same poles as the prefilter hpre(z).

Since the prefilter is strictly stable, all of the system poles are strictly inside the unit circle,

so the steady-state value is independent of the initial conditions. �

Theorem 19 (Error bound of the feedforward estimator). Consider the estimator in

Fig. 5.4d. Let G be any (possibly time-varying) graph. Then the maximum absolute steady-

state error is bounded by

lim sup
k→∞

‖ek‖∞ ≤ σpass
cons ‖Πu(z)‖pass2 + σstop

cons ‖Πu(z)‖stop2

+ δ
(
σpass
dis ‖(I − Π)u(z)‖pass2 + σstop

dis ‖(I − Π)u(z)‖stop2

)(5.26)

where

σpass
cons = ‖z` − hpre(z)‖pass∞ σpass

dis = ‖hpre(z)‖pass∞

σstop
cons = ‖z` − hpre(z)‖stop∞ σstop

dis = ‖hpre(z)‖stop∞
(5.27)

and

δ = ‖W`
k − Π‖2(5.28)

with

W`
k := (I − Lk−1)(I − Lk−2) · · · (I − Lk−`).(5.29)

Proof. Denote the output of the prefilter due to the input u as ũ(z) = [In⊗hpre(z)]u(z).

Then the output of the estimator is yk =W`
k ũk−` and the error is ek = yk − Πuk.

153

Since Lk1n = 0n, we have (W`
k − Π) Π = 0n. Using the fact that ‖x‖∞ ≤ ‖x‖2 for all

x ∈ Rn, the error is bounded by

‖ek‖∞ = ‖yk − Πuk‖∞

= ‖(W`
k − Π)(I − Π) ũk−` + Π (ũk−` − uk)‖∞

≤ ‖W`
k − Π‖2 ‖(I − Π) ũk−`‖2 + ‖Π (ũk−` − uk)‖2.

The transfer function from uk to ũk−` is In⊗
(
z−` hpre(z)

)
, and the transfer function from uk

to ũk−` − uk is (In ⊗ z−` hpre(z))− In. Since ‖xk‖2 ≤ ‖x(z)‖2 for any signal x ∈ `2e, we have

‖ek‖∞ ≤
∥∥W`

k − Π‖2

∥∥(In ⊗ z−` hpre(z)
)

(I − Π)u(z)
∥∥

2
+
∥∥(In ⊗ z−` hpre(z)− In

)
Πu(z)

∥∥
2
.

Since ‖x(z)‖2 ≤ ‖x(z)‖pass
2 +‖x(z)‖stop

2 for any x(z), we can split the terms into the passband

and stopband,

‖ek‖∞ ≤ δ
(∥∥(In ⊗ z−` hpre(z)

)
(I − Π)u(z)

∥∥pass

2
+
∥∥(In ⊗ z−` hpre(z)

)
(I − Π)u(z)

∥∥stop

2

)

+
∥∥(In ⊗ z−` hpre(z)− In

)
Πu(z)

∥∥pass

2
+
∥∥(In ⊗ z−` hpre(z)− In

)
Πu(z)

∥∥stop

2
.

The maximum 2-norm gain between any two signals is given by the ∞-norm of the

transfer function connecting them. The ∞-norm of In ⊗ z−` hpre(z) is ‖hpre(z)‖∞, and the

∞-norm of In ⊗ z−` hpre(z) − In is ‖z` − hpre(z)‖∞ These give the bound on the maximum

absolute steady-state error,

‖ek‖∞ ≤ δ
(
‖hpre(z)‖pass

∞ ‖(I − Π)u(z)‖pass
2 + ‖hpre(z)‖stop

∞ ‖(I − Π)u(z)‖stop
2

)

+ ‖z−` − hpre(z)‖pass
∞ ‖Πu(z)‖pass

2 + ‖z−` − hpre(z)‖stop
∞ ‖Πu(z)‖stop

2 . �

154

If the graph satisfies certain properties, then we can bound the term ‖W`
k−Π‖2 in (5.28).

For example, if the graph is connected, balanced, and has Laplacian matrix which satsfies

‖I − Lk − Πn‖2 ≤ α for some α < 1 at each iteration, then we have ‖W`
k − Π‖2 ≤ α`. To

prove this, we first need the following lemma.

Lemma 11. Suppose G is time-varying and balanced at each iteration, and define Wk :=

In − Lk for k ≥ 0. Then for all k ≥ `,

WkWk−1 · · ·Wk−` − Πn = (Wk − Πn)(Wk−1 − Πn) · · · (Wk−` − Πn).(5.30)

Proof. We prove the result using induction on `. Note that the result is trivially satisfied

when ` = 0. Now assume that the result holds for `, i.e.,

WkWk−1 · · ·Wk−` − Π = (Wk − Π)(Wk−1 − Π) · · · (Wk−` − Π).

Multiplying both sides by Wk+1 − Π,

(Wk+1 − Π)Wk · · ·Wk−` − (Wk+1 − Π) Π = (Wk+1 − Π)(Wk − Π) · · · (Wk−` − Π).

We now use the fact that WkΠ = Π = ΠWk for all k ≥ 0 to obtain

Wk+1Wk · · ·Wk−` − Π = (Wk+1 − Π)(Wk − Π) · · · (Wk−` − Π),(5.31)

so the result holds for `+ 1. Therefore, by induction, (5.30) holds for all ` ≥ 0. �

Lemma 12. Suppose the graph Laplacian satisfies Lk ∈ Ln(α) for all k ≥ 0. Then

‖W`
k − Π‖2 ≤ α`(5.32)

155

for all k ≥ ` where W`
k is defined in (5.29).

Proof. Since the graph is balanced at each iteration, Lemma 11 implies

W`
k − Π = (Wk − Π)(Wk−1 − Π) · · · (Wk−` − Π).

Since Lk ∈ Ln(α) for all k, ‖Wk − Π‖2 ≤ α which implies ‖W`
k − Π‖2 ≤ α`. �

Next, we give conditions under which the steady-state error is arbitrarily small.

Corollary 7. Consider the estimator in Fig. 5.4d. Suppose the graph G has Laplacian

matrix Lk ∈ Ln(α) for some α < 1 for all k ≥ 0. Also, suppose the input signals are finite

and bandlimited with cutoff frequency θc. Then the maximum absolute steady-state error can

be made arbitrarily small if hpre(z) can be chosen such that σpass
cons is arbitrarily small for any

` and exact arithmetic is used.

Proof. Let ε > 0. Since the input signals are bandlimited and exact arithmetic is

used, ‖u‖stop
2 = 0. Since α < 1 and the input signals are finite, there exists ¯̀ such that

α` ‖hpre(z)‖pass
∞ ‖(I − Π)u(z)‖pass

2 < ε/2 for all ` > ¯̀. Choose ` to be an integer greater

than ¯̀. Then the prefilter can be designed such that σpass
cons ‖Πu(z)‖pass

2 < ε/2. Applying

Theorem 19 shows that the maximum absolute steady-state error is less than ε. �

To summarize, the feedforward estimator in Fig. 5.4d is robust to initial conditions and

robust to changes in graphs in Ln(α). The maximum absolute steady-state error depends

on α, the number of stages `, and the prefilter hpre(z). To obtain small steady-state error,

the number of stages ` and the prefilter hpre(z) must be chosen to make σpass
cons small. In the

following section, we design the prefilter to obtain arbitrarily small steady-state error.

156

5.4. Prefilter Design

The design of the feedforward estimator in Fig. 5.4d requires an `-step bandlimited

prediction filter hpre(z) with the following properties:

• hpre(z) is proper

• hpre(z) ≈ z` for z = ejθ, θ ∈ [0, θc].

An `-step filter is obtained by cascading a one-step filter ` times in series,

hpre(z) = [zf(z)]`(5.33)

where f(z) is strictly proper and approximates unity in the passband, i.e.,

• f(z) is strictly proper

• f(z) ≈ 1 for z = ejθ, θ ∈ [0, θc].

Since f(z) must approximate unity in both magnitude and phase, a standard lowpass filter

cannot be used. Instead, set

f(z) = 1− g(z)

limz→∞ g(z)
(5.34)

where g(z) is a proper highpass filter with cutoff frequency θc, i.e.,

• g(z) is proper

• g(z) ≈ 0 for z = ejθ, θ ∈ [0, θc].

The normalizing constant in the denominator is used to make f(z) strictly proper. Since

g(z) is highpass, the magnitude is small in the passband, so f(z) approximates unity in the

passband.

157

Bandlimited prediction filters have been studied extensively [39, 67, 68, 69, 70]. It

is well known that bandlimited prediction filters are fragile to noise in the inputs [39].

Even if the signals are strictly bandlimited, round-off error due to the use of finite precision

arithmetic can create high frequency components which are amplified by the filter. However,

it has been shown that bandlimited prediction is still possible in the presense of small amounts

of noise [70]. To account for high-frequency noise, we assume that the frequency spectrum

of the input signals is not strictly bandlimited, but has small (nonzero) magnitude for high

frequencies (θ > θc). The presence of high-frequency components in the spectrum prohibits

the filter from obtaining perfect prediction of bandlimited signals, but we provide bounds

for the error and show that it is small when using double precision arithmetic.

The parameters used to characterize the performance of the prefilter which depend on

the prefilter are the maximum singular values in (5.27). These can be bounded in terms of

g(z) by the following lemma.

Lemma 13. The following are upper bounds for the maximum singular values:

σpass
cons ≤ σ̃pass

cons :=

(
1 +

‖g‖pass∞
lim
z→∞

g(z)

)`
− 1, σpass

dis ≤ σ̃pass
dis :=

(
1 +

‖g‖pass∞
lim
z→∞

g(z)

)`
,

σstop
cons ≤ σ̃stop

cons :=

(
1 +

‖g‖stop∞
lim
z→∞

g(z)

)`
− 1, σstop

dis ≤ σ̃stop
dis :=

(
1 +

‖g‖stop∞
lim
z→∞

g(z)

)`
.

(5.35)

Proof. We prove the bounds for σpass
cons and σpass

dis ; the bounds for σstop
cons and σstop

dis are similar.

We begin with the bound for σpass
cons. Since hpre(z) = [zf(z)]`,

σpass
cons = max

θ∈[0,θc]

∣∣ej`θ − hpre(e
jθ)
∣∣ = max

θ∈[0,θc]

∣∣1− [f(ejθ)]`
∣∣ .

158

The binomial expansion of f ` is

[f(z)]` =
∑̀

k=0

(
`

k

)
(f(z)− 1)k.

Substituting the binomial expansion for [f(ejθ)]` into the expression for σpass
cons,

σpass
cons = max

θ∈[0,θc]

∣∣∣∣∣1−
∑̀

k=0

(
`

k

)
(f(ejθ)− 1)k

∣∣∣∣∣

= max
θ∈[0,θc]

∣∣∣∣∣
∑̀

k=1

(
`

k

)
(f(ejθ)− 1)k

∣∣∣∣∣

≤ max
θ∈[0,θc]

∑̀

k=1

(
`

k

) ∣∣f(ejθ)− 1
∣∣k .

Using (5.34), we have

σpass
cons ≤ max

θ∈[0,θc]

∑̀

k=1

(
`

k

) ∣∣∣∣
g(ejθ)

limz→∞ g(z)

∣∣∣∣
k

= −1 +
∑̀

k=0

(
`

k

)(‖g‖pass
∞

limz→∞ g(z)

)k

= −1 +

(
1 +

‖g‖pass
∞

limz→∞ g(z)

)`

which proves the bound for σpass
cons. To bound σpass

dis , we use

σpass
dis = ‖z` − (z` − hpre(z))‖pass

∞ ≤ ‖z`‖pass
∞ + ‖z` − hpre(z)‖pass

∞ = 1 + σpass
cons. �

Therefore, the maximum absolute steady-state error in (5.26) is minimized by solving

the following problem.

Problem 6. Given the following parameters:

159

Parameter Description

α the set Ln(α) of graph Laplacian matrices

`max maximum number of stages

dmax maximum degree of g(z)

‖Πu(z)‖pass2 size of u in the passband and consensus direction

‖Πu(z)‖stop2 size of u in the stopband and consensus direction

‖(I − Π)u(z)‖pass2 size of u in the passband and disagreement directions

‖(I − Π)u(z)‖stop2 size of u in the stopband and disagreement directions

Choose the number of stages ` and the filter g(z) to solve the following optimization problem:

min
`, g(z)

σ̃pass
cons ‖Πu(z)‖pass2 + σ̃stop

cons ‖Πu(z)‖stop2

+ α`
(
σ̃pass
dis ‖(I − Π)u(z)‖pass2 + σ̃stop

dis ‖(I − Π)u(z)‖stop2

)

subject to ` ≤ `max

deg(g) ≤ dmax

g(z) proper

(5.36)

where σ̃pass
cons, σ̃

stop
cons, σ̃

pass
dis , and σ̃stop

dis are defined in (5.35).

Remark 5. If the input signal is bandlimited with cutoff frequency θc and exact precision

arithmetic is used, then ‖u(z)‖stop2 = 0, so ‖g‖stop∞ can be arbitrarily large. When using finite

precision arithmetic, however, we set ‖u(z)‖stop2 equal to the machine epsilon. Then ‖g‖stop∞
must be accounted for in the optimization problem (5.36).

160

The prefilter can be designed using either a finite impulse response (FIR) or infinite

impulse response (IIR) filter for g(z). We now give designs for both types and explain the

advantages and disadvantages of both.

5.4.1. FIR Prefilter Design

To design g(z) as an FIR filter, we follow the approach in [39]. The filter design is based on

the highpass Dolph-Chebyshev window function

Dd(θ) = Td

(
cos((π − θ)/2)

cos((π − θc)/2)

)
(5.37)

where Td is the degree d Chebyshev polynomial of the first kind. The unique feature of Dd(θ)

is that it oscillates between 1 and -1 for θ ∈ [−θc, θc], as shown in Fig. 5.5.

