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Abstract—Feedback optimization has emerged as a promising
approach for regulating dynamical systems to optimal steady
states that are implicitly defined by underlying optimization prob-
lems. Despite their effectiveness, existing methods face two key
limitations: (i) reliable performance is restricted to time-invariant
or slowly varying settings, and (ii) convergence rates are limited
by the need for the controller to operate orders of magnitude
slower than the plant. These limitations can be traced back to
the reliance of existing techniques on numerical optimization
algorithms. In this paper, we propose a novel perspective on the
design of feedback optimization algorithms, by framing these
objectives as an output regulation problem. We place particular
emphasis on time-varying optimization problems, and show that
an algorithm can track time-varying optimizers if and only if
it incorporates a model of the temporal variability inherent
to the optimization – a requirement that we term the internal
model principle of feedback optimization. Building on this insight,
we introduce a new design methodology that couples output-
feedback stabilization with a control component that drives the
system toward the critical points of the optimization problem.
This framework enables feedback optimization algorithms to
overcome the classical limitations of slow tracking and poor
adaptability to time variations.

I. INTRODUCTION

Feedback optimization techniques [1]–[6] are concerned with
the problem of controlling dynamical systems to an optimal
steady-state point, where optimality is implicitly defined by
an underlying mathematical optimization problem [3]. This
framework has been successfully applied in a variety of
domains, including optimal scheduling in communication net-
works, resource allocation in power systems, transportation
system optimization, and the operation of industrial control
processes [7]. The foundational design approach underlying
these methods begins with an established optimization algo-
rithm [8], and in suitably adapting it to incorporate feed-
back measurements in place of unknown quantities [3], [7].
This modification results in a feedback loop between the
optimization algorithm and the dynamical system. Although
numerous feedback optimization methods have been devel-
oped, these techniques inherently carry over the limitations
of the optimization algorithms from which they originate.
Such limitations include fundamental bounds on the achievable
convergence rate [9], limited robustness to uncertainty [10],
and the inability to exactly track optimizers when in time-
varying settings [6], [10].
In this work, we approach the design of feedback optimization
algorithms from a novel perspective: by formulating it as
an output regulation problem [11]–[15]. Specifically, in this
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ẋ = f(x, u, w)
y = c(x, w)
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ż = Fc(z, y)
u = Gc(z)
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g = →uω(u,w)
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Fig. 1: Architecture of the feedback optimization scheme studied in this work.
Given a plant subject to a time-varying disturbance, the goal is to design a
control algorithm having access only to measurements y(t) and generating
a sequence of control actions u(t) such that the interconnection is stabilized
around an equilibrium and the gradient signal g(t) → 0 as t → ∞. Blue
indicates quantities that are unmeasurable by the controller; in particular, the
controller has no access to the signal g(t) to be regulated to zero. See (9).

setting, the signal to be regulated corresponds to the (unmea-
surable) gradient error – see Fig. 1 for an illustration. By
establishing this connection, we are able not only to design
novel feedback optimization algorithms that are more general
than those derived from classical optimization methods, but
also to study an entire class of algorithms and establish funda-
mental limitations for the whole class. This class includes, as
special cases, many well-established techniques [1]–[6]. Our
approach introduces three key practical innovations compared
to the existing literature: (i) under suitable system knowledge,
our methods enable exact tracking of optimal steady states
despite arbitrary time-varying disturbances – whereas existing
techniques can only achieve approximate tracking (see [6] and
references therein); (ii) our framework does not require plant
pre-stabilization, as it simultaneously addresses both stabiliza-
tion and setpoint tracking; and (iii) it removes the need for
a time-scale separation between the plant and the controller,
thereby improving the achievable rate of convergence.
Related work. The field of feedback optimization stems from
the seminal works [3], [16], which considered the objective
of steering the outputs of a plant to a steady-state that solves
a convex optimization problem. While early works focused
on static plants, a more recent body of literature [1]–[6], [17]
extends feedback optimization to dynamic plants, addressing
closed-loop stability and exponential convergence rates [6],
[10], including in sampled-data settings [18]. Constrained
variants of the problem have also been explored, particularly
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using primal-dual dynamics and projection-based methods [1],
[2], [6]. An alternative approach employs barrier function
techniques [19], [20]. Nonconvex problems have been consid-
ered in [21], [22], gradient-free methods in [23], distributed
approaches in [24], [25]. Recent developments have sought to
relax the reliance on time-scale separation [9].
A central contribution of this work is the reformulation of
the feedback optimization problem as an output regulation
problem; this connects our work with the literature on output
regulation. This field originated in the 1970s with foundational
work on linear systems [11]–[13], and was subsequently
extended to nonlinear systems through both local [14] and
global [26] analysis techniques. In recent years, output regu-
lation has seen renewed interest through the lens of modern
control methods; see, for example, [27] and the recent tuto-
rial [28]. To the best of our knowledge, this is the first work
to formally link output regulation theory with the design of
feedback optimization algorithms.
Finally, since the problem studied in this work is a time-
varying optimization problem, it is naturally connected to
the literature on online optimization [29], [30]. Particularly
relevant are the recent works [31]–[33], which explore the use
of internal models to address such problems.
Contributions. This paper features three main contributions.
First, we demonstrate that the feedback optimization prob-
lem can be formulated as an output regulation problem (see
Section III and Definition 2). This reformulation enables the
use of tools from the output regulation literature to address
the problem, allowing us to analyze feedback optimization
algorithms as a broad class of methods – rather than relying
on ad hoc algorithmic constructs from optimization theory.
From a methodological perspective, the techniques we develop
here extend existing approaches in several key directions:
(i) they enable exact asymptotic tracking of a critical point
even in the presence of arbitrary time-varying disturbances
– whereas prior work has been limited to constant distur-
bances; (ii) they allow for simultaneous plant stabilization
and feedback optimization, while these two objectives have
typically been treated separately in the literature; and (iii) they
eliminate the need for a time-scale separation between the
plant and the controller, which removes inherent limitations
on the maximum achievable convergence rate. To the best
of our knowledge, all of these features are novel within the
literature. Second, we establish fundamental limitations for a
broad class of feedback optimization methods (see Section IV
and Theorem 4). Notably, we show that exact tracking of a
critical point is possible if and only if the algorithm embeds
a duplicated representation of the disturbance signal – though
this copy may be expressed in a different coordinate system
(see Theorem 5). We refer to this concept as an internal model
principle, akin to its counterpart in time-varying optimiza-
tion [32] and controls [12], [34]. Interestingly, since many
existing feedback optimization methods in the literature are
special cases of the general class of algorithms considered in
this work (see Remark 2), our results imply that these methods
achieve exact tracking only when the time-varying signals
involved in the optimization problem are, in fact, constant.

In all other cases, they necessarily yield only inexact tracking
(see Remark 6). To the best of our knowledge, this is the first
work in the literature that formally proves the necessity of
internal models – a requirement that aligns with recent insights
presented in [32]. Third, we derive necessary and sufficient
conditions for exact asymptotic tracking of a critical trajectory
(see Theorem 5) and, by leveraging these, we introduce a
novel design procedure for feedback optimization algorithms.
Our design technique relies on a separation principle, which
combines an observer to estimate unmeasurable dynamical
states, and a static feedback control action, which steers the
system toward the set of critical points (see Fig. 3, Section VII
and Algorithm 1).
Organization. Section II introduces the problem, which is
reformulated as an output regulation problem in Section III.
Section IV presents necessary conditions for solvability and
outlines the controller structure. Static and dynamic feedback
optimization are addressed in Sections V and VI, respectively.
Section VII details the algorithm design, while Section VIII
discusses extensions to constrained problems. Numerical val-
idations are provided in Section IX, and conclusions in
Section X. Technical proofs appear in Appendix A, and
Appendix B reviews relevant center manifold theory.
Notation. We let C< := {s : Re s < 0} and C≥ := {s :
Re s ≥ 0}. We denote the space of n × n symmetric real
matrices by Sn. Given an open set U, we say that f : U → R
is of differentiability class Ck if it has a kth derivative that is
continuous in U. Given A ∈ Rn×n, denote its eigenvalues by
λj = aj + ibj , aj , bj ∈ R, j ∈ {1, . . . , n} with corresponding
(generalized) eigenvectors wj = uj + ivj , uj , vj ∈ Rn. The
space X<(A) := span{uj , vj : aj < 0} is the stable subspace
of A, and X≥(A) := span{uj , vj : aj ≥ 0} is the unstable
subspace of A. Given B ∈ Rn×m, the controllable subspace
of (A,B) is C(A,B) :=

∑n
i=1 Im(Ai−1B). The pair (A,B)

is controllable if C(A,B) = Rn and stabilizable if X≥(A) ⊆
C(A,B). Given C ∈ Rq×n, the unobservable subspace of
(C,A) is Oc(C,A) := ∩ni=1 Ker(CAi−1). The pair (C,A)
is observable if Oc(C,A) = ∅ and detectable if Oc(C,A) ∩
X≥(A) = ∅.

II. PROBLEM FORMULATION

In this section, we formulate the problem studied and illustrate
its applicability through a representative example.

