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Abstract

We study the trade-off between convergence rate and sensitivity to stochastic additive gra-
dient noise for first-order optimization methods. Ordinary Gradient Descent (GD) can be made
fast-and-sensitive or slow-and-robust by increasing or decreasing the stepsize, respectively. How-
ever, it is not clear how such a trade-off can be navigated when working with accelerated methods
such as Polyak’s Heavy Ball (HB) or Nesterov’s Fast Gradient (FG) methods, or whether any
of these methods can achieve an optimal trade-off. We consider three classes of functions: (1)
strongly convex quadratics, (2) smooth strongly convex functions, and (3) nonconvex functions
that satisfy a weak notion of strong convexity. For each function class, we present a tractable
way to compute convergence rate and sensitivity to additive gradient noise for a broad fam-
ily of first-order methods, and we present near-Pareto-optimal algorithm designs. Each design
consists of a simple analytic update rule with two states of memory, similar to HB and FG.
Moreover, each design has a scalar tuning parameter that explicitly trades off convergence rate
and sensitivity to additive gradient noise. When tuned as aggressively as possible, our proposed
algorithms recover the algorithms with fastest-known convergence rates for each function class.
When tuned to be more robust, our algorithms are novel and provide a practical way to con-
trol noise sensitivity while maintaining the fastest possible convergence rate. We validate the
performance and near-optimality of our designs through numerous numerical simulations.

1B. Van Scoy is with the Department of Electrical and Computer Engineering, Miami University, Oxford, OH,
USA. Email: bvanscoy@miamioh.edu

2L. Lessard is with the Department of Mechanical and Industrial Engineering, Northeastern University, Boston,
MA, USA. Email: l.lessard@northeastern.edu

1



Contents

1 Introduction 3
1.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Problem setting and assumptions 8
2.1 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Algorithm parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Smooth strongly convex quadratic functions 12
3.1 Performance bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Algorithm design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 One-point strongly convex functions 15
4.1 Performance bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Algorithm design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Smooth strongly convex functions 19
5.1 Performance bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Algorithm design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Comparison with other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Numerical validation 24
6.1 Empirical verification of near-optimality . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Verification of optimal asymptotic convergence rate . . . . . . . . . . . . . . . . . . . 27
6.3 Justification for the three-parameter algorithm family . . . . . . . . . . . . . . . . . 28
6.4 Simulation of a worst-case test function . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Concluding remarks 31

8 Acknowledgments 31

A Proofs 35

B Numerical considerations for solving LMIs 42

2



1 Introduction

We consider the problem of designing robust first-order methods for unconstrained minimization.
Given a differentiable function f : Rd → R, consider solving the optimization problem

x? ∈ arg min
x∈Rd

f(x), (1)

where the algorithm only has access to gradient measurements corrupted by additive stochastic
noise. Specifically, the algorithm can sample the oracle g(x) := ∇f(x) + w, where w is zero-
mean and independent across queries. This form of additive noise arises when gradients cannot be
evaluated exactly and must be approximated. For example,

• We have access to the function but not its gradient, so we must approximate the gradient via
finite differencing, for example.

• Finding the gradient requires solving an auxiliary optimization problem numerically, or run-
ning a simulation, leading to an inexact gradient.

• In empirical risk minimization in the context of learning algorithms, the objective is an
expected value, which must be evaluated via sample-based approximation.

A number of iterative algorithms have been proposed to solve this problem, and most have tunable
parameters. For example, the well-known Gradient Descent method uses the iteration

Gradient Descent (GD): xt+1 = xt − α g(xt), (2)

where the stepsize α is a tunable parameter. Fig. 1 illustrates how the error ‖xt − x?‖ evolves under
GD for different fixed choices of α. Convergence of the error is characterized by an initial transient
phase, where the error decreases by a factor of ρ ∈ (0, 1) at each iteration (we call ρ the convergence
rate), followed by a stationary phase where the error has an approximately constant value of γ > 0.
This two-phase behavior is typical of stochastic methods.1 The fundamental trade-off observed in
Fig. 1 is that ρ can only be made small (faster initial convergence) at the expense of a larger γ
(larger steady-state error). We can interpret γ as a form of sensitivity to gradient noise; when γ is
smaller, the algorithm is less sensitive (more robust) to gradient noise.

Gradient Descent is easy to interpret and tune: the choice of stepsize directly mediates the trade-off
between convergence rate and sensitivity. Unfortunately, GD is generally slow to converge because
it does not exploit the structure present in smooth strongly convex functions, for example. For
such functions, alternative methods can provide accelerated convergence rates. Two such methods
are Polyak’s Heavy Ball [37] and Nesterov’s Fast Gradient [35], which use the iterations

Heavy Ball (HB): xt+1 = xt − α g(xt) + β (xt − xt−1), (3)

Fast Gradient (FG): xt+1 = xt − α g
(
xt + β (xt − xt−1)

)
+ β (xt − xt−1). (4)

In the noise-free setting (exact gradient oracle) and under suitable regularity assumptions about
the function f such as smoothness and strong convexity, both HB and FG can be tuned in a way
that achieves a faster worst-case performance than GD. When using a noisy gradient oracle, these

1In the literature, stepsize is also known as learning rate. The transient phase is also known as the search or
burn-in phase. The stationary phase is also known as the convergence or steady-state phase.
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Figure 1: Trade-off between convergence rate and steady-state error (sensitivity to noise).
Three different tunings of Gradient Descent (GD) with additive gradient noise are applied
to random strongly convex quadratic functions in R10. Half of the Hessian eigenvalues are at
m = 1, the other half at L = 10. Initialization is x0 = 1000 e1. Gradient noise is normally
distributed N (0, I) and i.i.d. across iterations. The plot shows mean and ±1 standard
deviation of the error ‖xt − x?‖ for 1000 sample trajectories. Faster convergence comes at
the cost of a larger steady-state error, and the trade-off is mediated by the stepsize α. On
the right panel, iterations are plotted on a log scale to show a larger range of α values.

accelerated methods exhibit a stationary phase similar to that of GD in Fig. 1. A trade-off between
convergence rate and sensitivity to noise must also exit for HB and FG, but there are now two
parameters to tune, so it is unclear how they should be modified to mediate this trade-off.

The goal of this work is to study the trade-off between ρ and γ and design practical algorithms that
optimize it. We consider three well-studied classes of functions f : Rd → R with scalar parameters
m and L satisfying 0 < m ≤ L <∞. The function classes are defined as follows.

Smooth strongly convex quadratics (Qm,L). Functions f(y) = 1
2(y − y?)TQ(y − y?) + f? for

some y? ∈ Rd and f? ∈ R, where Q = QT ∈ Rd×d has eigenvalues in the interval [m,L].

Smooth strongly convex functions (Fm,L). Differentiable functions for which f(y) − 1
2m‖y‖2

is a convex function of y and ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rd.

One-point strongly convex functions (Sm,L). Differentiable (not necessarily convex) functions

for which, for some y? ∈ Rd,
(
∇f(y)−m(y − y?)

)T(
L(y − y?)−∇f(y)

)
≥ 0 for all y ∈ Rd.

These sets of functions are nested in the sense that Qm,L ⊆ Fm,L ⊆ Sm,L, with equality occurring
when m = L. Moreover, all functions in all of these sets have a unique and arbitrary optimal point,
y? = arg miny∈Rd f(y). For each function class, we design algorithms of the parameterized form

Three-parameter family: xt+1 = xt − α g
(
xt + η (xt − xt−1)

)
+ β (xt − xt−1), (5)

where α, β, and η are scalar parameters. This algorithm parameterization was first introduced
in [26] and is further discussed in Section 2.2. Note that GD, HB, and FG are special cases of the
three-parameter family (5) that use β = η = 0, η = 0, and η = β, respectively.
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1.1 Main contributions

Our three main contributions are as follows.

1. For each function class Qm,L, Fm,L, and Sm,L, we present a method for efficiently bounding
the worst-case convergence rate ρ and sensitivity to additive gradient noise γ for a wide class
of algorithms. The computational effort required to find the ρ and γ bounds for a given
algorithm is independent of problem dimension d, and takes fractions of a second on a laptop.

2. We present three new algorithms, one for each function class. Each algorithm has the form (5),
where (α, β, η) are explicit algebraic functions of a single tuning parameter that directly trades
off convergence rate and sensitivity.

3. We demonstrate through several empirical studies that our algorithm designs closely approxi-
mate the Pareto-optimal trade-off between convergence rate and sensitivity to gradient noise.
We also show that our algorithm designs compare favorably to (i) popular algorithms such as
nonlinear conjugate gradient and quasi-Newton methods, and (ii) existing algorithm designs
that use either fewer or more parameters.

Our results can be concisely summarized in Fig. 2, which illustrates the trade-off between conver-
gence rate ρ and noise sensitivity γ. Our proposed tunable algorithms RHB, RAM, and RGD, are
designed for the function classes Qm,L, Fm,L, and Sm,L, respectively. Each design is a curve in
the (ρ, γ) space, parameterized by the tuning parameter. Fig. 2 also compares popular algorithms
HB, TM, FG, and GD with their recommended tunings (defined in Table 1), which show up as
individual points.
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Figure 2: Illustration of the trade-off between steady-state error (sensitivity to noise) γ,
and convergence rate ρ for optimized algorithm designs. Our proposed tunable algorithms
RHB, RAM, and RGD are approximately Pareto-optimal for the function classes Qm,L,
Fm,L, Sm,L, respectively. The left panel shows L = 5 and the right panel shows L = 50.
Both panels use m = 1, d = 1, and σ2 = 1 (noise variance). Also shown are other algorithms
with their recommended tunings, shown as individual colored dots (see Table 1).

Paper organization. The rest of the paper is organized as follows. In the following subsections,
we provide additional background on the problem and describe our analysis and design method-
ology in more detail. In Section 2, we give a detailed description of the problem setting and
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performance measures we will be using. Sections 3 to 5 treat the function classes Qm,L, Sm,L, and
Fm,L, respectively. In each of these sections, we develop computationally tractable approaches to
computing the convergence rate ρ and noise sensitivity γ, and we present our optimized algorithm
designs. In Section 6, we present empirical studies supporting the near-optimality of our designs
and comparing them to existing algorithms. We provide concluding remarks in Section 7.

1.2 Background

There are fundamental lower bounds on the asymptotic convergence rate of iterative methods
with noisy gradient oracles. No matter what iterative scheme is used, E‖xt − x?‖2 cannot decay
asymptotically to zero faster than 1/t. Roughly, this is because the rate at which error can decay
is limited by the concentration properties of the gradient noise [1, 34]. This optimal asymptotic
rate is achieved by Gradient Descent with a diminishing stepsize that decreases like 1/t (henceforth
referred to as GDDS). From an asymptotic standpoint, there is no benefit to using anything more
complicated than GDDS.