−π −θc 0 θc π

0

5

10

θ

D
d
(θ
)

Figure 5.5. Plot of the Dolph-Chebyshev window function (5.37) with d = 8
and θc = 3π/4. The horizontal dashed lines are at ±1.

The FIR filter is designed such that the magnitude of the frequency response is given by

|Dd(θ)|. The filter is summarized in the following lemma.

161

Lemma 14. Let g(z) be such that

g(−z) = z−d/2 Td

(
(z1/2 + z−1/2)/2

cos ((π − θc)/2)

)
.(5.38)

Then the following hold:

(1) g(z) is a proper FIR transfer function of degree d,

(2) ‖g‖pass∞ = 1,

(3) ‖g‖stop∞ = Td(1/ cos((π − θc)/2)), and

(4) limz→∞ g(z) = 1/(2 cosd((π − θc)/2)).

Proof. Since Td(x) is the degree d Chebyshev polynomial of the first kind, it is composed

of all even powers of x if d is even and all odd powers of x if d is odd. Then

g(−z) = z−d/2 Td

(
(z1/2 + z−1/2)/2

cos ((π − θc)/2)

)
=

d∑

k=0

ck z
−k

so g(z) is a proper FIR transfer function of degree d.

The leading coefficient of Td(x) is 2d−1, so

lim
z→∞

g(z) = lim
z→∞

z−d/2 2d−1

(
(z1/2 + z−1/2)/2

cos((π − θc)/2)

)d
=

1

2 cosd((π − θc)/2)
.

Using the trigonometric identity cos((π− θ)/2) = ((−ejθ)1/2 + (−ejθ)−1/2)/2, the magni-

tude of g(z) evaluated on the unit circle is

|g(ejθ)| =
∣∣∣∣Td
(

cos((π − θ)/2)

cos((π − θc)/2)

)∣∣∣∣ .

The Chebyshev polynomial Td(x) oscillates between 1 and −1 for x ∈ [−1, 1], and the

magnitude increases monotonically in x for |x| > 1. For θ ∈ [0, θc], the argument of Td is

162

in [−1, 1], so ‖g(z)‖pass
∞ = 1. For θ ∈ [θc, π], the argument of Td is outside of [−1, 1], so

the maximum value occurs when the argument is largest. This occurs at θ = π which gives

‖g(z)‖stop
∞ = Td(1/ cos((π − θc)/2)). �

The next lemma shows that this choice of g(z) can be used to make σpass
cons arbitrarily

small.

Lemma 15. Consider the FIR prefilter given by (5.38). Let θc ∈ [0, π). Then σpass
cons

in (5.27) can be made arbitrarily small. That is,

lim
`→∞
d→∞

σpass
cons = 0.(5.39)

Proof (sketch): The result is obtained by substituting the values in Lemma 14 into the

upper bound for σpass
cons in (5.35) and taking the limit as `→∞ and d→∞. �

Combining this result with Corollary 7 shows that the FIR prefilter can be used with the

feedforward estimator to obtain arbitrarily small steady-state error when exact arithmetic

is used. The error cannot be made arbitrarily small when using finite precision arithmetic,

but it can be minimized by solving Problem 6. The optimization problem can be solved

by evaluating the value of the objective function in (5.36) for ` = 1, 2, . . . , `max and d =

1, 2, . . . , dmax and choosing the parameters which obtain the smallest value for the objective

function.

5.4.2. IIR Prefilter Design

An infinite impulse response design for the prefilter is obtained by setting g(z) to be a Type

II Chebyshev highpass filter as described in the following lemma.

163

Lemma 16. Let g(z) be a Type II Chebyshev highpass filter of degree d with stopband

attenuation parameter ε and cutoff frequency θc, i.e.,

g(z) = K
d∏

i=1

z − zi
z − pi

(5.40)

where K =
∏d

i=1(1 + pi)/(1 + zi) and

zi =
2 + jω0 cos(θi)

2− jω0 cos(θi)
, pi =

2 + jω0 cos(θi − jγ)

2− jω0 cos(θi − jγ)
,(5.41)

with ω0 = 2 tan(θc/2), γ = asinh(1/ε)/d, and θi = π(2i− 1)/(2d) for i = 1, . . . , d. Then the

following hold:

(1) g(z) is a proper IIR transfer function of degree d,

(2) ‖g‖pass∞ = ε/
√

1 + ε2,

(3) ‖g‖stop∞ = 1, and

(4) limz→∞ g(z) = K.

Proof. The transfer function of the Type II Chebyshev highpass filter is obtained as

follows. First, the corresponding continuous filter G(s) is obtained. The continuous filter is

the unique stable filter with frequency response

|G(jω)| = ε Td(ω/ω0)√
1 + ε2 T 2

d (ω/ω0)
(5.42)

where Td is the degree d Chebyshev polynomial of the first-kind, ω0 is the cutoff frequency,

and ε is the stopband attenuation parameter. The s-plane poles are the left-half plane roots

of the denominator of (5.42), and the zeros are the roots of the numerator with multiplicity

one. These are given by Pi = jω0 cos(θi − jγ) and Zi = jω0 cos(θi) for i = 1, . . . , d where

164

θi = π(2i − 1)/(2d), γ = asinh(1/ε)/d, and j =
√
−1 is the imaginary unit. The z-plane

poles and zeros are then obtained using the bilinear transform, pi = (2 + Pi)/(2 − Pi) and

zi = (2 +Zi)/(2−Zi). The gain is chosen such that the transfer function is unity at z = −1,

so K =
∏d

i=1(1 + zi)/(1 + pi). Since the bilinear transform warps the frequencies, we take

ω0 = 2 tan(θc/2) so that the cutoff frequency of the discrete filter is θc. The transfer function

of the discrete Type II Chebyshev highpass filter is then given by (5.40), so g(z) is a proper

IIR transfer function of degree d. The magnitude of the filter response oscillates between 0

and ε/
√

1 + ε2 in the stopband, so

‖g‖pass
∞ = max

θ∈[−θc,θc]

∣∣g(ejθ)
∣∣ =

ε√
1 + ε2

.(5.43)

The magnitude of the frequency response approaches unity at θ = π, so ‖g‖stop
∞ = 1. Also,

from (5.40) we have that limz→∞ g(z) = K. �

Example Bode plots of g(z) and f(z) are given in Fig. 5.6. Note that f(z) is strictly

proper and approximates unity in the passband.

Similar to the FIR filter, this choice of g(z) can also be used to make σpass
cons arbitrarily

small. Before presenting the result, we need the following lemma which characterizes the

gain K in the limit as d→∞.

Lemma 17. In the limit as the degree of the filter approaches infinity, the filter gain

approaches

lim
d→∞

K = exp

{
−θc
π

sinh−1

(
1

ε

)}
.(5.44)

165

10−6

10−4

10−2

100

102

g(z)

f(z)

M
ag
n
it
u
d
e
(d
B
)

10−2 10−1 100 π

-360

0

360
g(z)

f(z)

Frequency (θ)

P
h
as
e
(d
eg
re
es
)

Figure 5.6. Bode plot of the prefilter. Shown are g(z) (blue) and f(z) (green)
with d = 8, ε = 10−4, and θc = π/4. The vertical line indicates θc.

Proof. Let θk = π
2d

(2k− 1) for k = 1, . . . , d, and let γ = sinh−1(1/ε)/d. The pre-warped

cutoff frequency is ω0 = 2 tan(θc/2). The filter gain is then

K =
d∏

k=1

2− jω0 cos(θk)

2− jω0 cos(θk − jγ)
=

d∏

k=1

2− jω0 cos(θk)

2− jω0 cos(θk − j 1
π

sinh−1(1/ε)dθ)

166

where dθ = θk+1 − θk = π/d. Taking the limit as d → ∞ gives an infinite product. To

evaluate the product, we take the logarithm of K which instead gives an infinite sum,

lim
d→∞

ln(K) =

∫ π

0

ln

(
2− jω0 cos(θ)

2− jω0 cos(θ − j 1
π

sinh−1(1/ε)dθ)

)

=

∫ π

0

ln (2− jω0 cos(θ))− ln

(
2− jω0 cos(θ − j 1

π
sinh−1(1/ε)dθ)

)
.

The integral cannot be evaluated directly since dθ is inside the function. Since dθ is infites-

imally small, we expand the second term about dθ = 0,

ln

(
2− jω0 cos(θ − j 1

π
sinh−1(1/ε)dθ)

)
= ln (2− jω0 cos(θ)) +

ω0

π

sinh−1(1/ε) sin(θ)

2− jω0 cos(θ)
dθ

+O(dθ2).

Using this expansion,

lim
d→∞

ln(K) =

∫ π

0

−ω0

π

sinh−1(1/ε) sin(θ)

2− jω0 cos(θ)
dθ +O(dθ2).

The higher order terms in dθ can be neglected, so

lim
d→∞

ln(K) = −ω0

π
sinh−1(1/ε)

∫ π

0

sin(θ)

2− jω0 cos(θ)
dθ.

The complex integrand is symmetric about θ = π/2, and can therefore be computed using

the real integral

lim
d→∞

ln(K) = −ω0

π
sinh−1(1/ε)

∫ π/2

0

4 sin(θ)

4 + ω2
0 cos2(θ)

dθ = − 2

π
sinh−1(1/ε) tan−1(ω0/2).

167

Using the fact that ω0 = 2 tan(θc/2), this simplifies to

lim
d→∞

ln(K) = −θc
π

sinh−1(1/ε). �

Lemma 18. Consider the IIR prefilter given by (5.40). Let θc ∈ [0, π). Then σpass
cons

in (5.27) can be made arbitrarily small. That is,

lim
`→∞
d→∞
ε→0+

σpass
cons = 0.(5.45)

Proof (sketch): The result is obtained by substituting the value in Lemma 16 into the

upper bound for σpass
cons in (5.35) and taking the limit as `→∞, d→∞, and ε→ 0+. �

Combining this result with Corollary 7 shows that the IIR prefilter can be used with the

feedforward estimator to obtain arbitrarily small steady-state error when exact arithmetic

is used. The error cannot be made arbitrarily small when using finite precision arithmetic,

but it can be minimized by solving Problem 6. The optimization problem can be solved as

follows. First, note that K is an increasing function of d, and

σ̃pass
cons =

(
1 +

1

K

ε√
1 + ε2

)`
− 1, σ̃pass

dis =

(
1 +

1

K

ε√
1 + ε2

)`

σ̃stop
cons =

(
1 +

1

K

)`
− 1, σ̃stop

dis =

(
1 +

1

K

)`
.

(5.46)

We want to maximize K to minimize all of the maximum singular values, so the largest

value of d should be used which is d = dmax. Now consider solving the problem for fixed `.

Then ` and d are known so we can perform a bisection search on ε to find the value that

minimizes the objective. This is performed for ` = 1, 2, . . . , `max and the solution taken to

be the parameters which give the smallest value for the objective.

168

5.4.3. Prefilter Comparison (FIR vs. IIR)

We have presented both FIR and IIR designs for the prefilter hpre(z). We now compare the

two choices for the prefilter.

0 π/3 2π/3 π0

0.2

0.4

0.6

0.8

1

FIR

IIR

Cutoff frequency (θc)

E
rr

or

(a) `max = 10 = dmax and ‖Πu(z)‖stop
2 = εdouble = ‖(I −Π)u(z)‖stop

2

0 π/3 2π/3 π0

0.2

0.4

0.6

0.8

1

FIR

IIR

Cutoff frequency (θc)

E
rr

or

(b) `max = 50 = dmax and ‖Πu(z)‖stop
2 = 0 = ‖(I −Π)u(z)‖stop

2

Figure 5.7. Plot of the solution to Problem 6 for the FIR (blue) and IIR (green)
prefilters in Sections 5.4.1 and 5.4.2, respectively. The parameters used are
α = 0.8 and ‖Πu(z)‖pass

2 = 1 = ‖(I − Π)u(z)‖pass
2 . The machine epsilon for

double precision is εdouble = 2.22× 10−16.

169

The FIR design is desirable due to its simplicity and finite convergence properties. The

filter is simple to implement since the output is a linear combination of the previous input

values. In addition, all of the poles of the filter are at zero, so the filter converges in a finite

number of iterations equal to its degree. Therefore, the convergence of the FIR filter is in

general much faster than the IIR filter. The maximum absolute steady-state error, however,

is in general smaller for the IIR filter as shown in Fig. 5.7. Lemmas 15 and 18 along with

Corollary 7 indicate that the maximum absolute steady-state errors for both the FIR and

IIR filters can be made arbitrarily small if the signal is bandlimited and exact arithmetic is

used. When this is not the case, however, the error of the IIR filter is smaller than the FIR

filter. Therefore, the IIR filter can achieve smaller error in practical applications.

Remark 6. The maximum absolute steady-state error never goes above ‖u(z)‖2 in Fig. 5.7.

When ` = 0 and hpre(z) = 1 (so the output is simply equal to the input), the maximum ab-

solute steady-state error is bounded by ‖u(z)‖2.

5.5. Simulations

In this section, we verify the estimator designs by simulating them on various commu-

nication graphs and input signals. We use both constant and time-varying graphs for the

simulations.

We construct the input signals to be bandlimited as follows. First, we assign random

complex values to the frequency spectrum [0, θc] of the Fourier transform of each input signal.

The complex conjugate values are then assigned to [−θc, 0] so that the input signal is real,

and the spectrum [−π,−θc]∪ [θc, π] is set to zero. We then take the inverse Fourier transform

to produce the input signal. Next, we normalize the input signals. Let ūk = (1/n)
∑n

i=1 u
i
k

be the average of the input signals at time k. The input signals are then all shifted by a

170

0 20 40 60 80 100 120 140 160 180 200

−5

0

5

In
p
u
t
(u

k
)

(a) θc = π/10

0 20 40 60 80 100 120 140 160 180 200

−5

0

5

In
p
u
t
(u

k
)

(b) θc = π/3

0 20 40 60 80 100 120 140 160 180 200

−5

0

5

In
p
u
t
(u

k
)

(c) θc = 2π/3

Figure 5.8. Example input signals used for simulations. Plotted are the input
signals uik (thin lines) and the exact average of the inputs 1T

nuk/n (thick green)
as a function of the iteration k.