A. Problem statement

We consider plants described by nonlinear systems of differ-
ential equations of the form:

ẋ(t) = f(x(t), u(t), w(t)),

y(t) = c(x(t), w(t)), (1)

where t ∈ R≥0 denotes time, x(t) ∈ X ⊆ Rn is the state,
u(t) ∈ Rm is the control input, y(t) ∈ Rq is the measurable
output, and w(t) ∈W ⊆ Rp is a disturbance. We assume that
f : X × Rm ×W → Rn and c : X ×W → Rq are C1.
The signal w(t) models exogenous disturbances that may
affect the plant and/or measurements, possibly independently
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TABLE I: Comparison between our framework and existing methods in reference tracking [11]–[14], disturbance rejection [15], and feedback optimization [1],
[2], [6]. See Remarks 1, 2, and 6 for discussions.

w(t) ̸= 0 Plant Controller at Automatic reference x-dependent
& time-varying stabilization same timescale generation objectives

Reference tracking [11]–[14] ✓ ✓
Tracking and disturbance rejection [15] ✓ ✓ ✓
Feedback optimization [1], [2], [7] ✓
Time-varying feedback optimization [6] ✓ ✓
This work ✓ ✓ ✓ ✓ ✓

(see Section II-B). Consequently, we treat w(t) as an unknown
and unmeasurable time-varying signal in our analysis.
In this work, we study the problem of devising control actions
that accomplish two goals: (i) locally exponentially stabilize
the plant (1), and (ii) regulate (1) to an optimal equilibrium
point. The second objective is formalized by means of the
following mathematical optimization problem:

minimize
u∈Rm,x∈X

ϕ0(u, x),

subject to: 0 = f(x, u, w(t)), (2)

where ϕ0 : Rm × X → R. This optimization formalizes
an equilibrium-selection problem, which seeks to select an
equilibrium input u and state x for (1) that minimize the loss
ϕ0(u, x), which quantifies performance at the equilibrium1.
From an optimization perspective, (2) is an optimization
problem that is parametrized by the exogenous signal w(t).
This aspect has two important implications: first, because
w(t) is unknown and unmeasurable, solutions to (2) cannot
be computed explicitly by an optimization solver (since a
numerical value for w(t) cannot be substituted into (2) to
solve the optimization); second, because w(t) is a time-varying
signal, (2) defines a sequence of optimization problems (one
at each time t), and thus the problem of regulating the plant
to solutions of (2) involves also tracking these solutions
over time. For these reasons, our control objective cannot
be accomplished using standard control approaches such as
reference generation plus reference tracking [11]–[14]. We
informally state the problem of interest as follows.
Problem 1 (Feedback optimization algorithm design – in-
formal). Construct, when possible, a control algorithm such
that: (i) the equilibrium of (1) with w(t) ≡ 0 is locally
exponentially stable, and (ii) the states and inputs of (1)
converge, with exactly zero asymptotic error, to a solution
of (2) for any time-varying signal w(t) in some class. □

We refer to a control algorithm that achieves these goals as a
feedback-optimization algorithm, in line with the counterparts
in [2], [6], [24]. We stress that existing methods are capable
of tracking solutions of (2) only inexactly, unless w(t) is
a constant signal. In contrast, our goal is to design control
algorithms capable of achieving exactly zero asymptotic error
when w(t) is time-varying.
We conclude this discussion by relating our problem with the
existing literature in Remark 1.

1Our approach also applies to more general constraints than merely equi-
librium selection (such as predictive control), provided that any state that
satisfies the constraints can be written as a function of the control input and
exogenous noise, as in Assumption 3.

Remark 1 (Relationship of (2) with models commonly
studied in the literature). The optimization objective (2)
is related to the classical (reference) tracking problem, also
called the (output) regulation problem or servomechanism
problem [11]–[14], which consists of designing a controller
for (1) such that, with w(t) ≡ 0, the closed-loop system is
stable and limt→∞ y(t) − r(t) = 0, where r(t) is a given
reference signal. More generally, (2) is related to the (refer-
ence) tracking and disturbance rejection problem [15], which
extends the reference tracking problem by allowing w(t) to
be nonzero and time-varying. The optimization objective (2)
is also related to the feedback optimization literature [2], [6],
where controllers are designed by drawing inspiration from
algorithmic optimization. See Table I.
The optimization (2) extends these existing approaches in at
least four directions. First, in reference tracking problems, the
reference signal to be tracked is prespecified, thus dictating the
need for external reference generation mechanisms (e.g., [35]),
which often require knowledge of x(t) and w(t), thus making
these approaches unfeasible or suboptimal when these signals
are unknown. Instead, the formulation (2) allows us to implic-
itly generate the reference to be tracked as the solution to a
mathematical optimization problem. Second, both in feedback
optimization and reference tracking, performance objectives
or references to be tracked can be specified only in terms of
the plant’s output y(t) and not in terms of the plant’s state
x(t) (or, in other words, they can be applied to solve (2) only
when the plant’s output map is such that y(t) = x(t)). By
allowing the loss function to depend on the state, (2) provides
additional flexibility in applications with partially observed
plants (i.e., where x(t) cannot be directly estimated from y(t));
this aspect is illustrated in detail Section II-B. Third, feedback
optimization techniques require the plant to be prestabilized.
Fourth, feedback optimization methods rely on a timescale
separation between the (fast) plant and (slow) controller, and
this poses limitations on the maximum attainable rate of
convergence. Additional connections between our methods and
existing techniques are established in Table I. □

B. Illustrative application: automatically optimize an unstable
system subject to unknown disturbances

Consider a two-wheeled balancing robot moving on a sur-
face as in Fig. 2(a), and the objective of self-balancing this
inverted-pendulum type system. For this task, we consider the
kinematic model in Fig. 2(b); letting θ be the rotation angle
of the center of mass and r the horizontal displacement of the
wheels, we model the robot using the equation of motion:

Jeθ̈(t) = mgℓ sin θ(t)− kℓ2θ̇(t)−mℓr̈(t) cos θ(t) + wx(t),
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where Je > 0 is the moment of inertia of the rod about its end,
m > 0 the mass, ℓ > 0 the distance from the center of gravity
to the pivot, g the gravitational acceleration, and we assumed
the presence of a frictional force with coefficient k > 0. The
signal wx(t) is used to describe external disturbances or model
discrepancies, such as uneven surface profiles or frictions.
Viewing the cart’s acceleration r̈(t) as the control input (i.e.,
letting u(t) := r̈(t)), the problem of self-balancing the robot
can be formulated as the following instance of (2):

minimize
u,θ,θ̇∈R

1

2
(θ2 + θ̇2),

subject to: 0 = θ̇,

0 = mgℓ sin θ −mℓu cos θ + wx(t). (3)

Suppose the robot is equipped with an integrated Inertial
Measurement Unit (IMU) providing noisy measures of the
angular rate of change θ̇(t):

y(t) = θ̇(t) + wy(t), (4)

where wy(t) models sensor noise. Because y(t) does not
include displacement information (i.e., it does not explicitly
depend on θ(t)), any method that achieves y(t) → 0 as
t→∞ (such as reference tracking or feedback optimization,
see Remark 1) will not guarantee that θ(t)→ 0, but only that
θ̇(t) → 0. This limitation is illustrated in Fig. 2(c), where a
reference tracking technique [14] is applied to this problem.
In contrast, the techniques proposed in this work are capable
of achieving θ(t) → 0 (see Fig. 2(d)). See Section IX for
additional details on this problem and a description of the
techniques used.

III. TECHNICAL REFORMULATION OF THE PROBLEM:
FROM FEEDBACK OPTIMIZATION TO OUTPUT REGULATION

In this section, we present a formal reformulation of Prob-
lem 1, connecting it with the output regulation framework.

A. Standing assumptions

We now present the assumptions on which our approach is
based. We make the following standard assumption on the loss.
Assumption 1 (Properties of the objective function). The
map (u, x) 7→ ϕ0(u, x) is convex and differentiable, and
(u, x) 7→ ∇ϕ0(u, x) is Lipschitz continuous in Rm ×X.
Convexity and smoothness are standard assumptions in op-
timization [29], which have been widely used in works on
related problems [2], [6], [24].
We assume that the temporal variability of the disturbance
w(t) belongs to the following class.
Assumption 2 (Class of temporal variabilities of the distur-
bance signal). There exists a C1 vector field s : W → Rp

such that the disturbance signal w(t) satisfies:

ẇ(t) = s(w(t)) ∀t ∈ R≥0. (5)

Moreover, (5) has an equilibrium at w = 0 and its trajectories
are bounded. □

We do not assume a priori that s(w) or w(t) are known; see
Sections V–VI, where different assumptions on the knowledge

(a)
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Fig. 2: (a) Illustration of the balancing robot discussed in Section II-B. (b)
Free-body diagram of the robot. (c) State evolution under control via a
standard output regulation algorithm. (d) State evolution under the control
strategy proposed in this work. The simulation demonstrates that traditional
output regulation algorithms fail to stabilize the robot in the upright position
– i.e., to achieve θ(t) → 0 – due to the inability to measure θ(t). Parameters
used: ℓ = 0.023 [m], m = 0.316 [Kg], k = 0.1 [Kg/s], g = 9.81 [m/s2],
Je = 0.000444 [Kg m2]. For simplicity of the illustration, this simulation
uses wx(t) ≡ 0 and wy(t) ≡ 0; see Section IX for additional simulations.

of these two quantities are discussed. Assumption 2 character-
izes the class of temporal variabilities for the disturbance taken
into account. This assumption is mild, as it only requires that
w(t) is deterministic, sufficiently smooth (so that its derivative
is some C1 function), and its trajectories remain bounded.
Following established terminology in the literature [11], [14],
we refer to the model in (5) as the exosystem.
We observe that asymptotically stable modes in w(t) do not
affect the optimization (2) when t → ∞ (precisely, because
these modes converge to 0 as t → ∞). Hence, without
loss of generality, in what follows, we will assume that (5)
has no asymptotically stable modes. For simplicity of the
presentation, we also assume that W is some neighborhood
of the origin of Rp. We put no restrictions on the size of this
neighborhood (which is, e.g., allowed to be the entire space
W = Rp), and thus on the size of w(t) nor of its temporal
variation. Moreover, there is no restriction with asking that
W contains the origin because, if w(t) takes values in the
neighborhood of any other point, such a point can be shifted to
the origin through a time-invariant change of variables without
altering the solutions of (2).
We make the following assumption on the plant to control.
Assumption 3 (Existence of a steady-state map). There
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exists a unique C1 function h : Rm × W → X such that
f(h(u,w), u, w) = 0, for any u ∈ Rm and w ∈W . □

In words, Assumption 3 guarantees that the plant (1), with con-
stant inputs, admits a steady-state operating point. Existence of
such a steady-state map is guaranteed in most practical cases
of interest [36]. For example, this condition is ensured when
∇xf(x, u, w) is invertible in Rm×W ; alternatively, it can be
guaranteed by application of the implicit function theorem [37,
Thm. 2], [38, Thm. 6] to the equation f(x, u, w) = 0.