However, GDDS can perform poorly in practice. This is because algorithms are typically run
for a predetermined number of iterations (or time budget), or until a predetermined error level
is reached. In such settings, it has been shown that transient performance can be dramatically
improved through careful manipulation of the stepsize or by using acceleration [19, 23]. One way
to exploit the rapid convergence of the transient phase is to use a piecewise constant stepsize,
effectively dividing the convergence into epochs where the parameters are held constant within
each epoch. This can be done on a predetermined schedule, or by using a statistical test to detect
the phase transition which then triggers the parameter change [9]. When the gradient noise is
due to sampling a finite-sum objective function, other strategies include incremental gradient (or
variance reduction) methods [11, 24]. Specific algorithms have also been studied in the stochastic
case, such as Stochastic Gradient Descent [32] and the Multi-Stage Accelerated Stochastic Gradient
method [4] that resets the momentum periodically.

While we restrict our attention to additive stochastic gradient noise, other inexact oracles have been
studied. The most prominent alternative model is to assume deterministic2 bounded noise, which
may be additive or multiplicative. In [15], the authors show that under an additive deterministic
oracle, acceleration necessarily results in an accumulation of gradient errors. In [22], the authors
analyze Stochastic Gradient Descent under a hybrid additive and multiplicative deterministic oracle.
In [26], the authors study a multiplicative deterministic oracle and in [10], the authors develop the
Robust Momentum (RM) to trade off convergence rate and sensitivity for this oracle. In his
thesis, Devolder studies both stochastic and deterministic oracles in the weakly convex case [12].
With others, he also studies deterministic oracles in the strongly convex case [13] and constructs
intermediate gradient methods to exploit the trade-off between convergence rate and sensitivity to
gradient noise in the deterministic and weakly convex case [14].

1.3 Methodology

We now provide an overview of our analysis and design framework and point to related techniques.
Our method for bounding the convergence rate ρ and sensitivity γ for the classes Sm,L and Fm,L
relies on solving a small linear matrix inequality (LMI). This idea builds upon several related works.

2Also know as worst-case or adversarial noise.
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• The performance estimation framework [16, 40] uses LMIs to directly search for a trajectory
achieving the worst-case performance over a finite number of iterations. This approach pro-
vides an exact characterization of the performance, although the dimension of the LMI grows
with the length of the trajectory.

• Viewing algorithms as discrete-time dynamical systems, Integral Quadratic Constraints from
control theory [18,26,29] may be used to search for worst-case performance guarantees. This
approach also leads to LMIs and characterizes the asymptotic performance of an algorithm,
although the ensuing performance bounds may not be tight in general.

• Finally, LMIs may be used to directly search for a Lyapunov function, which is a generalized
notion of “energy” stored in the system. If a fraction of the energy dissipates at each iteration,
this is akin to proving convergence at a specified rate [21, 39]. Similar to IQCs, Lyapunov
functions provide asymptotic (albeit more interpretable) performance guarantees.

In the present work, we adopt a Lyapunov approach most similar to [39], but we generalize it to
include both convergence rate and sensitivity to noise. We also explain in Section 5.3 how the
three aforementioned approaches are connected to one another. Given an LMI that establishes the
performance (convergence rate or sensitivity to noise) of a given first-order method, the next step
is to design algorithms that exploit this trade-off. Several approaches have been proposed.

• One can parameterize a family of candidate algorithms, and search over algorithm parameters
to achieve an optimal trade-off between convergence rate ρ and sensitivity γ to gradient noise.
For example, for every fixed ρ, one could seek algorithm parameters that achieve the minimum
possible γ. Such a problem is typically non-convex, so one must resort to exhaustive search [26]
or nonlinear numerical solvers that find local optima.

• Using convex relaxations or other heuristics such as coordinate descent, the algorithm design
problem can be solved approximately. While this approach may lead to conservative designs,
it has the benefit of being automated, flexible, and amenable to efficient convex solvers [29].

• In certain settings, the controller parameters can be eliminated from the LMI entirely, yielding
bounds that hold for all algorithms. This approach has been used to show that the Triple
Momentum (TM) method achieves the optimal worst-case rate over the class Fm,L [27, 38].

As in the above approaches, we parameterize a family of candidate algorithms via (5). However,
our approach to algorithm design is algebraic rather than numeric. We find analytic solutions to
the non-convex semidefinite programs that arise when the algorithm parameters are treated as
decision variables. This approach enables us to find explicit analytic expressions for our algorithm
parameters rather than having to specify them implicitly. Nevertheless, we still make use of nu-
merical approaches in order to validate our choice of parameterization and the near-optimality of
our designs, and to compare the performance of our designs to that of existing algorithms; see
Section 6. Our design procedure is outlined as follows.

1. Choose the function class. For each algorithm design, we choose one of the function
classes Qm,L, Fm,L, or Sm,L. We typically choose L/m = 10 or 100, since larger ratios of L/m
may cause the analysis to be ill-conditioned while smaller ratios are typically irrelevant and
may lead to different expressions for the stepsizes of the designed algorithm.

2. Numerically find a near-Pareto-optimal algorithm. As described previously, searching
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directly over algorithm parameters is often a non-convex problem. However, a near-Pareto-
optimal solution may be found using exhaustive search or a nonlinear numerical solver.

3. Find the active constraints. Use the numerical values of the near-Pareto-optimal algo-
rithm to determine the active constraints. For analyses based on LMIs, the associated matrices
will drop rank at the optimal solution, giving rise to a set of equations. In particular, if a
matrix has rank r, then all of its (r + 1)× (r + 1) minors are zero.

4. Solve the set of equations. Now, we can solve the active constraint equations to obtain
algebraic expressions for the algorithm parameters. For analyses based on LMIs, the set
of active constraints is a system of polynomial equations. One way to solve such a system
is to compute a Gröbner basis, which provides a means of characterizing all solutions to
a set of polynomial equations, similar to Gaussian elimination for linear systems. While
many software implementations exist to compute such a basis, these algorithms are typically
inefficient for the large system of equations produced by the LMIs. Instead of describing all
solutions, we instead use Mathematica [43] to search for the single solution that describes the
numerical near-Pareto-optimal algorithm and its corresponding solution to the LMI obtained
previously. Some heuristics that we used were:

• first eliminate variables that appear linearly, since the resulting system after back-
substitution remains a polynomial,

• observe whether any equations factor, in which case we can use the numerical solution
to determine which factor to set to zero.

Our design process results in algebraic expressions for the algorithm parameters and any other vari-
ables used in the analysis (such as the solution to an LMI). In some cases, our designed algorithm
has simple expressions for the stepsizes and achieves the Pareto-optimal trade-off between conver-
gence rate and sensitivity, such as our Robust Heavy Ball method for the function class Qm,L. The
other function classes Sm,L and Fm,L, however, do not seem to admit Pareto-optimal algorithms
with such a simple form. The challenge is then to find suboptimal algorithms that are near-Pareto-
optimal for relevant ranges of L and m values and also have simple algebraic expressions for the
parameters.

2 Problem setting and assumptions

To solve the optimization problem (1), we consider iterative first-order methods described by linear
time-invariant dynamics of the form

ξt+1 = Aξt +B(ut + wt), (6a)

yt = Cξt, (6b)

ut = ∇f(yt), (6c)

where ξt ∈ Rn×d is the state of the algorithm, yt ∈ R1×d is the point at which the gradient is
evaluated, ut ∈ R1×d is the (exact) value of the gradient, wt ∈ R1×d is the gradient noise, and t
is the iteration. The state is the memory of the algorithm because its size reflects the number of
past iterates that must be stored at each timestep. Solutions of the dynamical system are called
trajectories. For example, given an algorithm (A,B,C), particular function f , initial condition ξ0,
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and noise distribution w ∼ P, a trajectory is any sequence (ξt, ut, yt, wt)t≥0 that satisfies (6). This
framework is very general and encompasses a wide variety of fixed-parameter first-order iterative
methods; we discuss this in more detail in Section 2.2.

Remark 1 (important notational convention). Throughout the paper, we represent iterates as row
vectors, so that the matrices A ∈ Rn×n, B ∈ Rn×1, and C ∈ R1×n act on the columns of the
iterates while the gradient oracle ∇f : R1×d → R1×d acts on the rows. Because of this convention,
‖·‖ denotes the Frobenius norm, for example, ‖ξt‖2 :=

∑n
i=1

∑d
j=1(ξ

t
ij)

2. This framework decouples
the state dimension of the algorithm (n) from the dimension of the objective function’s domain (d).

In our model (6), the noise corrupts the gradient ut, although it is straightforward to modify our
analysis to other scenarios, such as when the noise corrupts the entire state ξt.

For each of the function classes considered, the objective function f has a unique optimizer y?. We
also make the following assumption regarding the algorithm (6).

Assumption 2 (deterministic fixed point). For any y? such that ∇f(y?) = 0, there exists ξ? such
that ξ? = Aξ? and y? = Cξ?.

The fixed point assumption is a necessary condition for convergence to the optimal point because
it ensures that if we initialize our algorithm at ξ0 = ξ? and there is no gradient noise, subsequent
iterates will remain at ξ?. Since we are doing worst-case analysis, we may assume without loss of
generality that the optimal point is at the origin. We formalize this fact in the following lemma.

Lemma 3 (fixed point shifting). Let F ∈ {Qm,L, Fm,L, Sm,L} be one of the function classes defined
in Section 1. Consider a function f ∈ F with optimal point y?, optimal function value f? := f(y?),
and optimal gradient u? = 0. Then the function f̃ : y 7→ f(y+ y?)− f? has the property that f̃ ∈ F
with optimal point, optimal function value, and optimal gradient all zero.

Let (A,B,C) be an algorithm of the form (6) satisfying Assumption 2. Define the shifted coordinates
ξ̃t := ξt − ξ? and similarly for ỹt and ũt. Then we may rewrite (6) in shifted coordinates as:

ξ̃t+1 = Aξ̃t +B(ũt + wt) (7a)

ỹt = Cξ̃t (7b)

ũt = ∇f̃(ỹt) (7c)

In other words, we may assume without loss of generality that y? = 0 and f? = f(y?) = 0.

In the remainder of this section, we provide definitions of the convergence rate ρ and noise sensitivity
γ introduced in Section 1, and we parameterize the set of algorithms considered for design.