171

1

2

34

5

(a)

1

2

34

5

(b)

1

2

34

5

(c)

Figure 5.9. Undirected graphs used in the simulations. The nonzero weights
are all chosen to be 0.3766 so that L ∈ Ln(0.6875) for each graph Laplacian.

1

2

34

5

(a)

1

2

34

5

(b)

1

2

34

5

(c)

Figure 5.10. Directed graphs used in the simulations. There is an arrow from
i to j if agent i receives information from agent j, i.e., (i, j) ∈ E . The nonzero
weights are all chosen to be 0.3333 so that L ∈ Ln(0.5393) for each graph
Laplacian.

constant so that the mean of ūk is zero, and then scaled by a constant so that ūk has unit

standard deviation. Example input signals for different values of θc are shown in Fig. 5.8.

The undirected and directed communication graphs used in the simulations are shown

in Figs. 5.9 and 5.10, respectively. All of the graphs are strongly connected and balanced.

For each set of graphs, the nonzero weights are all the same value. The value of the nonzero

weights is chosen to minimize α such that the graph Laplacian is in Ln(α) for each graph in

the set. These values are indicated in Figs. 5.9 and 5.10.

The first feedback estimator considered is that of Zhu and Mart́ınez [23]. Since the

estimator is not robust to initial conditions, the estimator states are all initialized to zero.

As shown in Fig. 5.11a, the estimator tracks the average of the inputs, but with a delay

equal to the number of cascade stages `. Also, the estimator is numerically unstable. The

172

prefilter is the `th order divided difference of the input signal which is then passed through

` integrators. Differentiation amplifies high frequencies causing this to be unstable, even for

small values of `.

The estimator of Kia, Cortés, and Mart́ınez [24] is simulated in Fig. 5.11b. After a

pole/zero cancellation, this is equivalent to the P estimator with γ = 1 and ` = 1. The esti-

mator fixes the delay and stability issues, although it is still not robust to initial conditions,

and the error is large with only a single stage.

More stages can be used to reduce the error as shown in Fig. 5.11c. Using ` = 8 reduces

the error when the graph is constant, but also makes the estimator non-robust to changes

in the graph.

A simulation of the estimator of Franceschelli and Gasparri [25] is shown in Fig. 5.11d.

This estimator is both robust to initial conditions and changes in the graph. However,

the error cannot be made arbitrarily small since the consensus direction is not unity, i.e.,

G(z, 0) 6= 1. Instead of the outputs approximating the average of the input signals, the

outputs approximate the average of the input signals applied to the filter G(z, 0) = 1/(z−γ)`.

A prefilter could be used to reduce the error in the consensus direction as in Fig. 5.2b.

However, Theorem 18 shows that, even using the ideal prefilter, the estimator is not able to

achieve arbitrarily small error for bandlimited input signals with θc < π over time-varying

graphs.

An estimator that is capable of achieving arbitrarily small steady-state error and is

both robust to initial conditions and changes in the graph is the feedforward estimator. The

simulation for this estimator using the FIR prefilter is shown in Fig. 5.11e. Using α = 0.6875,

‖Πu(z)‖pass
2 = 1 = ‖(I − Π)u(z)‖pass

2 , ‖Πu(z)‖stop
2 = εdouble = ‖(I − Π)u(z)‖stop

2 , dmax = 4,

173

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

(a) Estimator of Zhu and Mart́ınez [23] with ` = 8 stages and zero initial conditions. The estimator
is numerically unstable and eventually diverges from tracking the average (even if the graph remains
constant).

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

(b) Estimator of Kia, Cortés, and Mart́ınez [24] with zero initial conditions.

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

(c) P estimator in Fig. 5.2a with γ = 1 and ` = 8 with zero initial conditions.

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

(d) Estimator of Franceschelli and Gasparri [25] with kp = 1 and γ = 0.5.

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

(e) Feedforward estimator in Fig. 5.4d with ` = 10 stages and the FIR prefilter in (5.47).

Figure 5.11. Simulations of different estimators using the input signals with
cutoff frequency θc = π/10 in Fig. 5.8 and the undirected graphs in Fig. 5.9.
The graph changes at iteration 100 and every iteration past 300, and is constant
otherwise. Plotted are the exact average of the inputs 1T

nuk/n (green) and the
outputs yik (black) as a function of the iteration k.

174

`max = 10, and θc = π/10, the FIR prefilter is

hpre(z) =

(
3.902z3 − 5.805z2 + 3.902z − 1

z3

)10

(5.47)

and the IIR prefilter is

hpre(z) =

(
4.411z(z − 0.363)(z2 − 0.824z + 0.611)

(z2 + 0.210z + 0.050)(z2 + 0.300z + 0.458)

)10

.(5.48)

The parameters for both filters are given in Table 5.3.

Table 5.3. Bounds on the maximum absolute steady-state error and maximum
singular values of the FIR and IIR prefilters.

Error σ̃pass
cons σ̃pass

dis σ̃stop
cons σ̃stop

dis

FIR filter in (5.47) 0.0363 0.0120 0.0239 1.6× 1012 3.8× 1010

IIR filter in (5.48) 0.0297 0.0056 0.0237 2.1× 1012 4.8× 1010

5.5.1. Comparison of prefilters

The feedforward estimator in Fig. 5.4d uses the prefilter hpre(z). Two choices for the prefilter

are the FIR and the IIR designs in Sections 5.4.1 and 5.4.2, respectively. To compare the

filters, both designs are simulated using the directed graphs in Fig. 5.10 where the graph

is chosen randomly at each iteration. The input signals are generated with different cutoff

frequencies θc. The simulations are shown in Fig. 5.12. The FIR filter converges significantly

faster than the IIR filter, although the error is slightly smaller for the IIR filter. The steady-

state error and the settling time of both filters increases as θc increases.

175

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
10−5

100

105

1010

Iteration

M
ax

|E
rr
or
|

θc = 2π/3
θc = π/3
θc = π/10

(a) FIR prefilter

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
10−5

100

105

1010

Iteration

M
ax

|E
rr
or
|

θc = 2π/3
θc = π/3
θc = π/10

(b) IIR prefilter

Figure 5.12. Simulation of the feedforward estimator in Fig. 5.4d using the
FIR and IIR prefilter designs. The dashed black line is at unity which is the
standard deviation of the input signals.

5.5.2. Dropped packets

So far, it has been assumed that the graph is in the set Ln(α) at each iteration, i.e., the

graph is balanced and satisfies ‖I − Lk − Π‖2 ≤ α. These assumptions may not always

hold in practical scenarios. To analyze the proposed feedforward estimator design in such

scenarios, the algorithm is implemented on a graph where packets are dropped randomly at

176

0 50 100 150 200 250 300 350 400 450 500

−2

0

2

(a) p = 0%, balanced = 100%, norm condition = 100%

0 50 100 150 200 250 300 350 400 450 500

−2

0

2

(b) p = 10%, balanced = 36.6%, norm condition = 34.6%

0 50 100 150 200 250 300 350 400 450 500

−2

0

2

(c) p = 50%, balanced = 2.6%, norm condition = 0.2%

Figure 5.13. Simulation of the feedforward estimator in Fig. 5.4d with the
FIR prefilter designed using α = 0.5393. The input signals and graph used
are in Figs. 5.8a and 5.9a, respectively. Packets are dropped randomly at each
iteration with probability p. The percent iterations that the graph is balanced
and satisfies the norm condition ‖I −Lk−Π‖2 ≤ α are indicated. Plotted are
the exact average of the inputs 1T

nuk/n (green) and the outputs yik (black) as
a function of the iteration k.

177

each iteration with probability p. The results are shown in Fig. 5.13. When no packets are

dropped (p = 0), the estimator tracks the average of the inputs with small error. As the

probability of dropping packets increases, the assumptions on the graph are violated more

often. When p = 0.5, the graph is balanced 2.6% of the iterations and satisfies the norm

condition 0.2% of the iterations. As more assumptions are violated, the error increases, but

the increase in error is small compared to the number of times the assumptions are violated.

5.6. Summary

We have designed estimators to solve the dynamic average consensus problem when the

frequency spectrum of the input signals is composed of a continuous band of frequencies.

First, we showed that the feedback estimators from Chapter 4 are incapable of solving Prob-

lem 5. Then we designed a feedforward estimator which solves the problem with arbitrarily

small steady-state error over time-varying graphs. The only assumptions made on the com-

munication graph are that on average it is connected, balanced, and has Laplacian matrix

in Ln(α) for some α < 1.

The estimator was designed for bandlimited input signals with known cutoff frequency

θc < π. This design can be extended to more general frequency bands of the form [θ1, θ2]

by modifying the prefilter to approximate unity in the frequency band. This could also be

extended to the case when the magnitude of the frequency spectrum is known (or approx-

imately known) over all frequencies. In other words, the feedforward estimator along with

an appropriate prefilter could track input signals with minimal error when an upper bound

on |u(ejθ)| is known for all θ ∈ [0, π].

178

CHAPTER 6

Convex Optimization

In contrast to the dynamic average consensus problem which is distributed, in this chapter

we analyze and design a novel gradient-based algorithm for the unconstrained minimization

of strongly convex functions in the centralized setting. When the objective function is m-

strongly convex and its gradient is L-Lipschitz continuous, the iterates and function values

converge linearly to the optimum at rates ρ and ρ2, respectively, where ρ = 1−
√
m/L. These

are the fastest known guaranteed linear convergence rates for globally convergent first-order

methods, and for high desired accuracies the corresponding iteration complexity is within a

factor of two of the theoretical lower bound. We use a simple graphical design procedure

based on integral quadratic constraints to derive closed-form expressions for the algorithm

parameters. The new algorithm, which we call the triple momentum method, can be seen as

an extension of methods such as gradient descent, Nesterov’s accelerated gradient descent,

and the heavy-ball method.

6.1. Summary of Methods

Consider the optimization problem

minimize
x∈Rn

f(x)(6.1)

179

where f : Rn → R is continuously differentiable, strongly convex with parameter m, and

has a Lipschitz continuous gradient with Lipschitz constant L. This class of functions is

characterized as follows.

Definition 21 (function class). For a given 0 < m ≤ L, define Sm,L to be the set of

functions f : Rn → R that are continuously differentiable, strongly convex with parameter

m, and have Lipschitz gradients with Lipschitz constant L. Furthermore, κ := L/m is called

the condition number of f ∈ Sm,L.

As we will see in Lemma 23, an equivalent characterization for functions f ∈ Sm,L is that

0 ≥
[
∇f(x)−∇f(y)−m (x− y)

]T [∇f(x)−∇f(y)− L (x− y)
]

for all x, y ∈ Rn.(6.2)

The function f ∈ Sm,L with m > 0 is strongly convex and therefore has a unique global

minimizer x? ∈ Rn. We consider gradient-based algorithms for solving problem (6.1) of the

form

ξk+1 = (1 + β)ξk − βξk−1 − α∇f(yk)

yk = (1 + γ)ξk − γξk−1

xk = (1 + δ)ξk − δξk−1

(6.3)

where ξ ∈ `n2e is the internal state, the gradient is applied to y ∈ `n2e, the output is x ∈ `n2e,

and ξ0, ξ−1 ∈ Rn are the initial conditions. In this paper we assume the parameters α, β,

γ, and δ are constant (i.e., they do not change with k). Table 6.1 shows how some known

methods are of the form (6.3) with particular constraints on these parameters.

Given bounds on the distance of the iterates from the optimizer, we can obtain bounds

on the function values using Lemma 19.

180

Table 6.1. Parameters of gradient-based optimization algorithms (up to a
change of variables).

Method
Parameters
(α, β, γ, δ)

Gradient descent (α, 0, 0, 0)
Heavy-ball method [47, 50] (α, β, 0, 0)
Nesterov’s accelerated gradient descent [48] (α, β, β, 0)
Regularized update descent [51] (α, β, 1, 0)
Algorithm in [49, Eq. 6.1] (α, β, γ, 0)
Algorithm in (6.3) (α, β, γ, δ)

Lemma 19. For f ∈ Sm,L with minimizer x? ∈ Rn, we have f(x)− f(x?) ≤ L
2
‖x− x?‖2

for all x ∈ Rn.

Proof. Since ∇f is Lipschitz continuous with Lipschitz constant L,

|f(x)− f(y)− (∇f(y))T (y − x)| ≤ L

2
‖x− y‖2

for all x, y ∈ Rn [48, Lemma 1.2.3]. The result follows from substituting y = x?. �

The following theorem characterizes the convergence of both the iterates and the corre-

sponding function values of gradient descent. We provide the proof in Section 6.4. While the

result for gradient descent is not new, we provide the proof as a comparison for our proposed

algorithm.

Theorem 20 (Gradient descent). For all k ≥ 0, let fk ∈ Sm,L with 0 < m ≤ L where

0 = ∇fk(x?). For any initial condition ξ0 ∈ Rn, the gradient descent method produces iterates

which satisfy

‖xk − x?‖ ≤ ρk ‖x0 − x?‖(6.4)

fk(xk)− fk(x?) ≤ ρ2k L

2
‖x0 − x?‖2(6.5)

181

for all k ≥ 0 where

ρ =





1− 1

κ
, if α =

1

L
κ− 1

κ+ 1
, if α =

2

L+m
.

(6.6)

Our proposed algorithm, called the triple momentum method, generalizes gradient descent

using the form in (6.3) with specific choices for the parameters.

Definition 22 (Triple momentum method). Let ρ = 1 − 1/
√
κ. We call the algorithm

in (6.3) with constant parameters

(α, β, γ, δ) =

(
1 + ρ

L
,

ρ2

2− ρ,
ρ2

(1 + ρ)(2− ρ)
,

ρ2

1− ρ2

)
(6.7)

the triple momentum method (or TM method).

We now state our main theorem which gives bounds on the error of both the iterates and

the function values for the TM method. The proof is in Section 6.7.