Using Assumption 3, the optimization problem (2) can be
reformulated as an unconstrained problem:

minimize
u∈Rm

ϕ0(u, h(u,w(t)) = ϕ(u,w(t)), (6)

where ϕ(u,w) := ϕ0(u, h(u,w)) for u ∈ Rm and w ∈ W.
Next, we define a critical trajectory as an input signal that
results in a vanishing gradient of the unconstrained problem.
Definition 1 (Critical trajectory). The function u⋆ : R≥0 →
Rm is said to be a critical trajectory of (6) if it satisfies:

0 = ∇uϕ(u
⋆(t), w(t)), ∀t ∈ R≥0. □

Notice that, if u⋆(t) is a critical trajectory of (6), then
(u⋆(t), h(u⋆(t), w(t)) ∈ Rm×X is a critical trajectory of (2),

0 = ∇uϕ0(u, h(u,w))|(u,w)=(u⋆(t),w(t)) , ∀t ∈ R≥0.

We therefore refer to the critical trajectories of (2) and those
of (6) interchangeably. For the optimization problem to be
well-posed, we make the following assumption.
Assumption 4 (Existence and continuity of critical tra-
jectories). The optimization (6) admits a critical trajectory.
Moreover, every critical trajectory is continuous. □

Existence of a critical trajectory for (2) can be guaranteed
under mild assumptions; for example, coercivity of the cost
function (i.e., ϕ0(u, x)→∞ when ∥u∥ → ∞), or by requiring
that the search domain can be restricted to a compact set
without altering the optimizers (by Weierstrass’ theorem [39]).
Continuity of the critical trajectories can also be ensured under
standard assumptions; for example, by requiring that the loss
ϕ0(u, x) is continuous in x (by Berge’s theorem [39]).

B. Controller structure

To address Problem 1, we search within a class of candidate
control algorithms that do not require measurements of w(t).
Instead, we consider algorithms that rely solely on the plant’s
measurable output y(t), and are described by an internal state
z(t), evolving on an open subset Z ⊆ Rnc for some nc ∈ N≥0.
Based on this information, the algorithm generates a control
input u(t) ∈ Rm at each time instant. See Fig. 1 for a block
diagram illustration. Formally, we consider the following class
of control algorithms2:

ż(t) = Fc(z(t), y(t)),

u(t) = Gc(z(t)), (7)

2Although one could consider a more general control algorithm of the
form ż(t) = Fc(z(t), y(t)) and u(t) = Gc(z(t), y(t)), we will show in
Section VI that allowing for Gc to depend on y(t) is unnecessary. Hence, we
focus the simpler formulation (7) for the sake of notation.

where Fc : Z×Rq → Rnc , Gc : Z → Rm, and the algorithm’s
state space dimension nc ∈ N≥0 are to be designed. We note
that (7) defines a general class of algorithms within which we
will seek our design. We discuss in Remark 2 how this class
encompasses several existing methods as special cases.
Problem 1 then involves designing the functions Fc(z, y) and
Gc(z), together with nc, such that the gradient error signal:

g(t) = ∇uϕ(u(t), w(t)), (8)

satisfies g(t) → 0 as t → ∞. Note that the gradient
error signal cannot be evaluated by the controller, as w(t)
is unmeasurable. Instead, the controller must regulate g(t) to
zero despite only having access to the plant’s output y(t).
The dynamics of the plant (1), combined with the exosystem
(5) and controller (7), form a nonlinear autonomous system:

ẋ(t) = f(x(t), u(t), w(t)), y(t) = c(x(t), w(t)),

ż(t) = Fc(z(t), y(t)), u(t) = Gc(z(t)),

ẇ(t) = s(w(t)), g(t) = ∇uϕ(u(t), w(t)). (9)

See Fig. 1 for an illustration of the interconnection.
Remark 2 (Generality of the controller class (7)). To solve
problem (6), the authors of [2], [7], under the additional
assumption that h(u,w) = ĥ(u) + w, proposed the controller

u̇(t) = −η[∇1ϕ0(u(t), y(t)) + JT
ĥ
(u(t))∇2ϕ0(u(t), y(t))],

(10)

where η > 0 is a tunable gain, Jĥ denotes the Jacobian matrix
of ĥ(u), and ∇1ϕ0, and ∇2ϕ0 are used to denote the gradient
of ϕ0 with respect to the first and second variable, respectively.
When the disturbance w(t) is constant and the plant (1) is
exponentially pre-stabilized, a sufficiently-small choice of the
tunable gain η ensures that condition (D2b) is met [1], [2].
It is immediate to verify that (10) is a special case of our
controller class (7) with the choices:

Fc(z, y) = −η[∇1ϕ0(z, y) + JT
ĥ
(u)∇2ϕ0(u, y)],

Gc(z) = z. (11)

It follows that the controller structure (7) is sufficiently general
to include a number of existing methods as specific instances.
Therefore, any conclusions drawn about the class of algorithms
in (7) will also hold for these existing methods. □

C. Technical problem statement

As stated previously, our goal is to design a control algorithm
that (i) stabilizes the closed-loop system with zero disturbance
locally about an equilibrium and (ii) regulates the state and
control input to an optimal solution of (2) for all disturbances
generated by the exosystem (5). Therefore, we assume exis-
tence of an equilibrium point (x⋆◦, z

⋆
◦ , u

⋆
◦, y

⋆
◦) of the closed-

loop system (9) with zero disturbance for which the gradient
is zero. That is3,

0 = f(x⋆◦, u
⋆
◦, 0), 0 = Fc(z

⋆
◦ , y

⋆
◦), 0 = ∇uϕ(u

⋆
◦, 0),

y⋆◦ = c(x⋆◦, 0), u⋆◦ = Gc(z
⋆
◦). (12)

3The equilibrium point can be constructed by first finding x⋆
◦ and u⋆

◦ such
that 0 = f(x⋆

◦, u
⋆
◦, 0) and 0 = ∇uϕ(u⋆

◦, 0), and then constructing y⋆◦ and
z⋆◦ along with the controller Fc and Gc to satisfy the remaining conditions.
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Moreover, we assume that u⋆◦ and z⋆◦ are locally unique. We
can now formalize the notion of exact asymptotic tracking.
Definition 2 (Exact asymptotic tracking). The controlled
plant (9) is said to exactly asymptotically track a critical
trajectory of (2) when the following conditions hold:
(D2a) The equilibrium (x∗◦, z

⋆
◦) of the autonomous system:

ẋ(t) = f(x(t), Gc(z(t)), 0),

ż(t) = Fc(z(t), c(x(t), Gc(z(t)))), (13)

is locally exponentially stable.
(D2b) There exists a neighborhood Υ ⊆ X × Z × W

of (x⋆◦, z
⋆
◦ , 0) such that, for each initial condition

(x(0), z(0), w(0)) ∈ Υ, the solution of (9) satisfies:

lim
t→∞

g(t) = 0. □

With this background, we are now ready to make the objectives
of Problem 1 mathematically rigorous.
Problem 2 (Feedback optimization algorithm design – for-
mal). Design, when possible, Fc(z, y), Gc(z), and nc so
that (9) exactly asymptotically tracks a critical trajectory
of (2). □

We conclude this section with an illustration of our framework.
Example 1 (State regulation for linear systems). Consider
an instance of (1) with linear dynamics:

ẋ(t) = Ax(t) +Bu(t) + Pw(t),

y(t) = Cx(t) +Qw(t), (14)

where A ∈ Rn×n, B ∈ Rn×m, P ∈ Rn×p, C ∈ Rq×n, Q ∈
Rq×p. Consider an optimal state-regulation problem (2), where
the objective is to regulate the state of the plant to an optimal
equilibrium that balances operational costs and control effort:

minimize
u∈Rm,x∈Rn

1
2∥x∥2 + λ

2 ∥u∥2,

subject to: 0 = Ax+Bu+ Pw(t), (15)

where λ ≥ 0 is a regularization parameter. If A is invertible, a
mapping h(u,w) satisfying Assumption 3 exists and is given
by h(u,w) = Txuu+Txww, where Txu = −A−1B and Txw =
−A−1P. The corresponding unconstrained problem (6) is:

minimize
u∈Rm

1
2∥Txuu+ Txww(t)∥2 + λ

2 ∥u∥2.

Restricting, for simplicity of the illustration, the class (7) to
linear controllers, the objective of this work is thus to design:

ż(t) = Acz(t) +Bcy(t),

u(t) = Ccz(t), (16)

where Ac ∈ Rnc×nc , Bc ∈ Rnc×q, Cc ∈ Rm×nc , such that the
interconnected system is exponentially stable and the gradient
g(t) = Ru(t) + Tw(t) converges to zero as t → ∞, where
R := TT

xuTxu + λI and T := TT
xuTxw. □

IV. NECESSARY CONDITIONS FOR EXACT TRACKING AND
PROPOSED CONTROLLER STRUCTURE

In this section, we derive a set of necessary conditions for
the existence of an algorithm that solves Problem 2, and we
outline the structure of the controller we propose to address
this problem.