2.1 Performance evaluation

As alluded to in Section 1, we consider the trade-off between convergence rate and sensitivity to
additive stochastic gradient noise. Let A = (A,B,C) denote an algorithm as defined in (6) and let
F ∈ {Qm,L, Fm,L, Sm,L} denote one of the families of functions defined in Section 1.

Convergence rate. The convergence rate ρ describes the first phase of convergence observed in
Fig. 1: exponential decrease of the error. In this regime, gradients are relatively large compared to
the noise, so we assume wt = 0 for all t ≥ 0. For any algorithm A with initial point ξ0 and fixed
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point ξ? and any function f ∈ F , consider the trajectory (ξ0, ξ1, . . . ) produced by A. We define
the convergence rate to be:

ρ(A,F) := inf

{
ρ > 0

∣∣∣∣∣ sup
f∈F

sup
ξ0∈Rn×d

sup
t≥0

‖ξt − ξ?‖
ρt‖ξ0 − ξ?‖ <∞

}
. (8)

In other words, if the convergence rate ρ0 = ρ(A,F) is finite, then for all ε > 0, there exists
a constant c such that the trajectory satisfies the bound ‖ξt − ξ?‖ ≤ c (ρ0 + ε)t‖ξ0 − ξ?‖ for all
functions f ∈ F , initial points ξ0 ∈ Rn×d, and iterations t ≥ 0. This definition of ρ corresponds to
the conventional notion of linear convergence rate used in the worst-case analysis of deterministic
algorithms. If ρ0 < 1, the algorithm is said to be globally linearly convergent, and for all ε > 0, we
have ‖ξt − ξ?‖ = O((ρ0 + ε)t) and ‖yt − y?‖ = O((ρ0 + ε)t). A smaller value of ρ0 corresponds to
a faster (worst-case) convergence rate.

While we characterize convergence of the algorithm using the convergence rate ρ, the optimization
and machine learning literature typtically uses the iteration complexity, which is the number of iter-
ations required for the algorithm to achieve an error below some threshold. While these quantities
are related, the convergence rate provides a more fine-tuned characterization of the convergence.
For instance, while the iteration complexity of Nesterov’s FG method is optimal for the function
class Fm,L, the convergence rate is strictly suboptimal [42].

Sensitivity. The sensitivity γ characterizes the steady-state phase of convergence observed in
Fig. 1. The steady-state error depends on the noise characteristics. We will assume that the noise
sequence w0, w1, . . . has joint distribution P ∈ Pσ, with parameter σ to be defined shortly. We
assume the set of admissible joint distributions Pσ satisfies:

1. Independence across time. For all P ∈ Pσ, if w ∼ P, then wt and wτ are independent for all
t 6= τ . Then we may characterize the joint distribution P ∈ Pσ by its associated marginal
distributions (P0,P1, . . . ). We do not assume the Pt are necessarily identical.

2. Zero-mean and bounded covariance. For all (P0,P1, . . . ) ∈ Pσ, we have Ewt∼Pt(wt) = 0 and

Ewt∼Pt(wt
T
wt) � σ2Id. We assume σ is known for the purpose of our analysis.

Our assumptions on the noise imply that Pσ is completely characterized by the variance bound σ2.
For any fixed algorithm A, function f ∈ F , initial point ξ0, and family of noise distributions Pσ,
consider the stochastic iterate sequence y0, y1, . . . produced by A and let y? := arg miny∈Rd f(y)
be the unique minimizer of f . We define the noise sensitivity to be:

γ(A,F , σ2) = sup
f∈F

sup
ξ0∈Rn×d

sup
P∈Pσ

lim sup
T→∞

√√√√Ew∼P
1

T

T−1∑
t=0

∥∥yt − y?∥∥2. (9)

A smaller value of γ is desirable because it means the algorithm achieves small error in spite of
gradient perturbations. This definition for γ is similar to that used in recent works exploring
first-order algorithms with additive gradient noise using a robust H2 approach [5, 29,31].

Remark 4 (bounded sensitivity). If ρ(A,F) < 1, then γ(A,F , σ2) < ∞ for any σ. This is a
consequence of Lemma 11, which establishes the fact for Sm,L, the largest of the function families.
The converse need not hold. For example, if A is chosen such that ρ(A) > 1, then picking C = 0
yields γ(A,F , σ2) = ‖y?‖ <∞, and picking B = 0 yields ρ(A,F) = ρ(A) > 1.
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Remark 5. Some authors [29, 31] compute the sensitivity with respect to the squared-norm of
the state ‖ξt − ξ?‖2. This quantity, however, depends on the state-space realization; performing
a similarity transformation (A,B,C) 7→ (TAT−1, TB,CT−1) for some invertible matrix T does
not change the input ut or output yt of the system, but it does map the state as ξt 7→ Tξt and
therefore scales the sensitivity when measured with respect to the state. Instead, we compute the
sensitivity with respect to the squared-norm of the output ‖yt − y?‖2, which is invariant under
similarity transformations. It is straightforward to modify our analysis to compute the sensitivity
with respect to other quantities, such as the squared-norm of the gradient ‖ut‖2 or the function
values f(yt)− f?.

2.2 Algorithm parameterization

While our analysis applies to the general algorithm model (6), for the purpose of design we will
further restrict the class of algorithms to those with state dimension n = 2. At first, it may appear
that algorithms of the form (6) have n2 + 2n degrees of freedom since we are free to choose A,B,C
however we like, so describing the case n = 2 should require 8 parameters. However, many of these
parameters are redundant, and if we further assume the fixed point condition of Assumption 2, the
case n = 2 can be fully parameterized using only three scalar parameters (α, β, η) as follows:

ξt :=

[
xt

xt−1

]
, A =

[
1 + β −β

1 0

]
, B =

[
−α
0

]
, C =

[
1 + η −η

]
, (10)

which is equivalent to our three-parameter family (5). We will refer to specific algorithms from this
family by their triplet of parameters (α, β, η). Later in Section 6.3, we provide numerical evidence
that further justifies our choice of parameterization.

To see that three parameters are sufficient to capture all algorithms with n = 2 states, consider the
transfer function of the algorithm [2, §2.7], which is the linear map from the z-transform of wt to
the z-transform of yt given by the rational function: G(z) = C(zI −A)−1B. When n = 2, G(z) is
a rational function with numerator degree at most 1 and denominator degree at most 2. The poles
of G(z) correspond to the eigenvalues of A, and by Assumption 2, one of those eigenvalues is fixed
at 1. This leaves three degrees of freedom. In particular, the transfer function for (10) is:

G(z) = −α (1 + η)z − η
(z − 1)(z − β)

.

The redundancy in the (A,B,C) parameterization stems from the fact that given any invertible
matrix T ∈ Rn×n, algorithms (A,B,C) and (TAT−1, TB,CT−1) have the same transfer function.
Moreover, if we initialize these algorithms with initial state ξ0 and Tξ0 respectively, they will have
the same trajectories (y0, y1, . . . ). Therefore, both algorithms share the same performance metrics
ρ and γ. Such transformations are called state-space similarity transformations [45, §3.3].

By choosing specific values for (α, β, η), the algorithm (5) recovers several known algorithms. We
describe these algorithms in Table 1, as they will serve as useful benchmarks for our designs.

Different triples (α, β, η) generally correspond to different algorithms, with one important exception:
Gradient Descent has a degenerate family of possible parameterizations.

Proposition 6. Gradient Descent with parameterization (α, 0, 0) can also be parameterized by(
α(1− β), β, β

1−β
)

for any choice of β 6= 1.
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Table 1: Comparison of different algorithms, their recommended/standard tunings, and
applicable function classes. For RM, the tuning parameter satisfies 1−

√
m
L ≤ ρ ≤ 1− m

L .

When ρ = 1−
√

m
L , RM becomes TM; when ρ = 1− m

L , RM becomes GD with α = 1
L .

Algorithm name α β η Func. class

Gradient Descent (GD) 1
L or 2

L+m 0 0 Sm,L

Heavy Ball (HB), [37] 4
(
√
L+
√
m)2

(√
L−
√
m√

L+
√
m

)2
0 Qm,L

Fast Gradient (FG), [35] 1
L

√
L−
√
m√

L+
√
m

√
L−
√
m√

L+
√
m

Fm,L

Triple Momentum (TM), [42]
√
L−
√
m

L3/2

(
√
L−
√
m)2

L+
√
mL

(
√
L−
√
m)2

2L−m+
√
mL

Fm,L

Robust Momentum (RM), [10] (1−ρ)2(1+ρ)
m

Lρ3

L−m
mρ3

(L−m)(1−ρ)2(1+ρ) Fm,L

Proposition 6 follows from the fact that when we substitute (α, β, η) 7→
(
α(1− β), β, β

1−β
)

into (5),
the update equation can be rearranged to obtain(

xt+1 − βxt
1− β

)
=

(
xt − βxt−1

1− β

)
− α∇f

(
xt − βxt−1

1− β

)
− αwt. (11)

In other words, it is simply Gradient Descent applied to the quantity yt := 1
1−β (xt − βxt−1). The

equivalence can also be seen by observing that the transfer function G(z) simplifies to G(z) = −α
z−1

due to a pole-zero cancellation of the factor (z − β), so we recover the transfer function of GD.

In the next three sections, we focus on the function classes Qm,L, Sm,L, and Fm,L, respectively. For
each class, we provide a tractable approach for computing the performance metrics ρ and γ, and
we design algorithms of the form (5) that provide a near-optimal trade-off between ρ and γ.

3 Smooth strongly convex quadratic functions

We begin with the class Qm,L of strongly convex quadratics. We will first derive exact formulas for
the worst-case convergence rate and the sensitivity to additive gradient noise.

3.1 Performance bounds for Qm,L

The quadratic case has been treated extensively in recent works on algorithm analysis [5, 26, 31].
We now present versions of these results adapted to our algorithm class of interest. When f is a
positive definite quadratic and we shift the fixed-point to zero using Assumption 2, we can write
∇f(y) = yQ for some Q ∈ Rd×d satisfying Q = QT � 0 (recall that the iterates are row vectors, so
y ∈ R1×d). The algorithm’s dynamics (7) become

ξt+1 = Aξt+1 +BCξtQ+Bwt and yt = Cξt. (12)

12



If we diagonalize Q, we can split the dynamics into d decoupled systems, each of the form:

ξ̂t+1 = (A+ qBC)ξ̂t +Bŵt (13a)

ŷt = Cξ̂t, (13b)

where q is an eigenvalue of Q, and we now have ξ̂t ∈ Rn×1, ŷt ∈ R, and ŵt ∈ R. The performance
metrics ρ and γ of the original system can be obtained by analyzing the simpler system (13). In
particular, the convergence rate ρ is the spectral radius of the system matrix A + qBC. With
regards to the sensitivity γ, we observe that since the covariance of wt was bounded by σ2Id, the
covariance of ŵt is bounded by σ2. Due to the way γ is defined in (9), we can compute γ2 separately
for each decoupled system (13) and sum them together to obtain γ2 for the original system. We
summarize the results in the following proposition.