Theorem 21 (Triple momentum method). Let f ∈ Sm,L with 0 < m ≤ L. Let x? ∈ Rn

be the unique minimizer of f . For any initial condition ξ0, ξ−1 ∈ Rn, the TM method produces

iterates which satisfy

‖xk − x?‖ ≤ ρk−1 ‖x1 − x?‖(6.8)

f(xk)− f(x?) ≤ ρ2(k−1) L

2
‖x1 − x?‖2(6.9)

for all k ≥ 1.

182

Using integral quadratic constraints, we can also prove the following bounds for the TM

method. The proof of Theorem 22 is given in Section 6.5.

Theorem 22 (Triple momentum method). Let f ∈ Sm,L with 0 < m ≤ L. Let x? ∈ Rn

be the unique minimizer of f . For any initial condition ξ0, ξ−1 ∈ Rn, the TM method produces

iterates which satisfy

‖xk − x?‖ ≤ ρk
√
‖x0 − x?‖2 +

c

m
(6.10)

f(xk)− f(x?) ≤ ρ2kL

2

(
‖x0 − x?‖2 +

c

m

)
(6.11)

for all k ≥ 1 where

c =
[
∇f(y0)−m(y0 − x?)

]T
[
γ

β
ξ0 +

(
1− γ

β

)
ξ−1 − x?

]
.(6.12)

Furthermore, if ξ0 = ξ−1, then the iterates satisfy

‖xk − x?‖ ≤ ρk
√
κ ‖x0 − x?‖(6.13)

f(xk)− f(x?) ≤ ρ2kL

2
κ ‖x0 − x?‖2(6.14)

for all k ≥ 0.

A few remarks concerning Theorem 22:

Remark 7. The state ξ also converges to x?. The transfer function from ξ to x is

(1 + δ)− δ z−1. The inverse of this transfer function has a pole at δ/(1 + δ). For any m and

L with 0 < m ≤ L, the pole is in the interval [0, 1/3] so the transfer function is stable. Since

183

the transfer function from x to ξ is stable with unit dc gain and x converges to x?, then ξ

also converges to x?.

Remark 8. Simulations (not shown) indicate the algorithm is robust to the parameters

in (6.7). If f ∈ Sm̃,L̃ (instead of Sm,L), then the algorithm still converges linearly so long as

m̃ > 0 and L̃ is not too large, although the convergence may be slower.

Remark 9. The value of c in (6.12) may be negative, however, the quanitity ‖x0−x?‖2 +

c/m is always nonnegative. For this reason, the bounds in (6.10) and (6.11) may not hold

for k = 0 (but do hold for k ≥ 1).

For comparison, we plot the convergence rates of the iterates and the number of iterations

required to obtain a given tolerance for different methods in Fig. 6.1. To obtain an accuracy

in the iterates of ε, we have ‖xk−x?‖ = ε ≤ cρk. The iterations required to converge is then

k ≥ − ln(c/ε)

ln ρ
∝ − 1

ln ρ
.(6.15)

For ill-conditioned problems, the condition ratio is large. In this case, the convergence rate

is approximately one, so we can use the approximation ln(1 + x) ≈ x for small x to obtain

k ∝ 1

1− ρ, κ large.(6.16)

This approximation yields the approximate iterations to converge for ill-conditioned problems

in Table 6.2.

We now develop the integral quadratic constraint tools which will be used to prove

Theorems 20 and 22. These allow us to characterize ∇f when f ∈ Sm,L and can be used to

both analyze and design algorithms of the form (6.3).

184

Table 6.2. Approximate iterations to converge for gradient optimization algo-
rithms for large κ (ignoring constant terms).

Method Iterations to obtain ‖xk − x?‖ ≤ ε
Gradient descent, α = 1/L κ
Gradient descent, α = 2/(L+m) κ/2
Nesterov’s method 2

√
κ

Triple momentum method
√
κ

Theoretical lower bound
√
κ/2

6.2. Analysis using Integral Quadratic Constraints

Integral quadratic constraints (IQCs) are a powerful tool for analyzing interconnected

dynamical systems which contain nonlinear components, including gradient-based optimiza-

tion algorithms [49] and estimators for distributed average tracking. The basic setup for

such systems is shown in Fig. 6.2 where G is a linear system and ∆ is either an unknown

or nonlinear function which is difficult to analyze. For example, ∆ is the gradient of the

objective function in gradient-based optimization algorithms and the nonlinear Laplacian

operator in dynamic average consensus estimators.

Consider an unknown function ∆ : Rn → Rn in feedback with a known linear system

G : Rd × Rn → Rd × Rn, where G is given by the recursion

ηk+1 = Aηk +B1uk +B2vk, η0 ∈ Rp

yk = C1ηk +D1uk(6.17)

wk = C2ηk +D2uk.

185

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

κ−1 = m/L

C
on

ve
rg
en
ce

ra
te

(ρ
)

Gradient descent, α = 1/L

Gradient descent, α = 2/(L+m)

Nesterov’s method

TM method

Theoretical lower bound

100 101 102 103

100

101

102

103

Condition ratio κ

It
er
at
io
n
s
to

co
n
ve
rg
e

Gradient descent, α = 1/L

Gradient descent, α = 2/(L+m)

Nesterov’s method

TM method

Theoretical lower bound

Figure 6.1. Theoretical properties of gradient optimization algorithms for f ∈
Sm,L. Shown are gradient descent with α = 1/L (blue) and α = 2/(L + m)

(green), Nesterov’s method with α = 1/L and β = (
√
L −√m)/(

√
L +
√
m)

(cyan), and the TM method (red). Nesterov’s lower bound (dashed black)

is also shown. The heavy-ball method with α = 4/(
√
L +

√
m)2 and β =

(
√
L−√m)/(

√
L+
√
m) converges locally with rate equal to the lower bound,

but does not converge globally.

186

u G

∆

v

y

w

Figure 6.2. Block diagram of a known linear system G in feedback with an
unknown function ∆. The system has input u and output y.

The internal state is η ∈ `p2e, the inputs are u ∈ `d2e and v ∈ `n2e, and the outputs are y ∈ `d2e
and w ∈ `n2e. The feedback is given by v = ∆(w) which produces the closed-loop system

ηk+1 = Aηk +B1uk +B2∆(C2ηk +D2uk), η0 ∈ Rp

yk = C1ηk +D1uk.

(6.18)

We suppose the closed-loop system has a fixed point (η?, u?, v?, y?, w?), i.e.,

η? = Aη? +B1u? +B2v?

y? = C1η? +D1u?

w? = C2η? +D2u?

v? = ∆(w?),

(6.19)

and we want a method for proving that the algorithm converges to the fixed point.

Example 3 (Gradient descent). Gradient descent is equivalent to (6.18) with η0 = ξ0,

∆ = (∇f0,∇f1, . . .), p = n, and

G =




A B1 B2

C1 D1 0

C2 D2 0




=




1 0 −α

1 0 0

1 0 0



⊗ In.(6.20)

187

Example 4 (TM method). The TM method is equivalent to (6.18) with η0 =
[
ξT

0 , ξ
T
−1

]T
,

∆ = (∇f0,∇f1, . . .), p = 2n, and

G =




A B1 B2

C1 D1 0

C2 D2 0




=




1 + β −β 0 −α

1 0 0 0

1 + δ −δ 0 0

1 + γ −γ 0 0




⊗ In.(6.21)

The system in (6.18) is difficult to analyze due to the unknown function ∆. The idea

behind IQCs is to replace ∆ with constraints that we know its input and output sequences

must satisfy. If a result holds for any signals (w, v) which satisfy the constraints, then the

result must also hold for the original system. To develop the constraints on (w, v), consider

a linear system Ψ : `n2e × `n2e → `m2e of the form

ζk+1 = AΨζk +Bw
Ψwk +Bv

Ψvk, ζ0 = ζ? ∈ Rq

zk = CΨζk +Dw
Ψwk +Dv

Ψvk

(6.22)

where ρ(Aψ) < 1 and (ζ?, z?) is the unique solution to

ζ? = AΨζ? +Bw
Ψw? +Bv

Ψv?

z? = CΨζ? +Dw
Ψw? +Dv

Ψv?.

(6.23)

This defines the map z = Ψ(w, v) as shown in Fig. 6.3.

We now define a ρ-IQC, which is a constraint on z which will be used to prove linear

convergence with rate ρ.

188

u G

∆

Ψ

v

y

w

z

u, y ∈ `d2e
v, w ∈ `n2e
z ∈ `m2e
η ∈ `p2e
ζ ∈ `q2e

Figure 6.3. Block diagram showing the IQC setup. The linear system G with
state η is in feedback with the unknown function ∆. The system has input u
and output y. The auxiliary system Ψ with state ζ filters w and v to produce
an output z which satisfies the IQC. For reference, the space of each signal is
given.

Definition 23 (ρ-IQC, [49, Defn. 3]). Suppose ρ ∈ [0, 1], ∆ : `n2e → `n2e is an unknown

map, and v?, w? ∈ Rn with v? = ∆(w?). Let Ψ and (ζ?, z?) be given by Eqs. (6.22) and (6.23),

respectively. Suppose w ∈ `n2 is an arbitrary square-summable sequence, i.e.,
∑∞

k=0 ‖wk‖2 <

∞. Let v = ∆(w) and z = Ψ(w, v). We say that ∆ ∈ IQC(Ψ,M, v?, w?, ρ) if

0 ≤
k∑

j=0

ρ−2j(zj − z?)TM(zj − z?), for all k ≥ 0.(6.24)

Remark 10. If ∆ ∈ IQC(Ψ,M, v?, w?, ρ), then ∆ ∈ IQC(Ψ,M, v?, w?, ρ̃) for any ρ̃ ≥ ρ.

If ∆ ∈ IQC(Ψ,M, v?, w?, ρ), then we can remove ∆ from the block diagram and simply

study the connection of the linear systems G and Ψ subject to the IQC constraint in (6.24).

Therefore, we define the auxiliary system Ĝ : `n2e → `d2e × `m2e given by

ξ̂k+1 = Âξ̂k + B̂1uk + B̂2vk

yk = Ĉ1ξ̂k + D̂11uk

zk = Ĉ2ξ̂k + D̂21uk + D̂22vk

(6.25)

189

where ξ̂ = [ηT , ζT]T and




Â B̂1 B̂2

Ĉ1 D̂11 0

Ĉ2 D̂21 D̂22




=




A 0 B1 B2

Bw
ΨC2 AΨ Bw

ΨD2 Bv
Ψ

C1 0 D1 0

Dw
ΨC2 CΨ Dw

ΨD2 Dv
Ψ




(6.26)

as shown in Fig. 6.4. The system is now completely characterized by the linear system Ĝ

where (y, z) = Ĝ(u, v) along with the IQC constraint on z in (6.24).

Ĝ
u

v

y

z

Figure 6.4. Equivalent system with the unknown function ∆ replaced by an
integral quadratic constraint on z. The system is then completely characterized
by the linear system Ĝ and the IQC.

The system Ĝ may contain states which do not affect the output, i.e., it may be un-

observable. In such cases, instead of using Ĝ to characterize the system, we can use any

system Ḡ which produces the same output sequence as Ĝ for some initial condition. We also

consider the case when some states of Ĝ do not affect the output after some finite number

of iterations. Specifically, let Ḡ : `d2n × `n2e → `d2e × `m2e be any system of the form

ξ̄k+1 = Āξ̄k + B̄1uk + B̄2vk

ȳk = C̄1ξ̄k + D̄11uk

z̄k = C̄2ξ̄k + D̄21uk + D̄22vk

(6.27)

190

such that, for some initial condition ξ̄0 and some k0 ≥ 0,



ȳk

z̄k


 =



yk

zk


 for all k ≥ k0 ≥ 0.(6.28)

Note that the trivial choice Ḡ = Ĝ satisfies these conditions with k0 = 0 and ξ̄0 = ξ̂0.

We are now ready to present the main result of this section which gives conditions for

global linear convergence of the output x to a fixed point of the system with rate ρ.

Theorem 23 (Main IQC result). Consider the system (6.18). Suppose u is constant,

i.e., uk = u for all k ≥ 0, and suppose (η?, u?, v?, y?, w?) is a fixed point of the system, i.e.,

satisfies (6.19). Let Ḡ be any system of the form in (6.27) such that the condition in (6.28)

is satisfied for some initial condition ξ̄0 and some integer k0 ≥ 0 where yk and zk are defined

by (6.25). If ∆ ∈ IQC(Ψ,M, v?, w?, ρ) and there exists P � 0 such that

0 �



C̄1Ā C̄1B̄2

ρC̄1 0




T 

P 0

0 −P






C̄1Ā C̄1B̄2

ρC̄1 0


+

[
C̄2 D̄22

]T

M

[
C̄2 D̄22

]
,(6.29)

then for any initial condition η0 ∈ Rp, we have

‖xk − x?‖ ≤ ρk
√

cond(P)‖x̄0 − x?‖2 +
ν

σmin(P)
(6.30)

for all k ≥ k0 where x̄0 = C̄1ξ̄0 and

ν :=

k0−1∑

j=0

ρ−2(j+1)
[
(zj − z?)TM(zj − z?)− (z̄j − z?)TM(z̄j − z?)

]
.(6.31)

Proof. Let u, x̄, z̄, ξ̄ ∈ `2e satisfy (6.27) and (6.28) with the initial condition ξ̄0. Suppose

∆ ∈ IQC(Ψ,M, v?, w?, ρ) and P � 0 is a solution of (6.29). From Eqs. (6.19) and (6.28),

191

there exists a vector ξ̄? which satisfies

ξ̄? = Āξ̄? + B̄1u? + B̄2v?

y? = C̄1ξ̄? + D̄11u?

z? = C̄2ξ̄? + D̄21u? + D̄22v?.

(6.32)

Then define the quantity

µk := (ȳk+1 − y?)TP (ȳk+1 − y?)− ρ2(ȳk − y?)TP (ȳk − y?) + (z̄k − z?)TM(z̄k − z?).(6.33)

From (6.27) and (6.32), we have

µk =




?