A. Necessary conditions for exact asymptotic tracking

To state our conditions, we will require the Jacobian matrices
A ∈ Rn×n, P ∈ Rn×p, C ∈ Rq×n, Q ∈ Rq×p, B ∈
Rn×m, S ∈ Rp×p, and T ∈ Rm×p, defined as follows:

A :=

[
∂f

∂x

]
(x,u,w)=(x⋆

◦,u
⋆
◦,0)

, P :=

[
∂f

∂w

]
(x,u,w)=(x⋆

◦,u
⋆
◦,0)

,

C :=

[
∂c

∂x

]
(x,w)=(x⋆

◦,0)

, Q :=

[
∂c

∂w

]
(x,w)=(x⋆

◦,0)

,

B :=

[
∂f

∂u

]
(x,u,w)=(x⋆

◦,u
⋆
◦,0)

, S :=

[
∂s

∂w

]
w=0

,

T :=

[
∂∇uϕ

∂w

]
(u,w)=(u⋆

◦,0)

. (17)

Recall also that we denote by X≥(A) the unstable subspace
of A and by Oc(C,A) the unobservable subspace of the pair
(C,A) (see Section I-Notation).
Proposition 1 (Necessary conditions for exact tracking).
System (9) exactly asymptotically track a critical trajectory
of (2) only if the following conditions hold:

1) The pair (A,B) is stabilizable.
2) The pair (C,A) is detectable.
3) The following inclusion holds:

Oc(CL, AL) ∩X≥(AL) ⊆ Ker
[
0m×n T

]
.

where AL :=

[
A P
0 S

]
and CL :=

[
C Q

]
. □

Proof. The Jacobian matrix of the dynamics (13) has the form:[
A BCc

BcC Ac +BcQCc

]
, (18)

where A,B, and C are as in (17), and

Ac :=

[
∂Fc

∂x

]
(z,y)=(z⋆

◦ ,y
⋆
◦)

, Bc :=

[
∂Fc

∂y

]
(z,y)=(z⋆

◦ ,y
⋆
◦)

,

Cc :=

[
∂Gc

∂z

]
z=z⋆

◦

. (19)

Since (x∗◦, z
⋆
◦) is locally exponentially stable (by (D2a)), all

eigenvalues of the matrix in (18) must be in C<. A necessary
condition for asymptotic tracking is then, for all λ ∈ C≥,

Ker

[
A− λI
BcC

]
= 0 which implies Ker

[
A− λI
C

]
= 0.

This proves part 2) of the claim. Similarly, Hurwitz stability
of the matrix in (18) necessitates that, for all λ ∈ C≥,

Im
[
A− λI, BCc

]
= Rn

which implies Im
[
A− λI B

]
= Rn,

thus proving part 1) of the claim. To prove 3) assume, by
contradiction, that there exists a vector v ∈ Oc(CL, AL) ∩
X≥(AL) that does not belong to Ker

[
0 T

]
. This implies

that there exists an unstable mode of (13) in the direction v for
which the gradient signal (8) is nonzero in a neighborhood of
the origin of W. But this contradicts (D2b) in Definition 2. ■
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x̂(t)

Fig. 3: Block-diagram representation of the optimizing controller developed
in this work. The proposed controller is structured according to a separation
principle, combining a state estimator – responsible for reconstructing the
unmeasurable states (x̂(t), ŵ(t)) – with a static feedback law that regulates
the plant toward a point where the gradient error vanishes. See Section IV-B
and the controller components (C1)–(C2).

Condition 1) in the proposition asks that the plant is stabiliz-
able; 2) that it is detectable; and 3) that any undetectable mode
of the pair (CL, AL) lies in the null space of the matrix [0, T ].
Intuitively, the requirement 1) is needed to ensure that (1)
can be stabilized (see Definition (D2a)) and is a classical
requirement in stabilization problems via state feedback; the
requirement 2) is needed to ensure that the state of (1) can
be estimated from output measurements, and is a standard
requirement in the existing literature on stabilization via output
feedback; the requirement 3) is specific to our problem, and
asks that all unstable modes of (5) are either detectable from
y(t) or do not affect the gradient signal g(t). Notice that
condition 3) implies condition 2); moreover, condition 3)
automatically holds when the pair (CL, AL) is detectable.
Motivated by these necessary conditions, in the remainder we
will impose the following assumption.
Assumption 5 (Stabilizability and Detectability). The pair
(A,B) is stabilizable and the pair (CL, AL) is detectable. □

Assumption 5 guarantees that the conditions of Proposition 1
are met. Moreover, this assumption is in line with the feed-
back optimization literature; this assumption appears explicitly
in [5], [17] and implicitly in [2], [6], [17], where the plant is
assumed to be pre-stabilized (so that 1) and 2) are implicitly
required), and w(t) is assumed bounded so that, together with
the stability of the plant, the requirement 3) is ensured to hold.

B. Structure of the proposed controller

Proposition 1 suggests the existence of a separation prin-
ciple [40] between the problems of asymptotic stabilization
(see Definition (D2a)) and gradient error regulation (see Def-
inition (D2b)). Concretely, this is reflected in the need for
two independent properties: stabilizability and detectability.
Although a separation is, for now, only necessary, our control
design technique relies on showing that such a separation is
also sufficient to address Problem 2. Establishing this fact will
be the objective of the subsequent sections. Motivated by this
observation, we anticipate that the controller we propose in this

work has a structure that is inspired from such a separation
principle. Specifically, it consists of two main components (C):
(C1) A static feedback algorithm (based on the dynamic states

x(t), w(t), or their estimates x̂(t), ŵ(t)), responsible for
stabilizing the closed-loop system (i.e., ensure (D2a))
and drive the plant to operating conditions where the
gradient error signal g(t) vanishes (i.e., achieve (D2b)).

(C2) A dynamic observer, responsible for estimating the un-
measurable dynamic states x(t) and w(t) (i.e., generat-
ing the estimates x̂(t) and ŵ(t)).

A block diagram of the proposed controller is illustrated in
Fig. 3. Developing the components (C1)–(C2) is the objective
of the subsequent sections; precisely, (C1) is developed in
Section V, the effectiveness of this controller structure is
discussed in Section VI, and (C2) is developed in Section VII.

V. THE STATIC-FEEDBACK OPTIMIZATION PROBLEM

In this section, we develop the controller component (C1).
Precisely, we begin by considering an idealization of the
problem where the disturbance w(t) and the plant’s internal
state x(t) can be measured by the control algorithm. In these
cases, because the control algorithm has access to all the
dynamic states in (9), the controller model (7) can be replaced
by a static (i.e., algebraic) map of the form4:

u(t) = Hc(x(t), w(t)), (20)

where Hc : X ×W → Rm is a C0 mapping to be designed.
In line with the requirements (12), we will assume that the
mapping Hc(x,w) to be designed is such that Hc(x

⋆
◦, 0) = u⋆◦.

In other words, (20) assumes that the state of the plant x(t)
and the exogenous disturbance w(t) are measurable and can be
used directly for feedback. Because of the explicit dependence
on x(t) and w(t), we will refer to (20) to as a static-feedback
optimization algorithm.
the framework developed here will be used in combination
with the controller component (C1) in Section VI to tackle
Problem 2 in its full generality.
Composing (1), (5), and (20) yields the closed-loop system:

ẋ(t) = f(x(t), u(t), w(t)), y(t) = c(x(t), w(t)),

ẇ(t) = s(w(t)),

u(t) = Hc(x(t), w(t)), g(t) = ∇uϕ(u(t), w(t)). (21)

With this framework, Problem 2 is reformulated as follows.
Problem 3 (Static exact asymptotic tracking). Find, if pos-
sible, Hc(x,w) such that:
(P3a) The equilibrium x∗◦ of the autonomous system:

ẋ(t) = f(x(t), Hc(x(t), 0), 0), (22)

is locally exponentially stable.

4While one could consider a dynamic control algorithm of the form ż(t) =
Fc(z(t), w(t), x(t)) and u(t) = Gc(z(t)), we will prove in Theorem 2 that
such a dynamic structure is unnecessary.
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(P3b) There exists a neighborhood Υ ⊆ X ×W of (x⋆◦, 0)
such that, for each initial condition (x(0), w(0)) ∈ Υ,
the solution of (21) satisfies:

lim
t→∞

g(t) = 0. (23)

When these conditions hold, (21) is said to exactly asymptot-
ically track a critical trajectory of (2). □

The following definition is instrumental to our characterization
of this problem.
Definition 3 (Limit point and limit set). A point w̄ ∈W is a
limit point with respect to the initialization w◦ ∈ W if there
exists a non-decreasing sequence {ki}i∈N≥0

, with ki →∞ as
i→∞, such that the trajectory of (5) with w(0) = w◦ satisfies
w(ki)→ w̄ as i→∞. For w◦ ∈W, let Ω(w◦) denote the set
of all limit points (i.e., for all sequences {ki}i∈N≥0

) of (5)
with respect to the initialization w◦. Given W◦ ⊆ W, the set
Ω(W◦) := ∪w◦∈W◦Ω(w◦) is called the limit set with respect
to initializations in W◦ [41]. □

Intuitively, Ω(W◦) denotes the set of all limit points (equilib-
ria, limit cycles, etc.) that can be reached by the disturbance
state when initialized at points in W◦. By Assumption 2,
Ω(W◦) is contained in some neighborhood of the origin of
Rp, whose radius depends on the initialization set W◦.

The next result provides necessary and sufficient conditions
for the existence of a static-feedback optimization algorithm.
Theorem 2 (Solvability of the parameter-feedback tracking
problem). Let Assumptions 1–5 hold. Problem 3 is solvable
if and only if there exist C2 mappings π : W◦ → X and
γ :W◦ → Rm, where W◦ ⊂W is some neighborhood of the
origin of Rp, such that:

∂π

∂w
s(w) = f(π(w), γ(w), w), (24a)

0 = ∇uϕ(γ(w), w), (24b)

hold at all limit points w ∈ Ω(W◦). □

The proof of this result builds on Theorem 3 (presented shortly
below), and hence is postponed to the appendix.
Theorem 2 asserts that the solvability of the static-feedback
optimization problem depends upon the existence of two
mappings x = π(w) and u = γ(w) that make the gradient
of the cost identically zero (cf. (24b)) and that relate the
plant dynamics f(x, u, w) with the exosystem s(w) in a
neighborhood of each limit point of the disturbance (cf. (24a)).
Interestingly, the solvability of (24) can be related to the
existence of zero dynamics [42] for a composite system that
incorporates the plant and the exosystem, as discussed in the
following remark.
Remark 3 (Interpretation of (24) in terms of zero dynamics).
Conditions (24) state that an algorithm that solves Problem 3
exists if and only if there exists a submanifold of the state
space (i.e., Ms = {(x,w) : x = π(w)}) such that:

(i) for some choice of feedback law u(t) = γ(w(t)), the
trajectories of the closed-loop system (21) starting in this
manifold remain in this manifold (cf. (24a))