Proposition 7 (Qm,L analysis, general). Consider an algorithm A = (A,B,C) defined in (6)
satisfying Assumption 2 applied to a strongly convex quadratic f ∈ Qm,L defined in Section 1 with
additive gradient noise with covariance bound σ2Id. The algorithm has convergence rate

ρ(A, Qm,L) = sup
q∈[m,L]

ρ
(
A+ qBC

)
.

If ρ(A, Qm,L) < 1, the algorithm has sensitivity

γ(A, Qm,L, σ2) = sup
q∈[m,L]

√
σ2d · (BTPqB),

where Pq is the solution to the linear equation (A+ qBC)TPq(A+ qBC)− Pq + CTC = 0.

Here, ρ(·) denotes the spectral radius (largest eigenvalue magnitude). Results similar to Propo-
sition 7 have appeared in the context of algorithm analysis for quadratic functions in [5, 31], and
make use of the fact that the sensitivity γ is equivalent to the H2 norm, which can be computed
using a Lyapunov approach.

The expressions in Proposition 7 may be difficult to evaluate if the matrices (A,B,C) are large3.
Fortunately, the sizes of these matrices only depend on the state dimension n, which is typically
small (n ≤ 2 for all methods in Table 1). The dimension d of the function domain does not appear
in the expression for ρ, and only appears as a proportionality constant in the expression for γ.

3.2 Algorithm design for Qm,L

For strongly convex quadratic functions, first-order methods can achieve exact convergence in d
iterations, where d is the dimension of the domain of f . One such example is the Conjugate
Gradient (CG) method [36, Thm. 5.4]. However, when the number of iterations t satisfies t < d,
exact convergence is not possible in general. Nesterov’s lower bound [35, Thm. 2.1.13] demonstrates
that for any t ≥ 0, one can construct a function f ∈ Qm,L with domain dimension d > t such that:

‖yt − y?‖ ≥
(√

L−√m√
L+
√
m

)t
‖y0 − y?‖. (14)

3Neither ρ(A+ qBC) nor Pq are convex functions of q in general.

13



This lower bound holds for any first-order method such that yt is a linear combination of y0 and past
gradients ∇f(y0), . . . ,∇f(yt−1). This class includes not only CG but also methods with unbounded
memory.

In the regime t < d, the CG method matches Nesterov’s lower bound [36, Thm. 5.5] and is therefore
optimal in terms of worst-case rate. However, it is not is not clear how CG should be adjusted to
be robust in the presence of additive gradient noise, since it has no tunable parameters.

The Heavy Ball method (3), when tuned as in Table 1, also matches Nesterov’s lower bound when
applied to the function class Qm,L [37, §3.2.1], but has a simpler implementation than CG: its
updates are linear and its parameters are constant.

We adopted the three-parameter class (α, β, η) described in Section 2.2 as our search space for
optimized algorithms because the Heavy Ball method is a special case of this family and Heavy
Ball can achieve optimal performance on Qm,L when there is no noise. Substituting the three-
parameter algorithm (10) into Proposition 7, we obtain the following result.

Corollary 8 (Qm,L analysis, reduced). Consider the three-parameter algorithm A = (α, β, η) de-
fined in Section 2.2. For the function class of strongly convex quadratics Qm,L with noise covariance
bound σ2Id, we have

ρ(A, Qm,L) = max
q∈{m,L}

{√
β − αηq if ∆ < 0

1
2

(
|β + 1− αq − αηq|+

√
∆
)

if ∆ ≥ 0
(15)

where ∆ := (β + 1− αq − αηq)2 − 4(β − αηq).

If ρ(A, Qm,L) < 1, we also have

γ(A, Qm,L, σ2) = max
q∈{m,L}

√
σ2dα(1 + β + (1 + 2η)αηq)

q(1− β + αηq)(2 + 2β − (1 + 2η)αq)
. (16)

In Corollary 8, the suprema from Proposition 7 are replaced by a simple maximum; we only need
to check the endpoints of the interval [m,L] because both ρ and γ are quasiconvex functions of q
when n ≤ 2. See Appendix A.1 for a proof.

Our proposed algorithm for the class Qm,L is a special tuning of Heavy Ball, which we named Robust
Heavy Ball (RHB). The RHB algorithm was found by careful analysis of the analytic expressions
for ρ and γ in Corollary 8. The algorithm is described in the following theorem, which we prove in
Appendix A.2.

Theorem 9 (Robust Heavy Ball, RHB). Consider the function class Qm,L and let ρ be a parameter

chosen with
√
L−
√
m√

L+
√
m
≤ ρ < 1. Then, the algorithm A of the form (5) with noise covariance bound

σ2Id and tuning α = 1
m(1− ρ)2, β = ρ2, and η = 0 achieves the performance metrics

ρ(A, Qm,L) = ρ, γ(A, Qm,L, σ2) =
σ
√
d

m

√
1− ρ4

(1 + ρ)4
.
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Although we set out to design an algorithm in the three-parameter class (α, β, η), it turns out that
Pareto-optimal algorithms can be found with η = 0 (Heavy Ball). In other words, it is unnecessary
to use a nonzero η when optimizing over the class Qm,L.

If we choose the smallest possible ρ =
√
L−
√
m√

L+
√
m

(fastest possible convergence rate), then we recover

Polyak’s tuning of HB, whose convergence rate matches Nesterov’s lower bound. It is straightfor-
ward to check that γ is a monotonically decreasing function of ρ, so as the convergence rate slows
down (ρ increases), the algorithm becomes less sensitivity to noise (γ decreases).

4 One-point strongly convex functions

We now consider the class Sm,L of functions satisfying the one-point strong convexity condition:(
∇f(y)−m (y − y?)

)T(
L (y − y?)−∇f(y)

)
≥ 0 for all y ∈ Rd.

If we view y and ∇f(y) as row vectors instead, this condition can be conveniently rewritten as the
trace of a quadratic form:

tr

[
y − y?
∇f(y)

]T [−2mL m+ L
m+ L −2

] [
y − y?
∇f(y)

]
≥ 0 for all y ∈ R1×d. (17)

Functions f ∈ Sm,L are not necessarily convex, yet first-order methods can still achieve linear
convergence rates over this function class [33].

4.1 Performance bounds for Sm,L

The set Sm,L is much larger than Qm,L and not readily parameterizable, so we adopt the approach
of looking for a Lyapunov function to certify convergence and robustness properties.

To certify convergence, we adopt the approach used in [26] for so-called pointwise constraints. The
goal is to find a Lyapunov function, which is a function V : Rn → R that satisfies the following
conditions for all trajectories of the noise-free (σ = 0) algorithm:

• Lower bound condition: V (ξt) ≥ ‖ξt − ξ?‖2

• Decrease condition: V (ξt+1) ≤ ρ2V (ξt) for some fixed ρ > 0

These conditions imply that ‖ξt − ξ?‖2 ≤ V (ξt) ≤ ρ2tV (ξ0) and therefore provide a way to certify
convergence with a given rate ρ. Assuming V is a positive semidefinite quadratic function allows
the search for a Lyapunov function to be cast as a semidefinite program and solved efficiently.

To certify robustness, we adopt the approach from [31, Lem. 1]. A more general version of this
approach was developed in [29] and a similar approach is used in [5] to obtain performance bounds
that combine both ρ and γ into a single bound. The goal is again seek a function V : Rn → R, but
with slightly different conditions. For all trajectories of the algorithm, we require:

• Lower bound condition: EV (ξt) ≥ 0

• Increment condition: EV (ξk+1)− EV (ξk) + E ‖yt − y?‖2 ≤ γ2 for some fixed γ > 0
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These conditions imply that 0 ≤ 1
T EV (ξT ) ≤ 1

T EV (ξ0) +E
∑T−1

t=0 ‖yt − y?‖2 ≤ γ2 and therefore if
we let T →∞ we have that γ is an upper bound on the senstivity to gradient noise.

Remark 10. The approach to analyzing algorithms for Qm,L presented in Section 3 can also be
viewed as searching for a quadratic Lyapunov function. The only difference is that for Qm,L, we
find a separate Lyapunov function for each possible f (each possible eigenvalue q) whereas for Sm,L,
we will find a common Lyapunov function that holds for all f ∈ Sm,L.

Collecting the results above, we obtain the following semidefinite characterization of the perfor-
mance bounds for Sm,L. A proof is provided in Appendix A.3.

Lemma 11 (Sm,L analysis). Consider an algorithm A = (A,B,C) defined in (6) satisfying As-
sumption 2 applied to a function f ∈ Sm,L defined in Section 1 with additive gradient noise with co-
variance bound σ2Id. The algorithm satisfies the following convergence rate and robustness bounds.

1) If there exists a P � In and λ ≥ 0 such that[
A B
I 0

]T [
P 0
0 −ρ2P

] [
A B
I 0

]
+ λ

[
C 0
0 1

]T [−2mL m+ L
m+ L −2

] [
C 0
0 1

]
� 0, (18)

then ρ(A, Sm,L) ≤ ρ.

2) If there exists a P � 0 and λ ≥ 0 such that[
A B
I 0

]T [
P 0
0 −P

] [
A B
I 0

]
+ λ

[
C 0
0 1

]T [−2mL m+ L
m+ L −2

] [
C 0
0 1

]
+

[
CTC 0

0 0

]
� 0, (19)

then γ(A, Sm,L, σ2) ≤
√
σ2d · (BTPB).

Both bounds in Lemma 11 can be evaluated and optimized efficiently. For each fixed ρ > 0,
Eq. (18) is a linear matrix inequality in the variable P and thus amenable to convex programming.
A bisection search on ρ can then be used to find the smallest certifiable bound on ρ(A, Sm,L).
Eq. (19) is also linear in P and λ. Moreover, BTPB is a linear function of P , so the problem of
finding the least upper bound on γ(A, Sm,L, σ2) is also a LMI. In general, the (P, λ) that yields the
smallest feasible ρ in (18) will be different from the (P, λ) that yields the smallest feasible γ in (19).

While LMIs tend to scale poorly to large problem instances, we note that the sizes of (18) and (19)
depend only on n, which is typically small. The LMIs in Lemma 11 also depend on σ and d in the
same way as they do in Proposition 7 for the function class Qm,L.