?

?




T



? ? ?

? ? ?




T 

P 0

0 −P






C̄1Ā C̄1B̄1 + D̄11 C̄1B̄2

ρC̄1 ρD̄11 0







ξ̄k − ξ̄?

uk − u?

vk − v?




(6.34)

+




ξ̄k − ξ̄?

uk − u?

vk − v?




T

[
C̄2 D̄21 D̄22

]T

M

[
C̄2 D̄21 D̄22

]



ξ̄k − ξ̄?

uk − u?

vk − v?




where ? denotes the repeated part of the quadratic form. Since the input is constant, uk = u?

for all k ≥ 0, so

µk =



ξ̄k − ξ̄?

vk − v?




T 

C̄1Ā C̄1B̄2

ρC̄1 0




T 

P 0

0 −P






C̄1Ā C̄1B̄2

ρC̄1 0






ξ̄k − ξ̄?

vk − v?


(6.35)

+



ξ̄k − ξ̄?

vk − v?




T [
C̄2 D̄22

]T

M

[
C̄2 D̄22

]


ξ̄k − ξ̄?

vk − v?


 .

192

The matrix in (6.29) is negative semidefinite, so 0 ≥ µk for all k ≥ 0. Multiply µj by ρ2(k−j−1)

and sum over j = 0, . . . , k − 1. The first two terms yield a telescoping sum, and we obtain

0 ≥ (x̄k − x?)TP (x̄k − x?)− ρ2k(x̄0 − x?)TP (x̄0 − x?) + ρ2(k−1)

k−1∑

j=0

ρ−2j(z̄j − z?)TM(z̄j − z?).

Define x̃k := xk − x? and z̃k := zk − z?. Then using the conditions in (6.28), we have

x̃TkPx̃k ≤ ρ2k(x̄0 − x?)TP (x̄0 − x?)− ρ2(k−1)

k−1∑

j=0

ρ−2j z̃Tj Mz̃j + ρ2kν(6.36)

for k ≥ k0 where ν is defined in (6.31). Because ∆ ∈ IQC(Ψ,M, v?, w?, ρ), the summation

term in (6.36) is nonnegative for all k ≥ 0, so

(xk − x?)TP (xk − x?) ≤ ρ2k
[
(x̄0 − x?)TP (x̄0 − x?) + ν

]
.

Multiplying by ‖xk − x?‖2/(xk − x?)TP (xk − x?) gives

‖xk − x?‖2 ≤ ρ2k

[
cond(P)‖x̄0 − x?‖2 +

ν

σmin(P)

]
.

Taking the square root gives the bound in (6.30). �

Theorem 23 extends [49, Thm. 4] in the following ways:

(1) The system has an input uk (which is assumed to be constant in Thm. 23).

(2) The output is a function of the state of G given by yk = C1ξk +D1uk. Then P ∈ Sd

since P multiplies x, whereas P ∈ Sp+q in [49] since it multiplies the combined state

[ηT ζT]T . The smaller P matrix makes it easier to obtain closed-form solutions.

Also, C1 can be chosen to minimize cond(P) to improve the bound in (6.30).

(3) Instead of Ĝ, an equivalent (possibly lower order) system Ḡ can be used.

193

Remark 11. It is sometimes possible to obtain a tighter bound on the error by applying

Theorem 23 to a set of values for ρ and taking the minimum over each bound.

By applying Theorem 23 with Ḡ = Ĝ, we obtain the simple corollary.

Corollary 8. Consider the system (6.18). Suppose u is constant, i.e., uk = u for all

k ≥ 0, and suppose (η?, u?, v?, y?, w?) is a fixed point of the system, i.e., satisfies (6.19). If

∆ ∈ IQC(Ψ,M, v?, w?, ρ) and there exists P � 0 such that

0 �



Ĉ1Â Ĉ1B̂2

ρĈ1 0




T 

P 0

0 −P






Ĉ1Â Ĉ1B̂2

ρĈ1 0


+

[
Ĉ2 D̂22

]T

M

[
Ĉ2 D̂22

]
,(6.37)

then for any initial condition η0 ∈ Rp, we have

‖xk − x?‖ ≤ ρk
√

cond(P) ‖x0 − x?‖(6.38)

for all k ≥ 0.

Next, we provide several useful IQCs which characterize ∇f when f ∈ Sm,L.

Lemma 20 ([49, Lemma 6]). Suppose fk ∈ Sm,L for each k and (u?, y?) is a common ref-

erence point for the gradients of fk, i.e., u? = ∇fk(y?) for all k ≥ 0. Let ∆ = (∇f0,∇f1, . . .).

Then ∆ ∈ IQC(Ψ,M, u?, y?, 0) where

Ψ =



L −1

−m 1


⊗ In, M =




0 1

1 0


⊗ In.(6.39)

When f is constant, the IQC can be generalized by introducing dynamics in Ψ.

194

Lemma 21 ([49, Lemma 10]). Suppose f ∈ Sm,L and (u?, y?) is a reference point for the

gradient of f , i.e., u? = ∇f(y?). Let H(z) = ρ̄2/z with ρ̄ ∈ [0, 1]. Let ∆ = (∇f,∇f, . . .).

Then ∆ ∈ IQC(Ψ,M, u?, y?, ρ) for any ρ ∈ [ρ̄, 1] where

Ψ =



L(1−H) −(1−H)

−m 1


⊗ In, M =




0 1

1 0


⊗ In.(6.40)

Remark 12. For H(z) = ρ̄2/z, a parameterization of Ψ in (6.40) is



AΨ By

Ψ Bu
Ψ

CΨ Dy
Ψ Du

Ψ


 =




0 −L 1

ρ̄2 L −1

0 −m 1



⊗ In.(6.41)

6.3. Design using Integral Quadratic Constraints

We now consider how to design systems using integral quadratic constraints of the form

in (6.40). (This includes the IQC in Lemma 20 by setting H(z) = 0.) Conditions in terms of

the system G, the IQC parameter H, the matrix parameter P , and the convergence rate ρ

to guarantee global linear convergence of the algorithm with rate ρ are given in Theorem 23.

The matrix inequality in (6.29) is not linear in all of the unknowns, however, and does not

directly lead to a simple design procedure. In other words, Theorem 23 is good for analysis,

but not for design. The difficulty with using Theorem 23 to design algorithms is in finding

conditions under which (6.29) has a solution P � 0. Instead of using (6.29) directly, we

design the algorithm using the following relaxed frequency domain condition. (We use the

notation ∠(rejθ) = θ to denote the angle of a complex number.)

195

Lemma 22. Suppose Ψ and M are given by (6.40) with H(z) = ρ̄2/z. Let G2(z) =

C2(zI − A)−1B2 = g2(z)⊗ In. Also, suppose the system

Ĝ2(z) := Ψ(z)



G2(z)

I


 =



Â B̂2

Ĉ2 D̂2


(6.42)

has no poles on ρT and the pair (Â, B̂2) is controllable. If

∠F (z) ∈
[
−π

2
,
π

2

]
for all z ∈ ρT(6.43)

where

F (z) :=
1− Lg2(z)

1−mg2(z)
(1−H(z)),(6.44)

then there exists P̃ ∈ Sp such that the LMI in (6.29) is satisfied with Ḡ = Ĝ for any P and

C1 such that P̃ = ĈT
1 PĈ1.

Proof. Suppose (6.43) is satisfied. For Ψ and M given by (6.40), we have

Ĝ2(z)∗MĜ2(z) = −2 Re{f(z)} ⊗ In

where

f(z) = (1−mg2(z∗))(1− Lg2(z))(1−H(z)).(6.45)

196

Note that ∠F (z) = ∠f(z) since ∠(1 −mg2(z∗)) = −∠(1 −mg2(z)). From (6.43), we have

Re{F (z)} ≥ 0 for all z ∈ ρT which implies Re{f(z)} ≥ 0. Then

Ĝ2(z)∗MĜ2(z) ≤ 0 for all z ∈ ρT.

Since Ĝ2(z) has no poles on ρT and the pair (Â, B̂) is controllable, we can apply the discrete-

time KYP Lemma [71] to the previous frequency domain inequality. This implies that there

exists P̃ ∈ Sp such that

0 �



Â B̂2

ρI 0




T 

P̃ 0

0 −P̃






Â B̂2

ρI 0


+

[
Ĉ2 D̂2

]T
M

[
Ĉ2 D̂2

]
.

Therefore, (6.29) is satisfied with Ḡ = Ĝ for any P and C1 such that P̃ = ĈT
1 PĈ1. �

Remark 13. Lemma 22 only ensures that (6.29) is satisfied for some values of P and

Ĉ1, but does not guarantee that P � 0 as required in Theorem 23 or that Ĉ1 = [C1 0] as in

(6.25). Conditions exist on (Ψ,M) which guarantee that P � 0 [72]. However, we simply

use (6.43) to design the algorithm, not to prove convergence. Once the algorithm is designed

using this relaxed condition, we show in Sections 6.4 and 6.5 (for gradient descent and the

TM method, respectively) that we do have P � 0 and Ĉ1 = [C1 0] as required.

Remark 14. Frequency domain conditions which do guarantee global asymptotic stability

for systems with sector nonlinearities are given in [73, 74].

Condition (6.43) can be analyzed graphically as follows:

(1) Draw the root locus of −g2(z).

(2) Draw a pole/zero plot of F (z) as follows:

197

(a) The root locus poles at gain m are poles of F (z).

(b) The root locus poles at gain L are zeros of F (z).

(c) The poles and zeros of 1−H(z) are poles and zeros, respectively, of F (z).

(3) For all z ∈ ρT, calculate ∠F (z) by summing the angles from z to the zeros and

subtracting the angles from z to the poles.

This graphical procedure can be used to design G2(z), the IQC parameter H(z), and the

convergence rate ρ. The remaining parameters C1 and P are then obtained using (6.29).

The design process is summarized as follows:

(1) Use the graphical procedure to design G2(z), H(z), and ρ in the frequency domain

to satisfy the condition in (6.43).

(2) The LMI in (6.29) is now linear in P̃ = ĈT
1 PĈ1 and can be solved efficiently for P̃ .

From Lemma 22, we know that a solution P̃ ∈ Sp exists.

(3) If we can write P̃ = ĈT
1 PĈ1 with P � 0 and Ĉ1 = [C1 0] where P ∈ Sd and

C1 ∈ Rd×p, then we can apply Theorem 23 to guarantee global linear convergence

with rate ρ with error bound (6.30).

6.4. Gradient Descent

We now design and analyze the gradient descent method using the IQC tools from

Sections 6.2 and 6.3. It is well-known that the optimal step size for gradient descent is

α = 2/(L + m) and the corresponding convergence rate is ρ = (L − m)/(L + m) (for ex-

ample, see [49, Section 4.4]). However, we go through the design process so that we can

compare with the TM method.

198

6.4.1. Design

Example 3 gives the parameters for gradient descent in the form of (6.18). The transfer

function of G from the second input to the second output is then g2(z)⊗ In where

g2(z) = − α

z − 1
.(6.46)

To prove the bounds for gradient descent in Theorem 20 when the function is time-varying,

we must use the static IQC in Lemma 20 which corresponds to H(z) = 0.

We now use the graphical design procedure to analyze the condition in (6.43) as follows.

First, we draw the root locus of −g2(z) as shown in Fig. 6.5a. The root locus poles at gains

m and L are the poles and zeros of F (z), respectively. These are shown in Figs. 6.5b and

6.5c for two choices of the step size. Note that H(z) does not contribute any phase since the

IQC is static. We then sum the angle from z to the zero and subtract the angle from z to

the pole for z ∈ ρT to obtain the phase plot of F (z) in Fig. 6.5d. From Lemma 22 we want

the phase of F (z) to be in the interval [−π/2, π/2], which is satisfied for both choices of α.

From Fig. 6.5, it is clear that the angle condition is satisfied if and only if the pole and

zero are both inside ρT. To obtain the smallest such ρ, we set the pole and zero on the

boundary of ρT using

0 = 1−mg2(ρ)(6.47)

0 = 1− Lg2(−ρ).(6.48)

Solving these two equations gives the optimal step size α = 2/(L+m) and convergence rate

ρ = (L−m)/(L+m).

199

−1 −ρ ρ 1 Re(z)

Im(z)

(a) Root locus of −g2(z).

−1 −ρ ρ 1 Re(z)

Im(z)

(b) Pole/zero plot of F (z) with α = 1/L.

−1 −ρ ρ 1 Re(z)

Im(z)

(c) Pole/zero plot of F (z) with α = 2/(L+m).

0 π/2 π 3π/2 2π

−π/2

0

π/2

α = 1/L

α = 2/(L+m)

θ

∠F
(ρ
ej
θ
)

(d) Phase plot of F (ρejθ) with α = 1/L (green) and α = 2/(L+m) (blue).

Figure 6.5. Design of gradient descent.

6.4.2. Analysis (Proof of Theorem 20)

We now prove the bounds in Theorem 20 using the IQC tools from Section 6.2. From

Example 3, gradient descent has the form in (6.18) with ∆ = ∇f , η = ξ, p = n, and G given

by (6.20).

200

Since fk ∈ Sm,L for all k, the static IQC in Lemma 20 gives that∇f ∈ IQC(Ψ,M, u?, y?, ρ)

where Ψ and M are give by (6.39) and u? = ∇f(y?). Since f(x) is strongly convex, it has a

unique minimizer x?. The combined system Ĝ in (6.26) is




Â B̂1 B̂2

Ĉ1 D̂11 0

Ĉ2 D̂21 D̂22




=




1 0 −α

1 0 0

L 0 −1

−m 0 1




⊗ In(6.49)

where the state is ξ̂ = η = ξ. In this case we can use Corollary 8 to prove the result. The

matrix in (6.37) is then




1− ρ2 −α

−α α2


P +



−2Lm L+m

L+m −2


 .(6.50)

If this matrix is negative semidefinite, then we can use Corollary 8 to prove that the algorithm

converges to a fixed point which satisfies the IQC. The only point which is both a fixed point

of the system and such that the gradient of f satisfies the IQC is

(u?, x?, y?, z?, η?, ζ?) =


0n, x?, x?,



Lx?