(ii) the corresponding gradient is identically zero (cf. (24b))

(iii) the flow of the zero dynamics on this invariant manifold
is a diffeomorphic copy of the disturbance flow (cf. (24a))

It follows from (i)–(ii) that Ms must be contained in the zero
dynamics manifold of the composite system that incorporates
the plant and the exosystem; in addition, (iii) requires that
the flow of the zero dynamics of the composite system on Ms

must be a diffeomorphic copy of the flow of the exosystem. □

While Theorem 2 provides a set of conditions for the solv-
ability of the static exact asymptotic tracking problem, the
question of how to design such an algorithm remains unan-
swered. As an intermediate step to address this question, we
present the following result, which characterizes the class of
all static-feedback algorithms that achieve asymptotic tracking.
Theorem 3 (Characterization of static-feedback optimization
algorithms). Let Assumptions 1–5 hold, and assume that
Hc(x,w) is such that condition (P3a) is met. Then, (P3b) holds
if and only if there exists a C2 mapping π : W◦ → X, with
W◦ ⊂W some neighborhood of the origin of Rp, such that:

∂π

∂w
s(w) = f(π(w), Hc(π(w), w), w), (25a)

0 = ∇uϕ(Hc(π(w), w), w), (25b)

hold at all limit points w ∈ Ω(W◦). □

Proof. (Only if) Suppose g(t) → 0 as t → ∞; we will show
that (25) holds. The closed-loop system (9) has the form:

ẋ = (A+BK)x+ (P +BL)w + ϕ(x,w),

ẇ = Sw + ψ(w), (26)

where A,B, P, S are defined in (17), K :=
[
∂Hc

∂x

]
(x,w)=(x⋆

◦,0)
,

L :=
[
∂Hc

∂w

]
(x,w)=(x⋆

◦,0)
, and ϕ(x,w) and ψ(w) are functions

that vanish at (x,w) = (x⋆◦, 0), together with their first-order
derivatives. By assumption, the eigenvalues of (A+BK) are in
C<, and those of S are on the imaginary axis. By Theorem 7,
the system admits a center manifold at (x⋆◦, 0), which can be
represented as the graph of a continuous mapping x = π(w),
with π(w) satisfying (25a). This establishes (25a).
To establish (25b), note that, under Assumption 2, there exists
a neighborhood W◦ of the origin such that every trajectory
of (5) initialized in W◦ remains bounded. Consequently, each
such trajectory admits a subsequence that converges to a limit
point w̄ ∈ Ω(W◦). Furthermore, we have:

lim
i→∞

g(ki) = lim
i→∞

∇uϕ (Hc (π(w(ki)), w(ki)) , w(ki))

= ∇uϕ (Hc (π(w̄), w̄) , w̄) .

When limi→∞ g(ki) = 0, the left-hand side is zero, which
implies that (25b) holds at w̄. Since this must hold at every
limit point w̄ and by continuity of Hc(·, ·), (25b) must hold
everywhere in a neighborhood of each point of Ω(W◦).
(Only if) We now prove that (25) implies limt→∞ g(t) = 0. By
Theorem 8, the center manifold x = π(w) is locally attractive;
namely, x(t) → π(w(t)) as t → ∞. Then, the fulfillment
of (25b) guarantees that g(t)→ 0. ■

Theorem 3 provides a complete characterization of the class
of static-feedback optimization algorithms that achieve exact
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asymptotic tracking. In words, a control algorithm (20) satisfy-
ing (P3a) asymptotically tracks a critical trajectory if and only
if, on a neighborhood of the limit set of the exosystem Ω(W◦),
the composite function Hc(·, w) ◦ π(·) zeros the gradient
(cf. (25b)) and the plant f(x, u, w) is algebraically related to
the disturbance s(w) as described by (25a). Finally, it is worth
commenting on the assumption that Hc(x,w) satisfies (P3a)
in the statement of Theorem 3: conditions for the existence
of such mappings are given in Theorem 2 and a technique to
design such Hc(x,w) is given shortly below (see (27)). In this
context, the value of Theorem 3 lies in the conditions (25),
which will be used below to design Hc(x,w) in place of (P3b).
The proofs of Theorems 2–3 are constructive, as they provide a
method to design control algorithms that solve the asymptotic
tracking problem (Problem 3). Explicitly, given mappings x =
π(w) and u = γ(w) satisfying (24), a parameter feedback
algorithm that solves Problem 3 is given by:

Hc(x,w) = γ(w) +K(x− π(w)), (27)

where K is any matrix such that the eigenvalues of A+BK
are in C<. It is also worth noting that the control action
in (27) is the superposition of two terms: a state-error action
K(x− π(w)), responsible for stabilizing the plant around the
manifold π(w), and a control action γ(w), responsible for
zeroing the gradient. We illustrate the design procedure next.
Example 2 (Illustration of the design procedure for stat-
ic-feedback optimization algorithms). Consider the control
problem discussed in Example 1. By application of Theorem 2,
there exists a state-feedback optimization algorithm achieving
exact asymptotic tracking if and only if there exist matrices
Π ∈ Rn×p,Γ ∈ Rm×p such that the following identities hold:

ΠS = AΠ+BΓ + P,

0 = RΓ + T. (28)

Note that, in this case, the dependence on w can be dropped,
since these identities must hold anywhere in a neighborhood of
the origin of Rp. When these two conditions hold, an algorithm
solving Problem 3 can be computed from (27), yielding

u(t) = Γw(t) +K(x(t)−Πw(t)),

where K is any matrix such that A+BK is Hurwitz. □

Remark 4 (Knowledge of the limit set). In applications, the
limit set Ω(W◦) may be unknown. When this is the case, to de-
sign a static-feedback optimization algorithm, it is possible to
seek mappings γ(w) and π(w) that verify (25) on some set that
includes Ω(W◦), which can be more easily determined (e.g.,
when w(t) is periodic or uniformly bounded). This approach
overcomes the need for knowing the limit set precisely. □

VI. THE DYNAMIC FEEDBACK-OPTIMIZATION PROBLEM:
EXISTENCE AND CONDITIONS FOR ASYMPTOTIC TRACKING

In this section, we formalize the effectiveness of a controller
architecture based on the two independent components (C1)–
(C2). Precisely, we now show how the conclusions drawn in
Section V extend when the dynamic controller (7) is used
in place of the static one (20). We begin with the following
solvability result.

Theorem 4 (Solvability of the dynamic feedback-optimization
problem). Let Assumptions 1–5 hold. Problem 2 is solvable
if and only if there exist C2 mappings π : W◦ → X and
γ :W◦ → Rm, where W◦ ⊂W is some neighborhood of the
origin of Rp, such that:

∂π

∂w
s(w) = f(π(w), γ(w), w), (29a)

0 = ∇uϕ(γ(w), w), (29b)

hold at all limit points w ∈ Ω(W◦). □

The proof of this result builds on Theorem 5 (presented shortly
below); hence, we postpone it to the appendix.
Interestingly, the conditions for the solvability of the static
problem (Problem 3) derived in Theorem 2 and those for the
solvability of the dynamic problem (Problem 2) derived in
Theorem 4 are identical. This shall not be surprising since,
on the one hand, the static optimization algorithm (20) has
access to measurements of the signals x(t) and w(t) while,
on the other hand, the dynamic optimization algorithm (7) has
additional flexibility thanks to the availability of a dynamic
state z(t). We will reinterpret this property under the lens of
additional results shortly below (see (33)).
The following result provides a characterization of the class
of all dynamic-feedback optimization algorithms that achieve
exact asymptotic tracking.
Theorem 5 (Characterization of dynamic feedback-optimiza-
tion algorithms). Let Assumptions 1–5 hold, and assume
that the controller (7) is such that condition (D2a) is met.
Then, (D2b) holds if and only if there exist C2 mappings
π : W◦ → X and σ : W◦ → Z, with W◦ ⊂ W some
neighborhood of the origin of Rp, such that:

∂π

∂w
s(w) = f(π(w), Gc(σ(w)), w), (30a)

∂σ

∂w
s(w) = Fc(σ(w), c(π(w), w)), (30b)

0 = ∇uϕ(Gc(σ(w)), w), (30c)

hold at all limit points w ∈ Ω(W◦). □

Proof. (Only if) Suppose that conditions (D2a)–(D2b) are
satisfied. We will now show that (30) holds. The closed-loop
system (21) has the form:

ẋ = Ax+BCcz + Pw + ϕ(x, z, w),

ż = BcCx+Acz +BcQw + χ(x, z, w),

ẇ = Sw + ψ(w), (31)

where all matrices involved are defined in (17), (19), and
ϕ(x, z, w), χ(x, z, w), and ψ(w) are functions that vanish at
(x, z, w) = (x⋆◦, z

⋆
◦ , 0), together with their first-order deriva-

tives. By (D2a), the eigenvalues of the matrix[
A BCc

BcC Ac

]
are in C<, and those of S are on the imaginary axis. By
Theorem 7, the system admits a center manifold at (x⋆◦, z

⋆
◦ , 0),

which can be expressed as the graph of two continuous map-
pings x = π(w) and z = σ(w) that satisfy (30a) and (30b).
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To establish (30c), note that, under Assumption 2, there exists
a neighborhood W◦ of the origin such that every trajectory
of (5) starting in W◦ is bounded, and therefore it has a
subsequence that converges to some limit point w̄ ∈ Ω(W◦).
Thus, we have:

lim
i→∞

g(ki) = lim
i→∞

∇uϕ (Gc (σ(w(ki))) , w(ki)) ,

= ∇uϕ (Gc (π(w̄)) , w̄) .