Remark 12. Since Qm,L ⊆ Sm,L, we expect that if the conditions (18) and (19) in Lemma 11
hold, then so should the conditions of Proposition 7. We prove this result in Appendix A.4.

4.2 Algorithm design for Sm,L

For the case with no noise, it is well-known that Gradient Descent with stepsize α = 2
L+m achieves

a convergence rate ρ = L−m
L+m for quadratic functions Qm,L. Substituting GD with this stepsize

into (18), we find that the LMI is satisfied (the left-hand side is identically zero). Therefore, GD
with this stepsize achieves the same rate for Sm,L and consequently Fm,L as well, since Qm,L ⊆
Fm,L ⊆ Sm,L. It was also shown in [27] that this ρ cannot be improved in the sense that no solution

16



to (18) for any algorithm of the form (6) satisfying Assumption 2 can have a faster worst-case
convergence rate. Therefore, we begin by characterizing the convergence–sensitivity trade-off for
GD on the class Sm,L. In keeping with using ρ as a parameter as we did with RHB (Theorem 9),
we have the following result, which we prove in Appendix A.5.

Theorem 13 (Gradient Descent, GD). Consider the function class Sm,L and let ρ be a parameter
chosen with L−m

L+m ≤ ρ < 1. Then, the algorithm A of the form (5) with noise covariance bound

σ2Id and tuning α = 1
m(1− ρ), β = 0, and η = 0 achieves the performance metrics

ρ(A, Sm,L) = ρ, γ(A, Sm,L, σ2) =
σ
√
d

m

√
1− ρ
1 + ρ

.

Although it is shown in [27] that using an algorithm with more states (larger n) cannot produce a
better convergence rate ρ, these results assume no noise. We will show that even though ρ cannot
be improved by adding more states to GD in the noiseless case, algorithms with more states can
achieve a superior trade-off between ρ and γ in the presence of noise. To this effect, we adopt
the three-parameter class (α, β, η) described in Section 2.2 and demonstrate that carefully chosen
parameters can produce strictly better performance than GD.

Finding a Pareto-optimal algorithm for Sm,L is more challenging than for Qm,L because the char-
acterization of ρ and γ in (18)–(19) is implicit. Since semidefinite constraints are representable as
a semialgebraic set (a finite set of polynomial equalities and inequalities), it is possible, in prin-
ciple, to eliminate (P, λ) using tools from algebraic geometry. However, the resulting algebraic
expressions will typically have large degree, making them impractical to find or use. The RGD
algorithm described in Theorem 14 is a nice compromise because its parameters have relatively
simple algebraic forms and its performance is indistinguishable from that of the optimal algorithm.

The following theorem describes a 1-parameter family of algorithms that is guaranteed to perform
strictly better than GD on the class Sm,L, and the proof is in Appendix A.6.

Theorem 14 (Robust Gradient Descent, RGD). Consider the function class Sm,L, and let ρ be a
parameter chosen with L−m

L+m ≤ ρ < 1. Then, the algorithm A of the form (5) with tuning

(1− ρ)2

m
≤ α ≤ 1− ρ2

m
, η =

β − ρ
mα

+
ρ

1− ρ,

β =
ρ
(
2m2α2L−mα(1− ρ)(L(3− ρ) +m(1− 3ρ)) + (L+m)(1− ρ)4

)
(L−m)(1− ρ) ((1− ρ)3 −mα(1 + ρ))

achieves the performance metric ρ(A, Sm,L) = ρ. Moreover, for all L−m
L+m < ρ < 1, and for all ε > 0

sufficiently small, using the stepsize α = 1
m(1 − ρ)2 + ε yields γ(A, Sm,L, σ2) < σ

√
d

m

√
1−ρ
1+ρ , so the

sensitivity bound for RGD is strictly better than that of GD in Theorem 13.

Remark 15. When α is chosen as small as possible, α = 1
m(1 − ρ)2, this leads to β = ρ and

η = ρ
1−ρ . By Proposition 6, this is equivalent to GD with stepsize 1

m(1 − ρ). In other words, we
recover GD precisely as in Theorem 13. As we increase α and adjust β and η as in Theorem 14, we
obtain algorithms that are different from GD yet achieve the same convergence rate ρ. The second
part of Theorem 14 states that the additional degree of freedom allows us to optimize γ while ρ stays
the same. It is always possible to tune RGD so that it strictly outperforms GD.
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Although RGD in Theorem 14 is only partially specified (α is only given as a range), RGD can be
efficiently optimized using a 1-D derivative-free method such as Golden Section Search or the Brent–
Dekker method [25]. Given a fixed convergence rate ρ, for any choice of α ∈

[
1
m(1− ρ)2, 1

m(1− ρ2)
]

we can compute β and η via Theorem 14, then minimize γ subject to the LMI (19) from Lemma 11.

The result of optimizing RGD is shown in Fig. 3. We consider cases S1,2 and S1,10. These plots
support Theorem 14 by providing empirical evidence that RGD can be tuned to achieve better
noise sensitivity (smaller γ) than GD for the same worst-case convergence rate ρ. Recall from
Proposition 6 that when β = η

1+η , we recover Gradient Descent. The parameter plots (second row
of Fig. 3) reveal that optimized RGD becomes more similar to GD as L/m gets larger.
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Figure 3: Robust Gradient Descent (RGD) described in Theorem 14. The left column is
for the function class S1,2, and the right column for S1,10. The first row shows how choosing
α ∈

[
1
m (1− ρ)2, 1

m (1− ρ2)
]

for RGD can lead to smaller sensitivity γ (solid lines) compared
to ordinary GD (dashed lines). The second row shows the range of admissible α values for
RGD (shaded region). The solid lines indicate the parameters (α, β, η) that minimize γ in
RGD for each value of the convergence rate ρ.

A natural question to ask is whether the optimal α and corresponding γ bound can be computed
analytically for RGD. This is possible in principle, but the solution is too complex to be practical.
Starting from the end of the proof of Theorem 14 (Appendix A.6), we can substitute the expressions
for β and η into (19), solve for P , and use the stationarity of γ to find a first-order optimality
condition for α. Unfortunately, this condition is a polynomial equation in (α, ρ) with thousands of
terms whose leading term in α has degree 224. Thus, it is far more efficient to use a line search to
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optimize α than to compute it analytically.

5 Smooth strongly convex functions

We now consider the class Fm,L of strongly convex functions whose gradient is Lipschitz continuous.
A useful characterization of this function class is given by the interpolation conditions, which
appeared in [40, Thm. 4]. We state the result here, rephrased to match our notation.

Proposition 16 (Interpolation conditions for Fm,L). Let y1, . . . , yk ∈ R1×d and u1, . . . , uk ∈ R1×d

and f1, . . . , fk ∈ R. The following two statements are equivalent.

1) There exists a function f ∈ Fm,L such that f(yi) = fi and ∇f(yi) = ui for i = 1, . . . , k.

2) For all i, j ∈ {1, . . . , k},

tr
(
uTi (yi − yj)

)
+

1

2 (L−m)
tr

[
yi − yj
ui − uj

]T [−mL m
m −1

] [
yi − yj
ui − uj

]
− (fi − fj) ≥ 0. (20)

If we consider (20) with (i, j) 7→ (i, ?) and (i, j) 7→ (?, i), and sum the resulting two inequalities,
then the fi − f? terms cancel and we recover (17). This verifies the fact that Fm,L ⊆ Sm,L.

5.1 Performance bounds for Fm,L

Similar to the case Sm,L, the class of functions Fm,L is not readily parameterizable, so we will
again adopt a Lyapunov approach to certify performance bounds. Since Fm,L ⊆ Sm,L, we could use
Lemma 11 to obtain upper bounds on ρ and γ. However, these bounds would be loose in general
because they do not take into account all of the inequalities in (20). To obtain tighter bounds on ρ
and γ for Fm,L, we use a lifting approach that allows the Lyapunov function to depend on a finite
history of past algorithm iterates and function values.

Lifted dynamics. The main idea is to lift the state to a higher dimension so that we can use
more of the interpolation conditions in searching for a Lyapunov function. We denote the lifting
dimension by ` ≥ 0, which dictates the dimension of the lifted state, and we use bold to indicate
quantities related to the lifted dynamics.

Given a trajectory of the system, we define the following augmented vectors, each consisting of
`+ 1 consecutive iterates of the system. Recall our convention that algorithm inputs and outputs
ut, yt are row vectors:

yt :=

 yt − y?
...

yt−` − y?

 ∈ R(`+1)×d, ut :=

 ut − u?
...

ut−` − u?

 ∈ R(`+1)×d, f t :=

 f t − f?
...

f t−` − f?

 ∈ R`+1. (21)

Also, define the truncation matrices Z,Z+ ∈ R`×(`+1) as

Z+ :=
[
I` 0`×1

]
and Z :=

[
0`×1 I`

]
. (22)
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Multiplying an augmented vector on the left by Z removes the most recent iterate at time t, while
multiplication by Z+ removes the last iterate at time t − `. Using these augmented vectors, we
then define the augmented state as

xt :=

ξt − ξ?Zyt

Zut

 ∈ R(n+2`)×d (23)

which consists of the current state ξt as well as the ` previous inputs yt−1, . . . , yt−` and outputs
ut−1, . . . , ut−` of the original system. Since the dynamics of this augmented state must be consistent
with those of the original system, the associated augmented dynamics for the state xt with inputs
(ũt, wt), which is the same as in (6), and augmented outputs (yt,ut) are

xt+1 =

 A 0 0
Z+e1C Z+Z

T 0
0 0 Z+Z

T


︸ ︷︷ ︸

A

xt +

 B
0

Z+e1


︸ ︷︷ ︸

B

ũt +

B0
0


︸ ︷︷ ︸
H

wt, (24a)

[
yt

ut

]
=

[
e1C ZT 0

0 0 ZT

]
︸ ︷︷ ︸

C

xt +

[
0
e1

]
︸︷︷︸
D

ũt, (24b)

where e1 = (1, 0, . . . , 0) ∈ R`+1. We can recover the iterates of the original system by projecting
the augmented state and the input as

ξ̃t =
[
In 0n×(2`+1)

]︸ ︷︷ ︸
X

[
xt

ũt

]
, ỹt =

[
C 01×(2`+1)

]︸ ︷︷ ︸
Y

[
xt

ũt

]
, ũt =

[
01×(n+2`) 1

]︸ ︷︷ ︸
U

[
xt

ũt

]
. (25)

State reduction for the noise-free case. When there is no noise (wt = 0), the augmented
state (23) has linearly dependent rows. This leads to the definition of a reduced state xtr ∈ R(n+`)×d

xt =

 ξ̃t

Zyt

Zut

 =



A` B AB · · · A`−1B

CA`−1 0 CB · · · CA`−2B
... 0

. . .
...