−mx?


 , x?,00×0


 .(6.51)

In particular, the fixed point for x is the minimizer x?. Since P is a scalar in this case, it

has unit condition number, i.e., cond(P) = 1. Equation (6.38) provides the bound on the

iterates, and Lemma 19 gives the corresponding bound on the function values.

We have left to show that the matrix in (6.50) is negative semidefinite for both step sizes.

201

6.4.3. α = 1/L

Using the parameters α = 1/L, ρ = 1−m/L, and P = L2, the matrix in (6.50) is




1− ρ2 −α

−α α2


P +



−2Lm L+m

L+m −2


 =



−m2 m

m −1


(6.52)

which has eigenvalues at zero and −(1 +m2), and is therefore negative semidefinite.

6.4.4. α = 2/(L+m)

Using the parameters α = 2/(L+m), ρ = (L−m)/(L+m), and P = (L+m)2/2, the matrix

in (6.50) is the zero matrix, and is therefore negative semidefinite.

6.5. Triple Momentum Method

We now design and analyze the TM method similar to gradient descent.

6.5.1. Design

From Example 4, the TM method is of the form in (6.18) with G(z) given by (6.21). The

transfer function of G from the second input to the second output is then

g2(z) = −(1 + γ)α

(
z − γ

1+γ

)

(z − 1)(z − β)
.(6.53)

In this case, f is constant so we can use the dynamic IQC in Lemma 21 with H(z) = ρ̄2/z.

To design the algorithm, we first consider how to design H(z), i.e., how should we choose ρ̄?

Since we need ∇f to satisfy the ρ-IQC, we need ρ̄ ≤ ρ. From (6.44), the phase of 1−H(z) is

added to the phase of (1− Lg2(z))/(1−mg2(z)) to obtain the phase of F (z). The phase of

1−H(z) is plotted in Fig. 6.6 for several choices of H(z). From the root locus of −g2(z) in

202

0 π/2 π 3π/2 2π

−π/2

0

π/2

H = 0

H = ρ2/z H = ρ4/z2

θ

∠(
1
−
H
(ρ
ej
θ
))

Figure 6.6. Phase plot of ∠(1 −H(ρejθ)) for H(z) = 0 (black), H(z) = ρ2/z
(green), and H(z) = ρ4/z2 (blue) with ρ = 0.8.

Fig. (6.7a), it is clear that (1− Lg2(z))/(1−mg2(z)) will have negative phase for θ ∈ (0, π)

and positive phase for θ ∈ (π, 2π) (see Fig. 6.7c). Therefore, we want to choose H(z) to

have large positive phase in (0, π) and large negative phase in (π, 2π). The largest amount

of phase is achieved using H(z) = ρ2/z (see Fig. 6.6).

We now consider how to design the parameters α, β, γ, and ρ. Since H(z) = ρ2/z, then

1−H(z) has a zero at z = ρ2 and a pole at z = 0. We design g2(z) to cancel the pole and

zero of 1 − H(z) and to have a pole and zero at ρ and −ρ, similar to gradient descent, as

shown in Fig. 6.7a. In other words,

• Design 1−mg2(z) to have roots at z = ρ2 (to cancel the zero of 1−H(z)) and z = ρ.

• Design 1−Lg2(z) to have roots at z = 0 (to cancel the pole of 1−H(z)) and z = −ρ.

These four conditions are used to solve for the four parameters α, β, γ, and ρ.

To obtain the other parameters δ and P , we solve (6.29) in closed-form by searching for

parameters which make the matrix in (6.29) low rank. The TM method has enough degrees

of freedom that the parameters can be chosen such that the matrix has rank zero, i.e., it is

203

−1 −ρ γ
1+γ

β ρ 1

ρT

Re(z)

Im(z)

(a) Root locus of −g2(z).

−1 −ρ ρ2 ρ 1 Re(z)

Im(z)

(b) Pole/zero plot of F (z). Plotted are the zeros of 1−mg2(z) (×), the zeros of 1−Lg2(z) (◦), the
poles of 1−H(z) (×), and the zeros of 1−H(z) (◦).

0 π/2 π 3π/2 2π

−π/2

0

π/2

θ

(c) Phase plot of (1− Lg2(z))/(1−mg2(z)) (red), 1−H(z) (green), and F (z) (blue) for z = ρejθ.
Note that ∠F (z) ∈ [−π/2, π/2] for all z ∈ ρT as desired.

Figure 6.7. Design of the parameters (α, β, γ, ρ) in the TM method.

204

the zero matrix. This small rank property is a known property of solutions to LMIs [75],

and also holds for gradient descent with the optimal constant step size.

The design procedure is shown in Fig. 6.7. This does not guarantee global linear conver-

gence, but gives some intuition for the design. Before analyzing the algorithm, we note that

the design of both the TM method and gradient descent using the optimal step size have

the following characteristics:

• The matrix in the LMI in (6.29) has rank zero.

• The real part of F (z) in (6.44) is identically zero on ρT (since the phase is ±π/2).

6.5.2. Analysis (Proof of Theorem 22)

We now prove Theorem 22 using the IQC tools from Section 6.2. From Example 4, the TM

method is equivalent to (6.18) with ∆ = ∇f , ηk = [ξT
k ξT

k−1]T , p = 2n, G given in (6.21),

and the parameters in (6.7). Let H(z) = ρ2/z where ρ = 1− 1/
√
κ. Then Lemma 21 gives

∇f ∈ IQC(Ψ,M, u?, y?, ρ) where Ψ and M are given by (6.40) and u? = ∇f(y?).

Since f(x) is strongly convex, it has a unique minimizer x?. The only point which is both

a fixed point of the system and such that the gradient of f satisfies the IQC is

(u?, x?, y?, z?, η?, ζ?) =


0, x?, x?,



L(1− ρ2)x?

−mx?


 ,



x?

x?


 ,−Lx?


 .(6.54)

205

In particular, the output of the algorithm is the minimizer of f when at this fixed point.

Using the parameterization of Ψ in (6.41), the combined system Ĝ in (6.26) is




Â B̂1 B̂2

Ĉ1 D̂11 0

Ĉ2 D̂21 D̂22




=




1 + β −β 0 0 −α

1 0 0 0 0

−L(1 + γ) Lγ 0 0 1

1 + δ −δ 0 0 0

L(1 + γ) −Lγ ρ2 0 −1

−m(1 + γ) mγ 0 0 1




⊗ In(6.55)

where the state is ξ̂ = [ηT , ζT]T with ηk = [ξT
k , ξ

T
k−1]T . The system Ĝ is uncontrollable due

to the pole/zero cancellation in F (z) (see Fig. 6.7b). To make this explicit, let

C =

[
B̂ ÂB̂ Â2B̂

]
(6.56)

be the controllability matrix for Ĝ. Since rank(C) = 2 < 3, the pair (Â, B̂) is uncontrollable.

We now apply a coordinate change to separate the uncontrollable state. Let

Q =




1 0 0

0 1 0

−L(1 + ε) Lε 1




(6.57)

where ε = −(1 − γ/β). Note that the first two columns of Q form a basis for the column

space of C, and Q is nonsingular. Then applying the coordinate change Q−1ξ̂ gives a different

206

parameterization of Ĝ,

Ĝ =




1 + β −β 0 0 −α

1 0 0 0 0

0 0 0 0 0

1 + δ −δ 0 0 0

L(1 + γ − ρ2(1 + ε)) −L(γ − ρ2ε) ρ2 0 −1

−m(1 + γ) mγ 0 0 1




⊗ In,(6.58)

from which it is clear that the third state is uncontrollable. Furthermore, for k ≥ 0 the third

state is zero and does not affect the output. Therefore, we define the reduced system

Ḡ =




1 + β −β 0 −α

1 0 0 0

1 + δ −δ 0 0

L(1 + γ − ρ2(1 + ε)) −L(γ − ρ2ε) 0 −1

−m(1 + γ) mγ 0 1




⊗ In(6.59)

which has state ξ̄ = η.

We now apply Theorem 23 to Ḡ. Comparing (6.58) and (6.59), it is clear that (6.28)

is satisfied with k0 = 1 and ξ̄0 = η0 = [ξT
0 ξT
−1]T . Letting P = 2mL, the right-hand side of

(6.29) is the zero matrix, so the LMI in (6.29) is satisfied. Then for any initial condition

ξ0, ξ−1 ∈ Rn, we have

‖xk − x?‖ ≤ ρk
√
‖x0 − x?‖2 +

ν

2mL
(6.60)

207

for all k ≥ k0 = 1 where

ν = ρ−2
[
(z0 − z?)TM(z0 − z?)− (z̄0 − z?)TM(z̄0 − z?)

]
.

From (6.55) and (6.59) and using ζ0 = ζ?, we have

z0 =



L(1 + γ) −Lγ ρ2

−m(1 + γ) mγ 0







ξ0

ξ−1

ζ?




z̄0 =



L(1 + γ − ρ2(1 + ε)) −L(γ − ρ2ε)

−m(1 + γ) mγ






ξ0

ξ−1




which implies

ν = 2L[∇f(y0)−m(y0 − x?)]T [(1 + ε)ξ0 − εξ−1 − x?].

Using ξ−1 = ξ0 and simplifying the bound in (6.60) gives the bound in (6.10). Applying

Lemma 19 gives the bound in (6.11). �

6.6. Simulations

Simulations are shown in Fig. 6.8 comparing (1) gradient descent using the optimal step

size, (2) heavy-ball using the parameters in [47], (3) Nesterov’s method with α = 1/L and

β = (
√
L−√m)/(

√
L+
√
m), and (4) the TM method. The objective functions are randomly

generated piecewise quadratics with n = 1 similar to the heavy-ball counter-example in [49],

where the coefficients are chosen such that f ∈ S1,50. The heavy-ball method contains

stable limit cycles and does not converge globally. The TM method is both guaranteed to

208

converge from any initial condition and faster than Nesterov’s method. Simulation results

for higher-dimensional piecewise quadratic objective functions are similar.

0 10 20 30 40 50 60 70 80 90 100

10−9

10−7

10−5

10−3

10−1

101

103

Iteration k

f
(x

k
)
−
f
(x

?
)

Gradient

Heavy-ball

Nesterov

TM method

Figure 6.8. Simulation results of several optimization algorithms. The solid
lines are the average and the dashed lines indicate the maximum over 1000
trials.

6.7. Alternative Convergence Proofs

We now provide alternative convergence proofs for both gradient descent and the triple

momentum method which do not rely on control theory. First, we state our main analysis

theorem which can be used to prove linear convergence of a sequence with rate ρ.

209

Theorem 24 (Analysis). Let x ∈ `n2e and q ∈ `2e be arbitrary sequences, let x? ∈ Rn, let

µ ≥ 0, and let k0 ≥ 0. If

‖xk+1 − x?‖2 ≤ ρ2 ‖xk − x?‖2 + µ qk, for all k ≥ k0(6.61)

and

0 ≥
k∑

j=k0

ρ−2j qj, for all k ≥ k0,(6.62)

then xk converges to x? linearly with rate ρ. Specifically,

‖xk − x?‖ ≤ ρk−k0 ‖xk0 − x?‖, for all k ≥ k0.(6.63)

Proof. Define the quanitity

ηk := ‖xk+1 − x?‖2 − ρ2 ‖xk − x?‖2 − µ qk.(6.64)

From (6.61), we have ηk ≤ 0 for all k ≥ k0. Then we have the following telescoping sum,

0 ≥
k−1∑

j=k0

ρ−2(k−j−1) ηj = ‖xk − x?‖2 − ρ2(k−k0) ‖xk0 − x?‖2 − µ ρ2(k−1)

k−1∑

j=k0

ρ−2jqj(6.65)

for all k ≥ k0. The summation term is non-positive from (6.62), so we have

‖xk − x?‖2 ≤ ρ2(k−k0) ‖xk0 − x?‖2(6.66)

for all k ≥ k0. Taking the square root then gives (6.63). �

Remark 15. The following are some examples of when (6.62) holds:

• qk ≤ 0 for all k ≥ 0.

210

• There exists a sequence q̄ ∈ `2e with q̄k ≤ 0 for all k ≥ 0 such that

qk =





q̄k − ρ2 q̄k−1, k ≥ 1

q̄0, k = 0.

(6.67)

In order to use Theorem 24, we need a sequence qk that satisfies (6.62) and enables us to

show that (6.61) holds. When the sequence xk is generated by gradient algorithms applied

to a strongly convex function, we use the following lemmas to characterize the gradient of

functions in Sm,L.

Lemma 23. Suppose f ∈ Sm,L. Then

0 ≥
[
∇f(x)−∇f(y)−m (x− y)

]T [∇f(x)−∇f(y)− L (x− y)
]

(6.68)

for all x, y ∈ Rn.

Proof. The result follows directly from the quadratic inequality in [49, Lemma 6]. �

Lemma 24. Suppose f ∈ Sm,L with 0 = ∇f(x?). Define pr(y) := ∇f(y) − r (y − x?).

Given a sequence y ∈ `n2e, let

qk =





pm(yk)
T
[
pL(yk)− ρ2 pL(yk−1)

]
, k ≥ 1

pm(y0)TpL(y0), k = 0.

(6.69)

Then

0 ≥
k∑

j=0

ρ−2j qj, for all k ≥ 0.(6.70)

Proof. The result follows directly from the quadratic inequality in [49, Lemma 10]. �

211

We now apply Theorem 24 along with Lemmas 23 and 24 to prove that the sequences

xk produced by gradient descent and the triple momentum method converge linearly to the

optimizer x? with rate ρ. We prove the bound for gradient descent using the optimal step

size in Theorem 20 which we restate here.