When limi→∞ g(ki) = 0, the left-hand side is zero, which
implies that (30c) holds at w̄. Since this must hold at every
limit point w̄ and by continuity of Gc(·), (30c) must hold
everywhere in a neighborhood of each point of Ω(W◦). This
establishes (30c).
(If) We now show that, if condition (D2a) is satisfied and (30)
holds, then (D2b) holds. By Theorem 8, the center manifold
x = π(w) and z = σ(w) are locally attractive; namely, x(t)→
π(w) and z(t)→ σ(w) as t→∞. Then, fulfillment of (30b)
guarantees that g(t)→ 0, thus establishing (D2b). ■

The conditions in (30) fully characterize the class of dynamic-
feedback algorithms that achieve asymptotic tracking. In other
words, an algorithm from the class (9) satisfying (D2a)
achieves exact tracking if and only if, on a neighborhood of
the limit set of the exosystem Ω(W◦), the composite function
Gc ◦ σ zeros the gradient (cf. (30c)) and both the plant and
the controller are algebraically related to the exosystem as
given by, respectively, (30a) and (30b). It is also worth relating
Theorem 5 with Theorem 3: by comparison, it is immediate
to see that the design of a dynamic algorithm must follow
the same criteria of the design of a static algorithm (compare
(30a), (30c) with (25)), now with the additional requirement
that the controller is algebraically related to the exosystem,
as given by (30c). This property establishes the correctness of
the controller architecture proposed in (C1)–(C2).
It is worth commenting on the requirement that (7) satis-
fies (D2a) in the statement: conditions for the existence of
an algorithm satisfying (D2a) are given in Theorem 4 and
a technique to design a stabilizing controller is given shortly
below (see Algorithm 1). In analogy with Theorem 3, the value
of Theorem 5 lies in the conditions (30), which will be used in
Algorithm 1 to design Fc(z, y) and Gc(z) in place of (D2b).
We illustrate these findings in the following example.
Example 3 (Illustration of the conditions for dynamic
feedback-optimization algorithms). Consider the problem dis-
cussed in Examples 1–2. By application of Theorem 4, Prob-
lem 2 is solvable if and only there exist matrices Π ∈ Rn×p

and Γ ∈ Rm×p such that (28) hold. Notice that, as observed
immediately after Theorem 4, the conditions for the solvability
of the dynamic problem (Problem 2) coincide with the condi-
tions for the solvability of the static problem (Problem 3).
Suppose now that (28) holds, consider the controller (16), and
assume that Ac and Bc are such that the origin of:

ẋ(t) = Ax(t) +BCcz(t),

ż(t) = Acz(t) +BcCx(t),

is exponentially stable. By application of Theorem 5, exact
asymptotic tracking is achieved if and only if there exist
matrices Π ∈ Rn×p and Σ ∈ Rnc×p such that:

ΠS = AΠ+BCcΣ+ P,

ΣS = AcΣ+Bc(CΠ+Q),

0 = RCc + TΣ. (32)

Given Ac, Bc, Cc, (32) is a set of linear equations in the
unknowns Π and Σ, which can thus be checked efficiently. □

We conclude this section by discussing an important implica-
tion stemming from Theorem 5. By (30b), the state of the
control algorithm z and that of the exosystem w must be
related, everywhere in the limit set Ω(W◦), by the relationship:

z = σ(w). (33)

Condition (33) can be interpreted as the existence of a co-
ordinate transformation between the state of the exosystem
and that of the control algorithm. This, in turn, implies that
any controller capable of achieving exact tracking must use an
internal state z(t) that is a reduplicated copy of the disturbance
signal w(t), albeit potentially expressed in a different coordi-
nate system. We discuss further this property in Remarks 5–6,
and illustrate some of its properties in Example 4.
Remark 5 (The internal model principle of feedback opti-
mization). We interpret condition (30) as the internal model
principle of feedback optimization, akin to its counterpart in
control systems [11]–[14] and time-varying optimization [32].
In fact, (30) expresses the requirement that any feedback
optimization algorithm that achieves asymptotic tracking must
include an internal model of the exosystem. The use of a
copy of the temporal variability of the optimization problem
is explicit in existing feedback optimization algorithms [2],
[6], where an internal model for an integrator-type exosystem
is used to reject constant disturbances. In this sense, our
characterization encompasses all these existing approaches as
special cases. □

Remark 6 (Internal-model based interpretation of existing
feedback optimization algorithms). Recall that the basic
feedback-optimization algorithm (10) can be viewed as an
instance of (7) with Fc(z, y) and Gc(z) as in (11) (see
Remark 2). By direct substitution into (30), it is immediate
to see that this algorithm satisfies (30) with s(w) = 0
and σ(w) arbitrary. Since s(w) = 0 is the internal model
of a constant signal, it follows from Theorem 5 that these
algorithms can achieve exact asymptotic tracking only when
w(t) is a constant signal. This observation is in line with the
inexact convergence results given for these algorithms when
w(t) is time-varying [6], [43], and motivates the need for
developing new algorithms when w(t) is time-varying. □

Example 4 (The mapping σ(w) may not be injective).
Consider the scalar plant: ẋ = x+u with output y = −2x+w
subject to a constant disturbance ẇ = 0. Denoting w := w(t)
for compactness, consider the following instance of (6),

minimize
u∈R

1
2 |u|2 + 1

2 |w|2,

10



which results in the gradient signal: g(t) = u(t) + w. In this
case, a possible choice of algorithm that achieves asymptotic
tracking is u(t) = y(t). Indeed, with this choice, the controlled
system dynamics are ẋ(t) = −x(t) + w, yielding: x(t)→ w,
y(t) → −w, u(t) → −w, and g(t) → 0, which ensures
asymptotic tracking. This is a case where σ(w) is not injective;
in fact, this corresponds to a situation where σ : W◦ → ∅,
since this controller has no internal state. Notice that this is
not the only controller choice possible, as other solutions (for
example, using a dynamic state) are possible. □

VII. FEEDBACK OPTIMIZATION ALGORITHM DESIGN

Building on the results derived in the previous section, we now
turn our attention to designing algorithms that solve Problem 2.
Our controller construction follows the separation principle
defined by components (C1)–(C2). Notably, component (C2)
is further structured into two parts: (i) an error-feedback
mechanism that stabilizes the plant around the center manifold,
and (ii) a control action that drives the gradient to zero
asymptotically (see (27)).
Formally, our construction is as follows: given functions γ(w)
and π(w) that satisfy (29), we construct a controller with state
z = (z1, z2), z1 ∈ Rn, z2 ∈ Rp, (i.e., the controller state space
dimension is nc = n+ p) and dynamics:

ż1(t) = f(z1(t), u(t), z2(t))− L1ey(t),

ż2(t) = s(z2(t))− L2ey(t), (34)

where

u(t) = γ(z2(t)) +K(z1(t)− π(z2(t))),
ey(t) = c(z1(t), z2(t))− y(t).

Intuitively, the state variable z1(t) in (34) operates as a
dynamic observer for the plant’s state x(t), driven by the
output-based estimation error ey(t) (which describes the error
between the observer’s output and true output y(t)) with
gain L1. The state z2(t) acts as a dynamic observer for the
exosystem state w(t), driven by the output-based estimation
error ey(t) with gain L2. The control input u(t) is designed to
be a static-feedback optimization algorithm (cf. (27)), driven
by the estimated states z1(t) and z2(t) (in place of the true
states x(t) and w(t) as in (27)).
In (34), the matrices K ∈ Rm×n, L1 ∈ Rn×q, and L2 ∈ Rp×q

are designed such that the closed-loop matrices:

A+BK and AL − LCL, (35)

where L = [LT
1 , L

T
2 ]

T, have eigenvalues5 in C<. We note
that the Hurwitz stability of AL−LCL guarantees asymptotic
stability of the dynamic observer, while the Hurwitz stability
of A + BK ensures that the state-feedback controller u(t)
renders the closed-loop system asymptotically stable.
We summarize our algorithm design procedure in Algorithm 1,
and we prove the effectiveness of this method in Theorem 6.
Theorem 6 (Correctness of Algorithm 1). Let Assump-
tions 1–5 hold, and let the control algorithm (7) be designed

5Notice that existence of K and L is guaranteed by Assumption 5.

Algorithm 1: Dynamic-feedback optimization algo-
rithm design
Data: Mappings f(x, u, w), c(x,w), s(w); matrices

A,B as in (17), AL, CL as in Proposition 1;
mappings π(w), γ(w) as in Theorem 4

1 Let K be any matrix such that A+BK is Hurwitz;
2 Let L be any matrix such that AL − LCL is Hurwitz;
3 Decompose z = (z1, z2), z1 ∈ Rn, z2 ∈ Rp ;
4 Decompose L = [LT

1 , L
T
2 ]

T, L1 ∈ Rn×q, L2 ∈ Rp×q;
5 Gc(z)← γ(z2) +K(z1 − π(z2));
6 Fc(z, y)←

[
f(z1, Gc(z), z2)− L1(c(z1, z2)− y)

s(z2)− L2(c(z1, z2)− y)

]
;

Result: Fc(z, y), Gc(z), that solve Problem 2

following Algorithm 1. Then, the controlled system (9) exactly
asymptotically tracks a critically trajectory of (2). □

Proof. Because K and L are designed so that A + BK and
AL − LCL have eigenvalues in C<, the matrices:

A+BK and
[
A− L1C P − L1Q
−L2C S − L2Q

]
have eigenvalues in C<. A standard calculation (see the proof
of Theorem 4) shows that, for any Γ and Π, the matrix A BK B(Γ−KΠ)

L1C A+BK − L1C P +B(Γ−KΠ)− L1Q
L2C −L2C S − L2Q


also has eigenvalues in C<. It immediate to see that this matrix
is the Jacobian of the dynamics

ẋ(t) = f(x(t), Gc(z(t)), 0),

ż(t) = Fc(z(t), c(x(t), Gc(z(t)))),

when Fc(z, y) and Gc(z, y) are constructed according to
Algorithm 1, when letting

Γ :=

[
∂γ

∂w

]
w=0

and Π :=

[
∂π

∂w

]
w=0

. (36)

This proves that (D2a) holds. To show that (D2b) also holds,
observe that the construction of Gc(z) and Fc(z, y) in Algo-
rithm 1 implies the the fulfillment of (30) with

σ(w) = (π(w), w).