CA
. . . CB

C 0

0`×1 I`


[
ξ̃t−`

Zut

]
=: Ψxtr. (26)

The associated augmented (noise-free) dynamics for this reduced state are

xt+1
r =

[
A BeT`+1Z

T

0 Z+Z
T

]
︸ ︷︷ ︸

Ar

xtr +

[
0

Z+e1

]
︸ ︷︷ ︸

Br

ũt, (27a)

[
yt

ut

]
=

[
e1CΨ11 + ZTΨ21 e1CΨ12 + ZTΨ22

0 ZT

]
︸ ︷︷ ︸

Cr

xtr +

[
0
e1

]
︸︷︷︸
Dr

ũt, (27b)
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where e`+1 = (0, 0, . . . , 1) ∈ R`+1 and Ψij denotes the (i, j) block of the 3 × 2 block-matrix Ψ
defined in (26). We can recover the iterates of the original system as before, using

ξ̃t =
[
Ψ11 Ψ12 0n×1

]︸ ︷︷ ︸
Xr

[
xtr
ũt

]
, ỹt =

[
CΨ11 CΨ12 0

]︸ ︷︷ ︸
Yr

[
xtr
ũt

]
, ũt =

[
01×(n+`) 1

]︸ ︷︷ ︸
Ur

[
xtr
ũt

]
. (28)

We now develop a version of Proposition 16 that holds for the augmented vectors defined above.
The proof is provided in Appendix A.7.

Lemma 17. Consider a function f ∈ Fm,L, and let y? ∈ R1×d denote the optimizer, u? = 0 ∈ R1×d

the optimal gradient, and f? ∈ R the optimal value. Let yt, . . . , yt−` ∈ R1×d be a sequence of iterates,
and define ut−i := ∇f(yt−i) and f t−i := f(yt−i) for i = 0, . . . , `. Using these values, define the
augmented vectors yt, ut, f t as in (21). Finally, define the index set I := {1, . . . , `+ 1, ?} and let
ei denote the ith unit vector in R`+1 with e? := 0 ∈ R`+1. Then the inequality

tr

[
yt

ut

]T
Π(Λ)

[
yt

ut

]
+ π(Λ)Tf t ≥ 0 (29)

holds for all Λ ∈ R(`+2)×(`+2) such that Λ ≥ 0 (pointwise), where

Π(Λ) =
∑
i,j∈I

Λij

[
−mL (ei − ej)(ei − ej)

T (ei − ej)(mei − Lej)T
(mei − Lej)(ei − ej)

T −(ei − ej)(ei − ej)
T

]
, (30a)

π(Λ) = 2 (L−m)
∑
i,j∈I

Λij (ei − ej). (30b)

Just as in the sector-bounded case, our analysis is based on searching for a function that certifies
either a particular worst-case rate ρ (assuming no noise) or a level of sensitivity γ (assuming noise).
The difference is that the function now depends on the lifted state as well as the augmented vector
of function values, that is, we search for certificates of the form

V (x,f) := tr
(
xTPx

)
+ pTZf . (31)

This is quadratic in the lifted state and linear in the ` previous function values. Here, the lifted
state is either xt defined in (23) or the reduced state xtr defined in (26), depending on whether
there is noise or not, respectively.

The conditions that this certificate must satisfy are then similar to the sector-bounded case. To
certify convergence, we search for a function that satisfies the following conditions for all trajectories
of the noise-free dynamics.

• Lower bound condition: V (xtr,f
t) ≥ ‖ξt − ξ?‖2

• Decrease condition: V (xt+1
r ,f t+1) ≤ ρ2 V (xtr,f

t) for some fixed ρ > 0

These conditions imply that ‖ξt − ξ?‖2 ≤ ρ2t V (x0
r ,f

0), and therefore provide a way to certify
convergence with a given rate ρ. To bound the sensitivity of an algorithm to noise, we search for a
certificate that satisfies the following.
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• Lower bound condition: EV (xt,f t) ≥ 0

• Increment condition: EV (xt+1,f t+1)− EV (xt,f t) + E ‖yt − y?‖2 ≤ γ2 for some fixed γ > 0

These conditions imply that 0 ≤ 1
T EV (xT ,fT ) ≤ 1

T EV (x0,f0) + E
∑T−1

t=0 ‖yt − y?‖2 ≤ γ2 and
therefore if we let T →∞ we have that γ is an upper bound on the senstivity to gradient noise.

Since V is quadratic in the augmented state and linear in the augmented function values, we can
efficiently search for such Lyapunov functions using the following linear matrix inequalities that
make use of the characterization of smooth strongly convex functions in Lemma 17. The proof is
provided in Appendix A.8

Theorem 18 (Fm,L analysis). Consider an algorithm A = (A,B,C) defined in (6) satisfying
Assumption 2 applied to a function f ∈ Fm,L defined in Section 1 with additive gradient noise
with covariance bound σ2Id. Define the truncation matrices in (22), the augmented state space and
projection matrices in (24)–(28), and the multiplier functions in (30). Then the algorithm satisfies
the following convergence rate and robustness bounds.

1) If there exist P = PT ∈ R(n+`)×(n+`) and p ∈ R` and Λ1,Λ2 ≥ 0 and ρ > 0 such that[
Ar Br

I 0

]T [
P 0
0 −ρ2P

] [
Ar Br

I 0

]
+
[
Cr Dr

]T
Π(Λ1)

[
Cr Dr

]
� 0 (32a)

(Z+ − ρ2Z)Tp+ π(Λ1) ≤ 0 (32b)

XT
r Xr −

[
I 0

]T
P
[
I 0

]
+
[
Cr Dr

]T
Π(Λ2)

[
Cr Dr

]
� 0 (32c)

−ZTp+ π(Λ2) ≤ 0 (32d)

then ρ(A, Fm,L) ≤ ρ.

2) If there exist P = PT ∈ R(n+2`)×(n+2`) and p ∈ R` and Λ1,Λ2 ≥ 0 such that[
A B
I 0

]T [
P 0
0 −P

] [
A B
I 0

]
+
[
C D

]T
Π(Λ1)

[
C D

]
+ Y TY � 0 (33a)

(Z+ − Z)Tp+ π(Λ1) ≤ 0 (33b)

−
[
I 0

]T
P
[
I 0

]
+
[
C D

]T
Π(Λ2)

[
C D

]
� 0 (33c)

−ZTp+ π(Λ2) ≤ 0 (33d)

then γ(A, Fm,L, σ2) ≤
√
σ2d · (HTPH).

Remark 19. When the lifting dimension ` is zero, the lifted system is identical to the original
system. In other words, ξ̃t = xt = xtr. The system matrices also satisfy A = A = Ar, and
similarly for B. In this case, the Lyapunov function in (31) is the same as that used for the Sm,L
case, and the analysis reduces to that of Lemma 11. As ` is increased, the LMIs (32) and (33)
have the potential to yield less conservative bounds on ρ and γ, respectively.

Remark 20. In Theorem 18, the LMI (32) has fewer inequalities and variables than the LMI (33)
because it makes use of the reduced state xtr instead of the full state xt. The reduced state can only
be used when computing ρ because this case has no noise.

22



As with the Sm,L LMIs of Lemma 11, both bounds for the class Fm,L in Theorem 18 can be
evaluated and optimized efficiently. Again, the sizes of the LMIs depend only on n and `, which are
typically small. The choice of ` is addressed in Section 5.2 when we present our algorithm design.

5.2 Algorithm design for Fm,L

For the case with no noise, the Triple Momentum (TM) method [42] attains the fastest-known
worst-case rate of ρTM = 1 −

√
m
L over the function class Fm,L. It has recently been shown that

this rate cannot be improved using Zames–Falb multipliers from robust control [38].

There are few examples in the literature of accelerated algorithms that trade off convergence rate
and sensitivity to noise via explicit parameter tuning. One example is the Robust Momentum (RM)
method, proposed in [10], which uses the parameter ρ ∈

[
1−

√
m
L , 1− m

L

]
. When ρ = 1−

√
m
L , RM

recovers TM (fast but sensitive to noise). When ρ = 1− m
L , RM recovers GD with stepsize α = 1

L
(slow, but robust to noise). The RM algorithm was designed for use with multiplicative noise and
does not perform as well with additive noise.

We adopted the three-parameter class (α, β, η) described in Section 2.2 as our search space for
optimized algorithms, because it includes TM and RM as special cases, as well Nesterov’s Fast
Gradient (FG) method, which is a popular choice for this function class. Our proposed algorithm,
which we call the Robust Accelerated Method (RAM), uses a parameter ρ similar to RM to trade
off convergence rate and sensitivity to noise, but achieves better performance than RM in the sense
that it is closer to being Pareto-optimal.

To design RAM, we followed the procedure outlined in Section 1.3. Using the weighted off-by-one
IQC formulation (34) (in the following subsection) parameterized by the matrix Q, the matrix in
the LMI (32a) has rank one, so all of its 2 × 2 minors are zero. Furthermore, the vector in the
inequality (32b) is zero. We then solved this set of polynomial equations for the algorithm stepsizes
and the solution to the LMI, using the values of a numerically-optimized algorithm to guide the
solution process. Our main result concerning RAM is Theorem 21, whose proof is in Appendix A.9.

Theorem 21 (Robust Accelerated Method, RAM). Consider the function class Fm,L, and let ρ be
a parameter chosen with 1−

√
m
L ≤ ρ < 1. Then, the algorithm A of the form (5) with tuning

α =
(1 + ρ)(1− ρ)2

m
, β = ρ

L (1− ρ+ 2ρ2)−m (1 + ρ)

(L−m)(3− ρ)
, η = ρ

L (1− ρ2)−m (1 + 2ρ− ρ2)
(L−m)(3− ρ)(1− ρ2)

achieves the performance metric ρ(A, Fm,L) = ρ.

Remark 22. When the convergence factor ρ is set to its minimum value of 1 −
√

m
L , the Robust

Accelerated Method in Theorem 21 reduces to the Triple Momentum Method (see Table 1).

5.3 Comparison with other approaches

We now compare our analysis in Theorem 18 with several other approaches in the literature for
computing the convergence rate and sensitivity for the function class Fm,L.