Theorem 25 (Gradient descent). Let fk ∈ Sm,L for all k ≥ 0 with 0 < m ≤ L. Let

x? ∈ Rn be the unique minimizer of fk, i.e., 0 = ∇fk(x?) for all k ≥ 0. For any initial

condition ξ0 ∈ Rn, gradient descent with step size α = 2/(L + m) produces iterates which

satisfy

‖xk − x?‖ ≤ ρk ‖x0 − x?‖(6.71)

f(xk)− f(x?) ≤ ρ2k L

2
‖x0 − x?‖2(6.72)

for all k ≥ 0 where ρ = (L−m)/(L+m).

Proof. Let xk be the sequence generated by gradient descent with initial condition ξ0.

Define the sequence

qk =
[
∇fk(xk)−m (xk − x?)

]T [∇fk(xk)− L (xk − x?)
]
.(6.73)

Then qk ≤ 0 for all k ≥ 0 from Lemma 23, so (6.62) holds. Next, we show that (6.61) holds

for all k ≥ 0. Define ∇fk := ∇fk(xk). Then for k ≥ 0, we have

ηk := ‖xk+1 − x?‖2 − ρ2 ‖xk − x?‖2 − µ qk

= ‖xk+1 − x?‖2 − ρ2 ‖xk − x?‖2 − µ
[
∇fk −m (xk − x?)

]T [∇fk − L (xk − x?)
]
.

212

Making the substitution xk+1 → xk − α∇fk gives ηk in terms of xk, ∇fk, and x?. Using the

parameters

(
ρ, µ, α

)
=

(
L−m
L+m

,
4

(L+m)2
,

2

L+m

)

gives ηk ≡ 0 for any xk,∇fk, x? ∈ Rn. (In fact, these parameters are the unique solution

with ρ ∈ [0, 1) to the equation ηk ≡ 0.) Then (6.61) is satisfied with equality for k ≥ 0.

Applying Theorem 24 gives ‖xk − x?‖ ≤ ρk ‖x0 − x?‖ for all k ≥ 0, and Lemma 19 gives the

bound on the function values. �

Theorem 26 (Triple momentum method). Let f ∈ Sm,L with 0 < m ≤ L. Let x? ∈ Rn

be the unique minimizer of f . For any initial condition ξ0, ξ−1 ∈ Rn, the TM method produces

iterates which satisfy

‖xk − x?‖ ≤ ρk−1 ‖x1 − x?‖(6.74)

f(xk)− f(x?) ≤ ρ2(k−1) L

2
‖x1 − x?‖2(6.75)

for all k ≥ 1.

Proof. Let xk be the sequence generated by the TM method with initial conditions ξ0

and ξ−1. Define the sequence

qk =





pm(yk)
T
[
pL(yk)− ρ2 pL(yk−1)

]
, k ≥ 1

pm(y1)TpL(y1), k = 0.

(6.76)

213

Then (6.62) holds for all k ≥ 1 from Lemma 24. Next, we show that (6.61) holds for k ≥ 1.

Define ∇fk := ∇f(yk). Then for k ≥ 1, we have

ηk := ‖xk+1 − x?‖2 − ρ2 ‖xk − x?‖2 − µ qk

= ‖xk+1 − x?‖2 − ρ2 ‖xk − x?‖2

− µ
[
∇fk −m (yk − x?)

]T[(∇fk − L (yk − x?)
)
− ρ2

(
∇fk−1 − L (yk−1 − x?)

)]
.

Making the substitutions

xk+1 → (1 + δ)ξk+1 − δξk

xk → (1 + δ)ξk − δξk−1

yk → (1 + γ)ξk − γξk−1

yk−1 → (1 + γ)ξk−1 − γξk−2

∇fk →
[
−ξk+1 + (1 + β)ξk − βξk−1

]
/α

∇fk−1 →
[
−ξk + (1 + β)ξk−1 − βξk−2

]
/α

gives ηk in terms of ξk−2, ξk−1, ξk, ξk+1, and x?. Using the parameters

(ρ, µ, α, β, γ, δ) =

(
1−

√
m

L
,

1

mL
,

1 + ρ

L
,

ρ2

2− ρ,
ρ2

(1 + ρ)(2− ρ)
,

ρ2

1− ρ2

)

gives ηk ≡ 0 for any ξk−2, ξk−1, ξk, ξk+1, x? ∈ Rn for k ≥ 1. (In fact, these parameters are the

unique solution with ρ ∈ [0, 1) to the equation ηk ≡ 0.) Then (6.61) is satisfied with equality

for k ≥ 1. Applying Theorem 24 gives ‖xk − x?‖ ≤ ρk−1 ‖x1− x?‖ for all k ≥ 1, and Lemma

19 gives the bound on the function values. �

214

6.8. Summary

We have both designed and analyzed the TM method for gradient-based optimization.

When f ∈ Sm,L, the iterates converge linearly to the optimizer at rate ρ = 1−
√
m/L from

any initial condition, and the function values converge at rate ρ2. This is the fastest known

convergence rate that has been proven for first-order algorithms which converge globally to

the minimizer. For high levels of accuracy, the bound on the iteration complexity for our

algorithm is half the known bound for Nesterov’s method and within a factor of two of the

theoretical lower bound in [48, Thm. 2.1.12].

Further analysis is needed to study the behavior of the TM method in the case when f

is weakly convex and to characterize the robustness to the parameters m and L.

The IQC framework used to design and analyze our algorithm can be expanded to handle

many different problems and methods such as proximal algorithms, inexact gradient methods,

and optimizing weakly convex functions; see [49, Sections 5 and 7] for details. Future work

will focus on using our design techniques to design optimal methods in such scenarios.

215

CHAPTER 7

Conclusion

7.1. Summary

In this thesis, we have analyzed and designed algorithms for two problems: (1) the

dynamic average consensus problem, and (2) the problem of minimizing a strongly convex

function using only gradient information.

The dynamic average consensus problem was separated into two cases depending on

whether the frequency spectrum of the input signals is composed of discrete frequencies

or a continuous band of frequencies, and estimators were designed for each case. Various

feedback estimators were proposed, each with its own benefits and drawbacks, and each

estimator achieves zero steady-state error when the model of the input is known. Zero

steady-state error is not possible when the input signals are bandlimited, but a feedforward

estimator was designed which achieves arbitrarily small steady-state error even when the

communication graph changes at each iteration.

We have also designed a novel gradient-based algorithm for minimizing a convex function.

When the function is smooth and strongly convex, our algorithm is the fastest known globally

convergent first-order method for minimizing the function. Our algorithm generalizes well-

known methods such as gradient descent, Nesterov’s accelerated gradient descent, and the

heavy-ball method.

Although the two problems studied have vastly different applications, we have found a

connection between dynamic average consensus and convex optimization. Estimators for

216

dynamic average consensus can be viewed as applying gradient-based convex optimization

algorithms to a specific function whose gradient is the graph Laplacian. This allows the

centralized optimization algorithm to be implemented in a distributed manner.

7.2. Future Directions

There are many exciting areas where our work could be expanded. We list a few below.

• When the input signals and graph are constant, it is an open question whether there

exists an estimator which has all of the following properties: 1) scalable, 2) exact,

3) robust to initial conditions, 4) time-invariant, 5) internally stable, 6) convergence

rate ρ = (1−
√
λr)/(1+

√
λr), and 7) one-hop local broadcast communication. Each

of the feedback estimators in Chapter 4 lacks at least one of these properties. We

now give several approaches to solving this problem.

◦ The PI estimator has all of the properties except for the optimal conver-

gence rate (although the convergence rate of the PI-4 estimator is comparable).

Therefore, one approach is to introduce more degrees of freedom into the PI

estimator. Both the proportional and integral terms in the PI estimator get fil-

tered through h1(z). This was needed to design the estimator using the nested

root locus technique. However, a more general approach would be to use dif-

ferent filters as shown in Fig. 7.1. The cost of using different filters is that this

estimator requires each agent to transmit three variables per iteration, but the

benefit is that the convergence rate is potentially faster. It is an open question

how to design such an estimator to optimize the convergence rate, and what

the resulting optimal convergence rate is.

217

u(z)

h11(z)In L

h21(z)In L h22(z)In L

y(z)
−

Figure 7.1. Block diagram of a generalized proportional-integral estimator.

◦ Another approach is to modify the nonlinear estimator to achieve global con-

vergence. Estimators can be viewed as applying gradient-based optimization

algorithms to the scalar function for which the Laplacian is the gradient. The

NL-2 estimator is comparable to using the heavy-ball method for the opti-

mization. It is known that the heavy-ball method is not globally convergent

for strongly convex functions, and neither is the resulting estimator. From

Chapter 6, however, we have a gradient-based optimization method which is

globally convergent for strongly convex functions. We would like to show that

the corresponding estimator is also globally convergent.

The results from Chapter 6 cannot be directly applied to the nonlinear estima-

tor, however. To see this, consider the block diagram of the triple momentum

method and the corresponding estimator in Fig. 7.2. The nonlinear estimator

is similar to the triple momentum method applied to the function L◦I, except

that (1) the estimator has an input u, and (2) the integrator is moved between

the Laplacian operator L and the projection operator I so that it operates on

the compact set Tn. It is an open question whether the resulting estimator is

globally convergent, and how large the scaling parameter ζ must be chosen to

guarantee convergence.

218

α z

(z − β)(z − 1)
In ∇f (1 + γ) z − γ

z
In

(1 + δ) z − δ
z

In x
ξ

y

−

(a) Block diagram of the triple momentum method (using the notation in Chapter 6).

u

α ζ

z − β In L (1 + γ) z 	 γ
z 	 1

In
(

•

ζ

)

(1 + δ) z − δ
z

In y

RnTnRn

−

(b) Block diagram of the nonlinear estimator based on the triple momentum method.

Figure 7.2. Block diagram of the proposed nonlinear estimator based on the
triple momentum method.

• The feedforward estimator in Chapter 5 was designed for bandlimited input signals

with known cutoff frequency θc < π. An interesting question is how to design the

prefilter to minimize the error when the magnitude of the frequency spectrum is an

arbitrary function f(θ), i.e., f(θ) = |u(ejθ)| is known for all θ ∈ [0, π]. We solved

for the prefilter in the case

f(θ) =





1, θ ∈ [0, θc]

0, otherwise.

This is a filter design problem where the prefilter hpre(z) must be designed to ap-

proximate z` in both magnitude and phase with weighting function f(θ).

• We characterized the convergence properties of the triple momentum method in

Chapter 6 when the objective function is strongly convex and its gradient is Lipschitz

continuous. In that case, we showed that the TM method converges approximately

219

twice as fast as Nesterov’s method. An algorithm has also been developed for

the case when the objective function is weakly convex, and it has been shown to

converge faster than Nesterov’s method [53]. We need to study the TM method

in the case when the objective function is weakly convex. If the convergence rate

is slower than that in [53], an interesting question is whether there exists a single

algorithm which achieves the best known convergence rate in both cases of strongly

and weakly convex objective functions.

• The triple momentum method is also limited to solving unconstrained optimization

problems. A common method of generalizing gradient methods to solve constrained

problems is using the proximal operator (e.g., the proximal gradient method). The

integral quadratic constraint tools can also be applied to such algorithms [49].

Therefore, we would like to design and analyze a proximal version of the triple

momentum method for problems with constraints.

220

References

[1] R. Olfati-Saber, “Distributed Kalman filter with embedded consensus filters,” in Proc. of
the Joint 44th IEEE Conf. on Decision and Control and 2005 European Control Conf.,
2005, pp. 8179–8184.

[2] ——, “Distributed Kalman filtering for sensor networks,” in Proc. of the 46th IEEE Conf.
on Decision and Control, 2007, pp. 5492–5498.

[3] J. Cortés, “Distributed Kriged Kalman filter for spatial estimation,” IEEE Trans. Autom.
Control, vol. 54, no. 12, pp. 2816–2827, 2009.

[4] K. Lynch, I. Schwartz, P. Yang, and R. Freeman, “Decentralized environmental modeling
by mobile sensor networks.” in IEEE Trans. Robot., 2008.

[5] H. Bai, R. Freeman, and K. Lynch, “Distributed Kalman filtering using the internal
model average consensus estimator,” in Proc. of the 2011 Amer. Control Conf., 2011,
pp. 1500–1505.

[6] C. K. Peterson and D. A. Paley, “Distributed estimation for motion coordination in
an unknown spatially varying flowfield,” Journal of Guidance, Control, and Dynamics,
vol. 36, no. 3, pp. 894–898, 2013.

[7] R. Olfati-Saber and J. S. Shamma, “Consensus filters for sensor networks and distributed
sensor fusion,” in Proc. of the 44th IEEE Conf. on Decision and Control, Dec. 2005, pp.
6698–6703.

[8] P. Yang, R. Freeman, and K. Lynch, “Multi-agent coordination by decentralized estima-
tion and control,” IEEE Trans. Autom. Control, vol. 53, no. 11, pp. 2480–2496, 2008.

[9] R. Aragüés, J. Cortés, and C. Sagüés, “Distributed consensus on robot networks for
dynamically merging feature-based maps,” IEEE Trans. Robot., vol. 28, no. 4, pp. 840–
854, 2012.

[10] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed optimization,” in
Proc. of the 55th IEEE Conf. on Decision and Control, 2016, pp. 159–166.

221

[11] J. Tsitsiklis, “Problems in decentralized decision making and computation,” Ph.D. dis-
sertation, Massachusetts Institute of Technology, Nov. 1984.

[12] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” in Proc. of the
42nd IEEE Conf. on Decision and Control, vol. 5, Dec. 2003, pp. 4997–5002.

[13] B. N. Oreshkin, M. J. Coates, and M. G. Rabbat, “Optimization and analysis of dis-
tributed averaging with short node memory,” IEEE Trans. Signal Process., vol. 58, no. 5,
pp. 2850–2865, May 2010.

[14] T. Erseghe, D. Zennaro, E. Dall’Anese, and L. Vangelista, “Fast consensus by the
alternating direction multipliers method,” IEEE Trans. Signal Process., vol. 59, no. 11,
pp. 5523–5537, Nov. 2011.

[15] R. Freeman, T. Nelson, and K. Lynch, “A complete characterization of a class of robust
linear average consensus protocols,” in Proc. of the 2010 Amer. Control Conf., 2010, pp.
3198–3203.