Hence, (D2b) follows by application of Theorem 5. ■

We conclude this section by illustrating the design procedure
on a quadratic optimization problem with a linear plant.
Example 5 (Illustration of the design procedure for dynam-
ic-feedback optimization algorithms). Consider the problem
discussed in Examples 1–3. Let Π ∈ Rn×p,Γ ∈ Rm×p

be matrices that satisfy the matrix identities (28). For this
problem, the design procedure of Algorithm 1 reads as follows:

1) Let K be any matrix such that A+BK is Hurwitz;
2) Let L be any matrix such that AL − LCL is Hurwitz;
3) Decompose z = (z1, z2), z1 ∈ Rn, z2 ∈ Rp;
4) Decompose L = [LT

1 , L
T
2 ]

T, L1 ∈ Rn×q, L2 ∈ Rp×q;

11



5) Design the map Gc(z) as follows:

Gc(z) = Γz2 +K(z1 −Πz2)

= Ccz,

with Cc =
[
K Γ−KΠ

]
;

6) Design the map Fc(z, y) as follows:

Fc(z, y) =

[
Az1 +BCcz + Pz2 − L1(Cz1 +Qz2 − y)

Sz2 − L2(Cz1 +Qz2 − y)

]
= Acz +Bcy,

with

Ac =

[
A+BK − L1C P +B(Γ−KΠ)− L1Q

−L2C S − L2Q

]
,

Bc =

[
L1

L2

]
. □

VIII. EXTENSIONS TO CONSTRAINED PROBLEMS

The optimization problem (2) contains only an equilibrium
constraint, which we assume can be eliminated using the
steady-state map x = h(u,w) (cf. Assumption 3) to obtain
the unconstrained problem (6). We now discuss extensions to
optimization problems with more general constraints. To that
end, consider the equality-constrained problem

minimize ϕ(u,w(t))

subject to ψi(u,w(t)) = 0, i = 1, . . . , r,

where the constraint functions ψi(u,w(t)) may depend on the
control input and disturbance. The associated Lagrangian is

L(u, λ,w(t)) = ϕ(u,w(t)) +

r∑
i=1

λi ψi(u,w(t)),

where λi is the Lagrange multiplier associated with the ith

equality constraint. A pair (u, λ) ∈ Rm × Rr is said to be a
saddle-point of the Lagrangian if, for all (ū, λ̄) ∈ Rm × Rr,

L(u, λ̄, w(t)) ≤ L(u, λ,w(t)) ≤ L(ū, λ, w(t)).
For any such saddle-point, if strong duality holds, u is primal
optimal, λ is dual optimal, and the optimal duality gap is
zero. Moreover, the gradient of the Lagrangian (assuming
it exists) is zero at any saddle-point. It follows from the
derivations in the previous sections that the gradient-feedback
and parameter-feedback algorithms can be directly applied
to seek a stationary point of the Lagrangian function by
replacing the variable u with the extended decision variable
ũ = (u, λ) and by considering an augmented loss function
in (6) defined as ϕ(ũ, w) = L(u, λ,w). Notice that, if the
critical point computed by the controller is also a saddle-
point and strong duality holds, then it is also a solution to
the equality-constrained problem. When strong duality does
not hold, however, such a saddle-point may not correspond to
an optimizer [44, Ch. 5].

IX. APPLICATION ROBOTIC BALANCING CONTROL

In this section, we demonstrate the effectiveness of the meth-
ods in controlling an unstable system. We present two sets of
simulations: the first considers a quadratic cost function, while
the second explores a more general cost formulation.

A. Quadratic cost

We begin by illustrating our approach on the balancing robot
presented in Section II-B. Letting x1 = θ and x2 = θ̇, a
state-space model (1) for this robot reads as:

ẋ1(t) = x2(t),

ẋ2(t) = α sinx1(t)− βx2(t)− γu(t) cosx1(t) + ηwx(t),

y(t) = x2(t) + wy(t), (37)

where α = mgℓ
Je
, β = kℓ2

Je
, γ = mℓ

Je
, and η = 1

Je . For our
simulations, we used sinusoidal signals: wx(t) = ρx cos(ω̄xt),
ρx = 1 [rad/s2], ω̄x = 1 [rad/s] and wy(t) = ρy cos(ω̄yt),
ρy = 0.5 [rad/s2], ω̄y = 10 [rad/s]. These signals are generated
by an exosystem (5) with state w = (w1, w2, w3, w4) ∈ R4,
vector field s(w) = Sw with

S =


0 1 0 0
−ω̄2

x 0 0 0
0 0 0 1
0 0 −ω̄2

y 0

 , (38)

initial condition w(0) = (ρx, 0, ρy, 0). This exosystem model
generates the desired signals wx(t) and wy(t) when letting6

wx(t) = w1(t) and wy(t) = w3(t). It can be verified that a
mapping h(u,w) satisfying Assumption 3 is given by:

h(u,w) =

−2 tan−1 (α−
√

α2−η2w2
1+γ2u2

ηw1+γu

)
0

 ,
when ηw1+γu ̸= 0 and h(u,w) = [π, 0]T otherwise. At first,
we consider the following instance of (2):

minimize
u∈R, x∈R2

1
2∥x∥2, (39)

subject to: 0 = x2,

0 = α sinx1(t)− βx2(t)
− γu(t) cosx1(t) + ηwx(t),

which formalizes the objective of balancing the robot at the
vertical position (x = 0) while rejecting disturbances. To
determine mappings π(w) and γ(w) that solve (29), we sought
an approximate solution using polynomial representations:

π(w) =

dπ∑
ℓ=1

⟨ψπ
ℓ ,Θℓ(w)⟩, γ(w) =

dγ∑
ℓ=1

⟨ψγ
ℓ ,Θℓ(w)⟩, (40)

of order dπ and dγ , respectively. Here, ψπ
ℓ and ψγ

ℓ , are
(
ℓp
ℓ

)
-

dimensional vectors of coefficients and Θℓ(w), ℓ ∈ N>0, is an
ℓ-th order polynomial basis of functions; formally:

Θℓ(w) = [wℓ
1, w

ℓ−1
1 w2, . . . , w

ℓ−1
1 wp,

wℓ−2
1 w2

2, w
ℓ−2
1 w2w3, · · · , wℓ−2

1 w2wp, · · · , wℓ
p]

T.

The parameter vectors ψπ
ℓ and ψγ

ℓ have been fitted numerically
so that (29) holds in a neighborhood of the origin of R4.
In our simulations, we used dπ = dγ = 4 and (29) were

6Recall that the solutions to the dynamical system ẇ = Sw with
w = (w1, w2) ∈ R2 and S =

[
0 1

−ω2 0

]
are: w1(t) = cos(ωt)w1(0) +

sin(ωt)
w2(0)

ω
and w2(t) = −ω sin(ωt)w1(0) + cos(ωt)w2(0).
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satisfied up to a relative error of 10−7. It is worth stressing
that, to solve the internal-model conditions (29), knowledge
of the magnitude of the disturbance signals ρx and ρy is not
needed (since these quantities do not appear in the exosystem
model (38)); it is only required to know their frequencies ωx

and ωy (which are the only parameters in S). We applied
Algorithm 1, selecting the controller gain K and the observer
gain L so that the eigenvalues of AL − LCL are uniformly
distributed in the intervals [−1,−2] and [−2,−3], respectively.
Simulation results for this problem are illustrated in Fig. 4.
The simulation illustrates that the controller is effective in
regulating the gradient signal g(t) (cf. (8)) to zero, up to a
numerical error of order 10−6 (see Fig. 4(c)); the optimal robot
configuration corresponds to a situation where the pendulum is
precisely in the vertical position described by (x1, x2) = (0, 0)
(see Fig. 4(c)). Notice also that the control input that achieves
balancing oscillates periodically (see Fig. 4(b)) to cancel out
the effect of the oscillatory disturbances (see Fig. 4(a)).

B. Logistic regression

To illustrate the controller performance on a non-quadratic
problem, we next replace the loss function in (39) by:

ϕ0(u, x) =
1
2∥x∥2 + κ

2 (log[1 + eµu] + log[1 + e−µu]), (41)

where κ, µ > 0 (for our experiments, we choose µ = 0.5
and κ = 1). In other words, (41) defines a logistic regression
problem with a time-varying regularization term; intuitively,
an optimizer of (41) is an equilibrium state for the pendulum
model such that the robot is as close as possible to being
vertically balanced (x = 0), while large values (in modulus)
of the control input u are penalized by the logistic term
log[1+eµu]. The mappings π(w) and γ(w) have been obtained
by fitting (40) numerically; in this case, in our simulations,
(29) were satisfied up to a relative error of 10−4. Simulation
results for this problem are illustrated in Fig. 5. By comparing
Fig. 2(b) and Fig. 5(a), we observe that in the latter case the
controller favors control inputs that are smaller in magnitude,
in line with the above interpretation for (41); as a result of
avoiding control inputs of large magnitude, the state is not
regulated to zero exactly, but the robot swings around the
vertical position (see Fig. 5(c)); notice that this configuration
does correspond to optimality for this optimization problem
(see Fig. 5(b)), in the sense that the gradient of (41) ap-
proaches zero, up to a numerical error. We reconduct the
discrepancy between Fig. 2(c) (where ∇uϕ(u(t), w(t)) ≈ 0
up to a numerical error of order 10−6) and Fig. 5(b) (where
∇uϕ(u(t), w(t)) ≈ 0 up to a numerical error of order 10−4)
to numerical error in the satisfaction of (29) (relative error of
10−7 in the former case and 10−4 in the latter). We conjecture
that the numerical error in achieving ∇uϕ(u(t), w(t)) ≈ 0
can be further reduced by using higher-order polynomials
(dπ, dγ > 4) to fit (29).