One alternative approach is to use integral quadratic constraints [28] from robust control. Consider
the LMI in [26, Eq. 3.8] with the weighted off-by-one IQC in [26, Lemma 10], which is parameterized
by ρ. Feasibility of this LMI certifies that ρ is an upper bound on the convergence rate. Suppose
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that the LMI is feasible for some positive definite Q � 0 (assuming λ = 1 without loss of generality).
Then our analysis LMI (32) has the feasible solution

p = 2 (L−m), Λ1 =

 0 0 0
ρ2 0 0

1− ρ2 0 0

 , Λ2 =

0 0 0
0 0 1
0 0 0

 , and (34a)

P =

[
A B
−LC 1

]T
Q

[
A B
−LC 1

]
− (L−m)m

[
CTC 0

0 0

]
−
[
−mC 1

]T [−mC 1
]
. (34b)

In this case, a Lyapunov function for the system is

V t =

[
x̃t

ζ̃t

]T
Q

[
x̃t

ζ̃t

]
+ 2 (L−m)

(
f̃ t−1 − m

2

∥∥ỹt−1∥∥2)− ∥∥ũt−1 −mỹt−1∥∥2 (35)

where ζ̃t := ũt−1 − Lỹt−1. Therefore, using the weighted off-by-one IQC can be interpreted as
searching over this restricted class of Lyapunov functions. Even though our analysis for computing
the convergence rate in Theorem 18 is more general, the weighted off-by-one IQC formulation
appears to be general enough to prove tight results. For example, while RAM was designed using
the more general analysis, its Lyapunov function has the special form (35); see Appendix A.9.

In the recent work [29], Zames–Falb multipliers [44] are used to formulate LMIs for computing
both the convergence rate and the sensitivity (the weighted off-by-one IQC is a special case of the
more general Zames–Falb multipliers). Just as with the weighted off-by-one IQC, using general
Zames–Falb multipliers can also be interpreted as searching over a restricted class of Lyapunov
functions, although a detailed comparison is beyond the scope of this work.

While the weighted off-by-one IQC formulation appears to achieve tight bounds on the convergence
rate, computing tight bounds on the sensitivity requires the more general LMI (33); see Table 3.

6 Numerical validation

In this section, we use numerical experiments to verify that our algorithm designs: achieve a near-
optimal trade-off between convergence rate and noise robustness, have optimal asymptotic conver-
gence, use an adequate number of parameters (they are neither under- nor over-parameterized),
and outperform popular iterative schemes when applied to a worst-case test function.

6.1 Empirical verification of near-optimality

The main results of the previous sections provided means to efficiently compute upper bounds on
the worst-case convergence rate ρ and sensitivity γ for any algorithm in our three-parameter family
A = (α, β, η). We also provided near-optimal designs for the function classes Qm,L, Sm,L, and
Fm,L. Table 2 summarizes these results.

To empirically validate the near-optimality of our designs, we can perform a brute-force search over
algorithms (α, β, η) and make a scatter plot of the performance (ρ, γ) to see where our designs lie
compared to the Pareto-optimal front. To facilitate sampling, the following result provides bounds
on admissible tuples (α, β, η).
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Table 2: Summary of analysis and design results from Sections 3 to 5.

Function class Analysis result (ρ and γ) Algorithm design

Qm,L (strongly convex quadratics), Section 3, Corollary 8 RHB, Theorem 9
Sm,L (one-point strong convexity), Section 4, Lemma 11 RGD, Theorem 14
Fm,L (strong convexity) Section 5, Theorem 18 RAM, Theorem 21

Lemma 23 (algorithm parameter restriction). Consider the three-parameter algorithm A = (α, β, η)
defined in Section 2.2. Let F ∈ {Qm,L, Fm,L, Sm,L}. If ρ(A,F) < 1, then:

0 < α <
4

L
,

−2

L−m < αη <
2

L−m, and

{
−1 + L(αη) < β < 1 +m(αη) if αη ≥ 0

−1 +m(αη) < β < 1 + L(αη) if αη < 0.

From Lemma 23, we see that (α, αη, β) each have finite ranges. So a convenient way to grid
the space of possible (α, β, η) values is to first grid over α, then αη, then β, in a nested fashion,
extracting the associated (α, β, η) values at each step. Due to the multiplicative nature of the
parameter α, we opted to sample α logarithmically in the range

[
10−5, 4

L

]
, but to sample αη and

β linearly in their associated intervals.

Strongly convex quadratics (Qm,L). We show our brute-force search for the class Qm,L in
Fig. 4 for Q1,10 and Q1,100. For this figure, we used the sampling approach described in Lemma 23
with 500× 201× 200 samples for (α, αη, η).

Figure 4: Plot of γ2 vs. ρ2 for algorithms applied to the function class Q1,10 (left panel)
and Q1,100 (right panel), found using Corollary 8. Each point in the point cloud corresponds
to an algorithm (α, β, η). The Pareto-optimal front coincides with the Robust Heavy Ball

method (Theorem 9), tuned using ρ ∈
[√

L−√m√
L+
√
m
, 1
]

to mediate the trade-off.

In Fig. 4, each algorithm (α, β, η) corresponds to a single gray dot4. The curve labeled RHB shows
each possible tuning as we vary the parameter ρ. We observe that RHB perfectly traces out the

4We opted to plot γ2 vs. ρ2 rather than γ vs. ρ because the former leads to a convex feasible region that looks
more like conventional Pareto trade-off plots.
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boundary of the point cloud, which represents the Pareto-optimal algorithms. In other words, for a
fixed convergence rate ρ, RHB with parameter ρ achieves this rate and is also as robust as possible
to additive gradient noise (smallest γ).

Fig. 4 reveals that Gradient Descent (GD) with 0 < α < 2
L+m is outperformed by by RHB on the

function class Qm,L. We also plot the performance of GD for α > 2
L+m , which is even worse as this

leads to slower convergence and increased sensitivity. Fig. 4 also reveals that the Fast Gradient
(FG) method is strictly suboptimal compared to RHB, although the optimality gap appears to
shrink as L/m gets larger.

One-point strong convexity (Sm,L). We show our brute-force search for the class Sm,L in
Fig. 5 for Q1,2 and Q1,10. For this figure, we used the same sampling approach as in Fig. 4, but
with 200× 51× 50 samples this time.

Figure 5: Plot of γ2 vs. ρ2 for algorithms applied to the function class S1,2 (left panel)
and S1,10 (right panel), found using Lemma 11. Each point in the point cloud corresponds
to an algorithm (α, β, η). GD is strictly suboptimal, and the Pareto-optimal front closely
matches RGD (Theorem 14), tuned using ρ ∈

[
L−m
L+m , 1

]
to mediate the trade-off and with

α optimized via line search for each ρ.

We used smaller L values for this function class in order to highlight the performance gap between
our proposed Robust Gradient Descent (RGD) and ordinary Gradient Descent (GD). As L/m gets
larger, this gap shrinks and the performance of RGD becomes indistinguishable from that of GD.
For clarity, we also omitted the plots for GD with α > 2

L+m .

Although the numerical evidence in Fig. 5 suggests that RGD is Pareto-optimal, it is not. RGD
is strictly suboptimal, but the optimality gap is so small that it is not visible on the plot. As an
example, consider RGD with the parameter choice ρ = 0.9, m = 1, L = 2, d = 1, σ = 1. Using a
line search to optimize the RGD method from Theorem 14 (finding the α that yields the smallest
γ), we obtain: (α, β, η) = (0.022382, 0.713410, 0.663514). The associated performance found via
Lemma 11 with a bisection search to optimize ρ yields: ρ = 0.9000 and γ = 0.1981 (all digits
significant). We applied the Nelder–Mead algorithm directly on the parameters (α, β, η) to see if
RGD was locally optimal. We found that using (α, β, η) = (0.022264, 0.705943, 0.209322) yielded
the performance ρ = 0.9000 and γ = 0.1974 (all digits significant). This numerically obtained
algorithm is strictly superior (same ρ but smaller γ) to RGD.
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Smooth strongly convex functions (Fm,L). We show our brute-force search for the class Fm,L
in Fig. 6 for F1,10 and F1,100. For this figure, we used the same sampling approach as in Figs. 4
and 5, with 200× 51× 50 samples. When applying Theorem 18, we used a lifting dimension ` = 1
to compute ρ and ` = 6 to compute γ. For more details on these choices, see Appendix B.

Figure 6: Plot of γ2 vs. ρ2 for algorithms applied to the function class F1,10 (left panel)
and F1,100 (right panel), found using Theorem 18. Each point in the point cloud corresponds
to an algorithm (α, β, η). We used a lifting dimension ` = 1 for computing ρ and ` = 6
for computing γ. RM and GD are strictly suboptimal, and the Pareto-optimal front closely
matches RAM (Theorem 21), tuned using ρ ∈

[
1−

√
m
L , 1

]
to mediate the trade-off.

The Robust Momentum (RM) method from [10] interpolates between TM and GD with α = 1
L

and does trade off convergence rate for sensitivity, but it is strictly outperformed by our proposed
Robust Accelerated Method (RAM). The gap in performance between RM and RAM appears to
shrink as L/m gets larger.

As with RGD, Fig. 6 suggests that RAM is Pareto-optimal. However, RAM is strictly suboptimal5.
Suboptimality becomes most apparent when L/m is small and ρ is close to 1. For example, consider
RAM with the parameter choice ρ = 0.9, m = 1, L = 2, d = 1, σ = 1, which corresponds to
(α, β, η) = (0.019, 0.66,−3.631579). Solving the LMIs in Theorem 18 yields the bounds (ρ, γ) =
(0.9000, 0.22057). However, if we change η and use the tuning (α, β, η) = (0.019, 0.66, 0.00) instead,
we obtain (ρ, γ) = (0.9000, 0.1676), so ρ is the same but γ is strictly better. Larger optimality gaps
can be found by making L/m even closer to 1, however such cases are not practical.

Remark 24. The point cloud in the left panel of Fig. 6 (L/m = 10) is denser than that of the right
panel (L/m = 100), even though the same number of sample points is used in both experiments.
The reason for this difference is that the point cloud on the right is spread over a relatively larger
range of γ values (we truncated the vertical axis). In other words, desirable algorithm tunings are
harder to find by random sampling when L/m is larger.

6.2 Verification of optimal asymptotic convergence rate

Figs. 4 to 6 show that as ρ → 1, we have γ → 0. So in the limit of slow convergence, we obtain
the desirable behavior of complete noise attenuation. However, these trade-off plots give limited

5Suboptimality is difficult to verify for the function class Fm,L since the results depend on the lifting dimension
`. However, we performed extensive numerical computations to ensure that ` is sufficiently large, see Section 6.
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insight on the asymptotic convergence rate as ρ → 1. As mentioned in Section 1.2, the fastest
possible convergence rate for the mean squared error of any algorithm is 1/t. Therefore, for any
fixed initial condition and objective function, there must exist some constant c0 > 0 such that

E ‖yt − y?‖2 > c0
t+ 1

for all t ≥ 0. (36)

We are interested in the asymptotic behavior (ρ, γ)→ (1, 0). The convergence behavior of any fixed
tuning will look like E ‖yt − y?‖2 = max{c21γ2ρ2t, γ2} (as in Fig. 1), where c1 > 1 is determined
by the initial condition. The phase transition occurs when c1ρ

t = 1. In other words, t = log c1
− log ρ .