[16] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Dynamic consensus on mobile net-
works,” IFAC World Congress, pp. 1–6, 2005.

[17] S. Nosrati, M. Shafiee, and M. B. Menhaj, “Dynamic average consensus via nonlinear
protocols,” Automatica, vol. 48, no. 9, pp. 2262 – 2270, 2012.

[18] F. Chen, Y. Cao, and W. Ren, “Distributed average tracking of multiple time-varying
reference signals with bounded derivatives,” IEEE Trans. Autom. Control, vol. 57, no. 12,
pp. 3169–3174, Dec. 2012.

[19] R. Freeman, P. Yang, and K. Lynch, “Stability and convergence properties of dynamic
average consensus estimators,” in Proc. of the 45th IEEE Conf. on Decision and Control,
2006, pp. 338–343.

[20] B. Van Scoy, R. A. Freeman, and K. M. Lynch, “Design of robust dynamic average
consensus estimators,” in Proc. of the 54th IEEE Conf. on Decision and Control, Dec.
2015, pp. 6269–6275.

[21] H. Bai, R. Freeman, and K. Lynch, “Robust dynamic average consensus of time-varying
inputs,” in Proc. of the 49th IEEE Conf. on Decision and Control, 2010, pp. 3104–3109.

[22] H. Bai, “Adaptive motion coordination with an unknown reference velocity,” in Proc.
of the 2015 Amer. Control Conf., July 2015, pp. 5581–5586.

[23] M. Zhu and S. Mart́ınez, “Discrete-time dynamic average consensus,” Automatica,
vol. 46, no. 2, pp. 322 – 329, 2010.

222

[24] S. Kia, J. Cortés, and S. Mart́ınez, “Dynamic average consensus under limited control
authority and privacy requirements,” International Journal of Robust and Nonlinear
Control, 2013.

[25] M. Franceschelli and A. Gasparri, “Multi-stage discrete time dynamic average consen-
sus,” in Proc. of the 55nd IEEE Conf. on Decision and Control, Dec. 2016.

[26] Y. Yuan, J. Liu, R. M. Murray, and J. Gonçalves, “Decentralised minimal-time dynamic
consensus,” in Proc. of the 2012 Amer. Control Conf., June 2012, pp. 800–805.

[27] E. Montijano, J. I. Montijano, C. Sagüés, and S. Mart́ınez, “Robust discrete time dy-
namic average consensus,” Automatica, vol. 50, no. 12, pp. 3131 – 3138, 2014.

[28] E. Kokiopoulou and P. Frossard, “Polynomial filtering for fast convergence in distributed
consensus,” IEEE Trans. Signal Process., vol. 57, no. 1, pp. 342–354, Jan. 2009.

[29] E. Montijano, J. Montijano, and C. Sagüés, “Chebyshev polynomials in distributed
consensus applications,” IEEE Trans. Signal Process., vol. 61, no. 3, pp. 693–706, Feb.
2013.

[30] M. L. Elwin, R. A. Freeman, and K. M. Lynch, “A systematic design process for internal
model average consensus estimators,” in Proc. of the 52nd IEEE Conf. on Decision and
Control, Dec. 2013, pp. 5878–5883.

[31] ——, “Worst-case optimal average consensus estimators for robot swarms,” in 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems, Sept. 2014, pp.
3814–3819.

[32] K. Cai and H. Ishii, “Average consensus on arbitrary strongly connected digraphs with
dynamic topologies,” in Proc. of the 2012 Amer. Control Conf., 2012, pp. 14–19.

[33] N. Vaidya, C. Hadjicostis, and A. Dominguez-Garcia, “Robust average consensus over
packet dropping links: Analysis via coefficients of ergodicity,” in Proc. of the 51st IEEE
Conf. on Decision and Control, 2012, pp. 2761–2766.

[34] J.-Y. Chen and J. Hu, “On the convergence of distributed random grouping for average
consensus on sensor networks with time-varying graphs,” in Proc. of the 46th IEEE Conf.
on Decision and Control, 2007, pp. 4233–4238.

[35] Y. Chen, R. Tron, A. Terzis, and R. Vidal, “Corrective consensus: Converging to the
exact average,” in Proc. of the 49th IEEE Conf. on Decision and Control, 2010, pp.
1221–1228.

223

[36] T. Li and J.-F. Zhang, “Consensus conditions of multi-agent systems with time-varying
topologies and stochastic communication noises,” IEEE Trans. Autom. Control, vol. 55,
no. 9, pp. 2043–2057, 2010.

[37] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with
switching topology and time-delays,” IEEE Trans. on Autom. Control, vol. 49, no. 9, pp.
1520–1533, Sept. 2004.

[38] U. A. Khan, “High dimensional consensus in large-scale networks: Theory and applica-
tions,” Ph.D. dissertation, Carnegie Mellon University, 2009.

[39] P. P. Vaidyanathan, “On predicting a band-limited signal based on past sample values,”
Proc. of the IEEE, vol. 75, no. 8, pp. 1125–1127, Aug. 1987.

[40] Y. Mo and R. M. Murray, “Privacy preserving average consensus,” IEEE Trans. on
Autom. Control, vol. 62, no. 2, pp. 753–765, Feb. 2017.

[41] A. D. Dominguez-Garcia and C. N. Hadjicostis, “Distributed matrix scaling and appli-
cation to average consensus in directed graphs,” IEEE Trans. on Autom. Control, vol. 58,
no. 3, pp. 667–681, 2013.

[42] N. E. Manitara and C. N. Hadjicostis, “Distributed stopping for average consensus in
digraphs,” IEEE Trans. on Control of Network Systems, vol. PP, no. 99, pp. 1–1, 2017.

[43] A. Kashyap, T. Başar, and R. Srikant, “Quantized consensus,” Automatica, vol. 43,
no. 7, pp. 1192 – 1203, 2007.

[44] T. C. Aysal, M. J. Coates, and M. G. Rabbat, “Distributed average consensus with
dithered quantization,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 4905–4918,
Oct. 2008.

[45] C. Nowzari and J. Cortés, “Zeno-free, distributed event-triggered communication and
control for multi-agent average consensus,” in Proc. of the 2014 Amer. Control Conf.,
June 2014, pp. 2148–2153.

[46] Z. Sun, N. Huang, B. D. O. Anderson, and Z. Duan, “A new distributed zeno-free
event-triggered algorithm for multi-agent consensus,” in Proc. of the 55th IEEE Conf.
on Decision and Control, Dec. 2016, pp. 3444–3449.

[47] B. Polyak, “Some methods of speeding up the convergence of iteration methods,” USSR
Computational Mathematics and Mathematical Physics, vol. 4, no. 5, pp. 1 – 17, 1964.

[48] Y. Nesterov, Introductory lectures on convex optimization: A basic course. Springer,
2004.

224

[49] L. Lessard, B. Recht, and A. Packard, “Analysis and design of optimization algorithms
via integral quadratic constraints,” SIAM Journal on Optimization, vol. 26, no. 1, pp.
57–95, 2016.

[50] E. Ghadimi, H. R. Feyzmahdavian, and M. Johansson, “Global convergence of the
heavy-ball method for convex optimization,” in 2015 European Control Conference, July
2015, pp. 310–315.

[51] A. Botev, G. Lever, and D. Barber, “Nesterov’s accelerated gradient and momentum as
approximations to regularised update descent,” ArXiv e-prints, July 2016.

[52] Y. Drori and M. Teboulle, “Performance of first-order methods for smooth convex min-
imization: A novel approach,” Math. Program., vol. 145, no. 1, pp. 451–482, 2014.

[53] D. Kim and J. A. Fessler, “Optimized first-order methods for smooth convex minimiza-
tion,” Math. Program., vol. 159, no. 1-2, pp. 81–107, Sept. 2016.

[54] E. Mallada, R. A. Freeman, and A. K. Tang, “Distributed synchronization of hetero-
geneous oscillators on networks with arbitrary topology,” IEEE Trans. on Control of
Network Systems, vol. 3, no. 1, pp. 12–23, 2016.

[55] P. Yang, R. Freeman, and K. Lynch, “Optimal information propagation in sensor net-
works,” in Proc. of the 2006 IEEE Int. Conf. on Robotics and Automation, 2006, pp.
3122–3127.

[56] S. You, “A fast linear consensus protocol on an asymmetric directed graph,” in Proc.
of the 2014 Amer. Control Conf., June 2014, pp. 3281–3286.

[57] J. M. Hendrickx and J. N. Tsitsiklis, “Fundamental limitations for anonymous dis-
tributed systems with broadcast communications,” in Proc. of the 53rd Allerton Conf.
on Commun., Control, and Computing, Sept. 2015, pp. 9–16.

[58] P. J. Basser and S. Pajevic, “Spectral decomposition of a 4th-order covariance tensor:
Applications to diffusion tensor MRI,” Signal Processing, vol. 87, no. 2, pp. 220 – 236,
2007.

[59] H. Neudecker, “Some theorems on matrix differentiation with special reference to Kro-
necker matrix products,” Journal of the American Statistical Association, vol. 64, no.
327, pp. 953–963, 1969.

[60] A. Leon-Garcia, Probability, Statistics, and Random Processes for Electrical Engineer-
ing. Pearson/Prentice Hall, 2008.

225

[61] B. Van Scoy, R. A. Freeman, and K. M. Lynch, “Asymptotic mean ergodicity of average
consensus estimators,” in Proc. of the 2014 Amer. Control Conf., June 2014, pp. 4696–
4701.

[62] E. Montijano, J. I. Montijano, C. Sagues, and S. Mart́ınez, “Step size analysis in discrete-
time dynamic average consensus,” in Proc. of the 2014 Amer. Control Conf., June 2014,
pp. 5127–5132.

[63] B. Wellman and J. Hoagg, “Quadratically parameterized root locus analysis,” IEEE
Trans. Autom. Control, vol. 59, no. 7, pp. 1803–1817, July 2014.

[64] B. Van Scoy, R. A. Freeman, and K. M. Lynch, “Optimal worst-case dynamic average
consensus,” in Proc. of the 2015 Amer. Control Conf., July 2015, pp. 5324–5329.

[65] D. Henrion, D. Peaucelle, D. Arzelier, and M. Sebek, “Ellipsoidal approximation of the
stability domain of a polynomial,” IEEE Trans. Autom. Control, vol. 48, no. 12, pp.
2255–2259, Dec. 2003.

[66] B. Van Scoy, R. A. Freeman, and K. M. Lynch, “Feedforward estimators for the dis-
tributed average tracking of bandlimited signals in discrete time with switching graph
topology,” in Proc. of the 55th IEEE Conf. on Decision and Control, Dec. 2016, pp.
4284–4289.

[67] W. Splettstösser, “On the prediction of band-limited signals from past samples,” Infor-
mation Sciences, vol. 28, no. 2, pp. 115 – 130, 1982.

[68] C. Bardaro, P. L. Butzer, R. L. Stens, and G. Vinti, “Prediction by samples from the
past with error estimates covering discontinuous signals,” IEEE Trans. on Inf. Theory,
vol. 56, no. 1, pp. 614–633, Jan. 2010.

[69] D. H. Mugler, Y. Wu, and S. Clary, “Linear prediction of bandpass signals based on
past samples,” in Proc. of the International Workshop on Sampling Theory, Aug. 1999,
pp. 119–124.

[70] N. Dokuchaev, “Predictors for discrete time processes with energy decay on higher
frequencies,” IEEE Trans. Signal Process., vol. 60, no. 11, pp. 6027–6030, Nov. 2012.

[71] A. Rantzer, “On the Kalman-Yakubovich-Popov lemma,” Syst. Control Lett., vol. 28,
no. 1, pp. 7–10, June 1996.

[72] P. Seiler, “Stability analysis with dissipation inequalities and integral quadratic con-
straints,” IEEE Trans. Autom. Control, vol. 60, no. 6, pp. 1704–1709, June 2015.

[73] K. H. Khalil, Nonlinear Systems, 2nd ed. Prentice-Hall, Inc., 1996.

226

[74] N. S. Ahmad, J. Carrasco, and W. P. Heath, “A less conservative LMI condition for sta-
bility of discrete-time systems with slope-restricted nonlinearities,” IEEE Trans. Autom.
Control, vol. 60, no. 6, pp. 1692–1697, June 2015.

[75] D. Henrion, S. Naldi, and M. S. E. Din, “Exact algorithms for linear matrix inequalities,”
SIAM Journal on Optimization, vol. 26, no. 4, pp. 2512–2539, 2016.

227

Vita

Bryan R. Van Scoy was born in 1988 in Ashland, Ohio. He received B.S. and M.S. degrees

in applied mathematics along with a B.S.E. in electrical engineering from the University of

Akron in 2012.

Publications

[P1] B. Van Scoy, R. A. Freeman, and K. M. Lynch, “Asymptotic mean ergodicity of
average consensus estimators,” in Proc. of the 2014 Amer. Control Conf., June 2014,
pp. 4696–4701.

[P2] ——, “Optimal worst-case dynamic average consensus,” in Proc. of the 2015 Amer.
Control Conf., July 2015, pp. 5324–5329.

[P3] ——, “Exploiting memory in dynamic average consensus,” in Proc. of the 53rd Annual
Allerton Conf. on Comm., Control, and Computing, Sept. 2015, pp. 258–265.

[P4] ——, “A fast robust nonlinear dynamic average consensus estimator in discrete time,”
in Proc. of the 5th IFAC Workshop on Distributed Estimation and Control in Net-
worked Systems, vol. 48, no. 22, 2015, pp. 191 – 196.

[P5] ——, “Design of robust dynamic average consensus estimators,” in Proc. of the 54th
IEEE Conf. on Decision and Control, Dec. 2015, pp. 6269–6275.

[P6] ——, “Feedforward estimators for the distributed average tracking of bandlimited
signals in discrete time with switching graph topology,” in Proc. of the 55th IEEE
Conf. on Decision and Control, Dec. 2016, pp. 4284–4289.