X. CONCLUSIONS

We have shown that the equilibrium-selection problem studied
in feedback optimization can be recast as an output regulation
problem. This allows us to develop methods for exact setpoint
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x1(t)[rad] x2(t) " t [rad]

(d)

Fig. 4: Performance of the proposed control design applied to solve the
equilibrium-selection problem (39) to the balancing robot of Fig 2(a) (see
model equations (37)). Despite the presence of unmeasurable time-varying
disturbances acting on both the state and output (Fig. 4(a)), the controller
successfully regulates the gradient error signal to zero – up to a numerical
tolerance of order 10−6 (Fig. 4(c)). This corresponds to stabilizing the
inverted pendulum in the upright position, characterized by zero vertical
angle and zero velocity (Fig. 4(a)). It is worth noting that the control input
required to achieve this regulation is not constant (Fig. 4(b)). See Fig. 2 for
the parameter values used.

tracking even when the optimization problem is time-varying.
Fundamentally, we show that this requires knowledge of an
internal model of the temporal variability as well as a partic-
ular control design architecture — a fundamental limitation
that is proven here for the first time in the literature. Our
algorithm design is novel in the literature, and it combines an
output-feedback control action that stabilizes the plant with
an additional control action that drives the system toward the
set of critical points of the optimization. This work opens the
opportunity for several directions of future work, including
an investigation of methods that use inexact internal model
knowledge or learn the internal model online, the relaxation
of the convexity and smoothness assumptions, and an investi-
gation of discrete-time algorithms.
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Fig. 5: Performance of the proposed control design applied to solve an
optimization problem with logistic cost (41). For simplicity of the illustration,
we used constant disturbance signals ωx = 1 [rad/s], ωy = 10 [rad/s].
Despite the presence of unknown disturbances acting on both the state
and output, the controller regulates the gradient error signal to zero – up
to a numerical tolerance of order 10−4 (Fig. 5(b)), which corresponds to
striking a balance between stabilizing the inverted pendulum in the upright
position, characterized by zero vertical angle and zero velocity (Fig. 5(c)) and
minimizing the control effort (Fig. 5(a)). See Fig. 2 for the parameter values.

APPENDIX A
COMPLEMENTARY PROOFS

A. Proof of Theorem 2

(Only if). Suppose Problem 3 is solvable, meaning that there
exists Hc(x,w) that satisfies (P3a) and (P3b). By Theorem 3,
there exists π(w) such that the conditions in (25) are satisfied.
Consequently, (24) is also satisfied by γ(w) = Hc(π(w), w).

(If). We aim to show that, under condition (24), there exists a
function Hc(x,w) such that both (P3a) and (P3b) are satisfied.
First, notice that, by Assumption 5, there exists a matrix K
such that (A + BK) has eigenvalues in C<. Moreover, let
γ(w) and π(w) be two functions such that (24) hold, and set:

Hc(x,w) = γ(w) +K(x− π(w)).
This choice ensures that condition (P3a) is satisfied: indeed,
the Jacobian of f(x(t), Hc(x(t), 0), 0) is A + BK (see (26)
for notation), which has eigenvalues in C<. Moreover, by
construction, Hc(π(w), w) = γ(w), so condition (24a) re-
duces to (25a), and similarly, (24b) reduces to (25b). Thus,
by Theorem 3, condition (P3b) is also satisfied.

B. Proof of Theorem 4

(Only if). Suppose Problem 2 is solvable. Then, by Theorem 5,
there exists functions π(w), σ(w), and Gc(z) such that the

conditions in (30) are satisfied. Consequently, the conditions
in (29) are also satisfied by letting γ(w) = Gc(σ(w)).

(If). We aim to show that, under condition (29), there exists
functions Fc(z, y) and Gc(z) such that both conditions (D2a)-
(D2b) are satisfied. First of all, notice that, by Assump-
tion 5, there exist matrices K and L such that (letting
L = [LT

1 , L
T
2 ]

T, L1 ∈ Rn×q, L2 ∈ Rp×q):

A+BK and
[
A− L1C P − L1Q
−L2C S − L2Q

]
(42)

have eigenvalues in C<. This implies that, for any pair of
matrices Γ and Π, the matrix A BK B(Γ−KΠ)

L1C A+BK − L1C P +B(Γ−KΠ)− L1Q
L2C −L2C S − L2Q


(43)

has eigenvalues in C<. To see this, observe that applying the
similarity transformation M 7→ T−1MT with

T =

 In 0 0
In In 0
0 0 Ip


to the matrix in (43) gives the block upper-triangular matrix: A+BK BK B(Γ−KΠ)

0 A− L1C P − L1Q
0 −L2C S − L2Q

 ,
whose eigenvalues are determined by (42).
Next, let π(w) and γ(w) be functions that satisfy the condi-
tions (29). With the controller defined by Fc(z, y) and Gc(z)
from Algorithm 1, it is immediate to verify that (43), with Γ
and Π the Jacobian matrices defined in (36), is the Jacobian
matrix of the closed-loop dynamics with zero disturbance (13).
This establishes (D2a). To establish (D2b), observe that the
construction of Gc(z) and Fc(z, y) in Algorithm 1 ensures
the fulfillment of (30) with σ(w) = (π(w), w). Therefore,
condition (D2b) follows directly from Theorem 5.

APPENDIX B
BASIC CONCEPTS FROM CENTER MANIFOLD THEORY

We now summarize relevant facts on center manifold theory
from [45]; see also [46]. Consider the nonlinear system:

ẋ = f(x) (44)

where f is a Ck vector field defined on an open subset U
of Rn. Consider an equilibrium point for f , which we take
without loss of generality to be zero, i.e., f(0) = 0. Let
F =

[
∂f
∂x

]
x=0

, denote the Jacobian matrix of f at x = 0.
Suppose the matrix F has n◦ eigenvalues with zero real part,
n− eigenvalues with negative real part, and n+ eigenvalues
with positive real part. Let E−, E◦, and E+ be the (gen-
eralized) real eigenspaces of F associated with eigenvalues
of F lying on the open left half plane, the imaginary axis, and
the open right half plane, respectively. Note that E◦, E−, E+

have dimension n◦, n−, n+, respectively and that each of these
spaces is invariant under the flow of ẋ = Fx. If the linear
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mapping F is viewed as a representation of the differential
(at x = 0) of the nonlinear mapping f , its domain is the
tangent space T0U to U at x = 0, and the three subspaces
in question can be viewed as subspaces of T0U satisfying
T0U = E◦ ⊕ E− ⊕ E+. We refer to [47, Sec. A.II] for a
precise definition of Ck manifolds; loosely speaking, a set
S ⊂ U is a Ck manifold it can be locally represented as the
graph of a Ck function.
Definition 4 (Locally invariant manifold). A Ck manifold S
of U is locally invariant for (44) if, for each x◦ ∈ S, there
exists t1 < 0 < t2 such that the integral curve x(t) of (44)
satisfying x(0) = x◦ satisfies x(t) ∈ S for all t ∈ (t1, t2). □

Intuitively, by letting x = (y, θ) and expressing (44) as:

ẏ = fy(θ, y), θ̇ = fθ(θ, y), (45)

a curve y = π(θ) is an invariant manifold for (45) if the
solution of (45) with θ(0) = θ◦ and y(0) = π(θ◦) lies on
the curve y = π(θ) for t in a neighborhood of 0. The notion
of invariant manifold is useful as, under certain assumptions,
it allows us to reduce the analysis of (44) to the study of a
reduced system in the variable θ only. The remainder of this
section is devoted to formalizing this fact.
Definition 5 (Center manifold). Let x = 0 be an equilibrium
of (44). A manifold S, passing through x = 0, is said to be a
center manifold for (44) at x = 0 if it is locally invariant and
the tangent space to S at 0 is exactly E◦. □

Intuitively, the invariant manifold y = π(θ) is a center
manifold for (45) when all orbits of y decay to zero and those
of θ neither decay nor grow exponentially.
In what follows, we will assume that all eigenvalues of F
have nonpositive real part, i.e., n+ = 0. When this holds, it is
always possible to choose coordinates in U such that (44) is

ẏ = Ay + g(y, θ), θ̇ = Bθ + h(y, θ), (46)

where A is an n−×n− matrix having all eigenvalues with neg-
ative real part, B is an n◦ × n◦ matrix having all eigenvalues
with zero real part, and the functions g and h are Ck functions
vanishing at (y, θ) = (0, 0), together with all their first-
order derivatives. Because of their equivalence, any conclusion
drawn for (46) will apply also to (44). The following result
ensures the existence of a center manifold.
Theorem 7 (Center manifold existence theorem). Assume
that n+ = 0. There exists a neighborhood V ⊂ Rn0

of 0
and a class Ck−1 mapping π : V → Rn−

such that the set
S = {(y, θ) ∈ Rn− × V : y = π(θ)}, is a center manifold
for (46). □

By definition, a center manifold for (46) passes through (0, 0)
and is tangent to the subset of points with y = 0. Namely,

π(0) = 0 and
∂π

∂θ
(0) = 0. (47)

Moreover, this manifold is locally invariant for (46): this
imposes on the mapping π the constraint:

∂π

∂θ
(Bθ + h(π(θ), θ)) = Aπ(θ) + g(π(θ), θ), (48)

as deduced by differentiating with respect to time any solution
(y(t), θ(t)) of (46) on the manifold y(t) = π(θ(t)). In

other words, any center manifold for (46) can equivalently
be described as the graph of a mapping y = π(θ) satisfying
the partial differential equation (48), with the constraints (47).
Remark 7. Theorem 7 shows existence but not the uniqueness
of a center manifold. Moreover, (i) if g and h are Ck, k ∈ N>0,
then (46) admits a Ck−1 center manifold; (ii) if g and h are
C∞ functions, then (46) has a Ck center manifold for any
finite k, but not necessarily a C∞ center manifold. □

The next result shows that any y-trajectory of (46), starting
sufficiently close to the origin converges, as time tends to
infinity, to a trajectory that belongs to the center manifold.
Theorem 8 (Center manifold is locally attractive). Assume
that n+ = 0 and suppose y = π(θ) is a center manifold
for (46) at (0, 0). Let (y(t), θ(t)) be a solution of (46). There
exists a neighborhood U◦ of (0, 0) and real numbers M > 0
and K > 0 such that, if (y(0), θ(0)) ∈ U◦, then for all t ≥ 0,

∥y(t)− π(θ(t))∥ ≤Me−Kt∥y(0)− π(θ(0))∥. □
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