Substituting t into (36) and rearranging the inequality assuming 0 < ρ < 1, we obtain

γ2
( −1

log ρ

)
>

c0
log c1 − log ρ

ρ→1−−−→ c0
log c1

> 0.

The quantity −1/ log ρ may be interpreted as the iteration complexity ; it is proportional to the
number of iterations required to guarantee that the error is less than some prescribed amount.
For an algorithm with optimal scaling as ρ → 1, a log-log plot of γ2 vs. −1/ log ρ is therefore a
line of slope −1 as ρ → 1. As shown in Fig. 7, our algorithm designs appear to have optimal or
near-optimal scaling as ρ→ 1. An asymptotic slope steeper than −1 is not possible, for then a rate
faster than 1/t could be achieved with a suitably chosen piecewise constant ρ schedule.
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Figure 7: The same data as Fig. 2, except we plot iteration complexity −1/ log(ρ) on the
x-axis and the plot is on a log-log scale. All proposed algorithms have a slope of −1, which
matches the optimal rate of 1/t achievable by gradient descent with decaying stepsize.

For cases where we have an explicit formula for γ in terms of ρ such as for GD (Theorem 13) and
RHB (Theorem 9), we can evaluate limρ→1− γ

2(−1/ log ρ) and as expected, it is finite in both cases,
equal to 1

2 and 1
4 , respectively.

6.3 Justification for the three-parameter algorithm family

A natural question to ask is whether something as general as our three-parameter family (5) is
needed to achieve optimal Pareto-optimal designs. Several recent works have restricted their at-
tention to optimizing algorithms with two parameters (α, β) in either Nesterov’s FG or Polyak’s
HB form [5,20,31]. From our results in Sections 3.2 and 6.1, the HB form is sufficient for the class
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Qm,L. However, neither the HB or the FG forms are sufficient for Fm,L. While some algorithms
in these restricted classes achieve acceleration, they are incapable of obtaining the Pareto-optimal
trade-off between convergence rate and sensitivity, as illustrated in Fig. 8 (left panel). Indeed, even
when there is no noise, no algorithm in the FG or HB families achieves the optimal convergence
rate for the function class Fm,L, which is attained by Van Scoy et al.’s Triple Momentum (TM)
method [42].

Alternatively, we could ask whether three parameters are enough, and whether adding more could
lead to further improvements. As explained in Section 2.2, any algorithm with n = 2 states can
be represented by three parameters. In general, we would need 2n− 1 parameters to represent an
algorithm with n states. In principle, our methodology of Section 1.3 can still be applied, but the
associated semidefinite programs become substantially more difficult to solve and we were unable
to find better designs.

An alternative approach was presented in the recent work [29], which uses a convex synthesis
procedure and bilinear matrix inequalities to numerically construct algorithms that trade off con-
vergence rate and sensitivity. As shown in Fig. 8 (right panel), these synthesized algorithms are
strictly suboptimal compared to our method RAM, despite using up to n = 6 states.
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Figure 8: Left: Regions of the (ρ,γ) trade-off space for F1,100 covered by the three-
parameter family (α, β, η), the Nesterov (Fast Gradient) family (α, β, β), and the Polyak
(Heavy Ball) family (α, β, 0). The FG and HB families are not expressive enough to capture
the whole trade-off space. Right: Comparison of RAM with the numerically synthesized
algorithms (using a state dimension up to n = 6) from [29] for F1,50. RAM outperforms in
spite of using only two states of memory. We plot log γ vs. ρ to match [29, Fig. 6].

6.4 Simulation of a worst-case test function

We simulated various algorithms on Nesterov’s lower-bound function, which is a quadratic with a
tridiagonal Hessian [35, §2.1.4]. We used d = 100 with m = 1 and L = 10 and initialized each
algorithm at zero. The results are reported in Fig. 9. We tested both a low noise (σ = 10−5,
left column) and a higher noise (σ = 10−2, right column) regime. We recorded the mean and
standard deviation of the error across 100 trials for each algorithm (the trials differ only in the
noise realization).

Fig. 9 shows that our Robust Heavy Ball (RHB) method from Theorem 9 trades off convergence
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Figure 9: Simulations of various algorithms with low noise (σ = 10−5, left column) and
higher noise (σ = 10−2, right column). Each algorithm was simulated on Nesterov’s lower-
bound quadratic function, with m = 1, L = 10, and dimension d = 100. Shaded regions
indicate ±1 standard deviations about the mean across 100 trials (different noise realiza-
tions). Different tunings of our proposed Robust Heavy Ball (RHB) from Theorem 9 yield
an optimal trade-off between convergence rate and steady-state error (sensitivity to noise).
Bottom row: the red curve shows RHB with piecewise constant ρ, where the red dots
indicate switch points.

rate (the slope of the initial decrease) with sensitivity to noise (the value of the steady-state error).
and compares favorably to a variety of other methods. The other methods we tested (first row of
Fig. 9) are generally suboptimal compared to RHB, in the sense that there is some choice of tuning
parameter ρ such that RHB is both faster and has smaller steady-state error.

In addition to gradient descent (GD) and Nesterov’s method (FG), we tested Nonlinear Conjugate
Gradient (NLCG) with Polak-Ribière (PR) update scheme.6 NLCG performs similarly to RHB
with the most aggressive tuning, which is equivalent to the Heavy Ball method. We also tested the
popular quasi-Newton methods [36] Broyden–Fletcher–Goldfarb–Shanno (BFGS) and Symmetric
Rank-One (SR1), which performed strictly worse than RHB. Both NLCG and BFGS involve line
searches. That is, given a current point y ∈ Rd and search direction s ∈ Rd, we must find α ∈ R such

6We also tested other popular NLCG update schemes: Fletcher–Reeves, Hestenes–Stiefel, and Dai–Yuan; all
produced similar trajectories to PR.
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that we minimize f(y+αs). In practice, inexact line searches are performed at each timestep, with
a stopping criterion such as the Wolfe conditions. To show these algorithms in the most charitable
possible light, we used exact line searches but substituted the noisy gradient oracle. Specifically,
with f(y) = 1

2(y − y?)TQ(y − y?), the optimal stepsize is α? = −(sT∇f(y))/(sTQs). We used this
formula, but replaced ∇f(y) by the noisy gradient ∇f(y) + w. In other words, we assumed exact
knowledge of Q but not of y?.

In the second row of Fig. 9, we duplicate the settings of the first row, except plot iterations on a
log scale as in Fig. 1. Here, we also show a hand-tuned version of RHB with piecewise constant
parameter ρ. Every time ρ is changed, we re-initialize the algorithm by setting xt−1 = xt When
the error is large compared to the noise level, the algorithm matches Nesterov’s lower bound (14),
which is the lower bound associated with this particular function that holds for any algorithm when
t < d. When the error is small compared to the noise level, the algorithm matches the asymptotic
lower bound (slope of −1/2) described in Sections 1.2 and 6.2.7

7 Concluding remarks

For each of the function classes Qm,L, Fm,L, and Sm,L, we have provided (i) efficient methods for
computing the convergence rate ρ and noise sensitivity γ for a broad class of first-order methods,
and (ii) Near-Pareto-optimal first-order algorithm designs, each with a single tunable parameter
that directly trades off ρ versus γ.

An interesting future direction is to explore adaptive versions of these algorithms, for example where
the parameter ρ is increased over time. We showed in Fig. 9 that a hand-tuned piecewise constant
version of RHB can match both Nesterov’s lower bound and the gradient lower bound in the
asymptotic regime, so more sophisticated adaptive schemes such as those described in Section 1.2
might also work.

It may also be possible to adjust parameters continually (rather than in a piecewise fashion),
but proving the convergence of adaptive algorithms is generally more challenging. For example,
the well-known ADMM algorithm is often tuned adaptively to improve transient performance,
even when convergence guarantees only hold for fixed parameters [7, §3.4.1.]. Nevertheless, LMI-
based approaches have been successfully used to prove convergence of algorithms with time-varying
parameters [18,21].

Another interesting open question is whether our analysis is tight. For the function class Fm,L, our
bounds depend on the lifting dimension `, and it is an open question how large ` needs to be in
order to obtain tight bounds on ρ and γ.
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H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[20] E. Ghadimi, H. R. Feyzmahdavian, and M. Johansson. Global convergence of the heavy-ball
method for convex optimization. In 2015 European Control Conference (ECC), pages 310–315,
2015.

[21] B. Hu and L. Lessard. Dissipativity theory for Nesterov’s accelerated method. In International
Conference on Machine Learning, pages 1549–1557, Aug. 2017.

[22] B. Hu, P. Seiler, and L. Lessard. Analysis of biased stochastic gradient descent using sequential
semidefinite programs. Mathematical Programming, 187(0):383–408, Mar. 2020.

[23] P. Jain, S. M. Kakade, R. Kidambi, P. Netrapalli, and A. Sidford. Accelerating stochastic
gradient descent for least squares regression. In S. Bubeck, V. Perchet, and P. Rigollet, editors,
Proceedings of the 31st Conference On Learning Theory, volume 75 of Proceedings of Machine
Learning Research, pages 545–604. PMLR, 06–09 Jul 2018.

[24] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 26. Curran Associates,
Inc., 2013.

[25] M. J. Kochenderfer and T. A. Wheeler. Algorithms for optimization. MIT Press, 2019.

[26] L. Lessard, B. Recht, and A. Packard. Analysis and design of optimization algorithms via
integral quadratic constraints. SIAM Journal on Optimization, 26(1):57–95, 2016.

[27] L. Lessard and P. Seiler. Direct synthesis of iterative algorithms with bounds on achievable
worst-case convergence rate. In American Control Conference, July 2020.

[28] A. Megretski and A. Rantzer. System analysis via integral quadratic constraints. IEEE Trans-
actions on Automatic Control, 42(6):819–830, 1997.

[29] S. Michalowsky, C. Scherer, and C. Ebenbauer. Robust and structure exploiting optimisa-
tion algorithms: an integral quadratic constraint approach. International Journal of Control,
0(0):1–24, 2020.

[30] P. K. Mogensen and A. N. Riseth. Optim: A mathematical optimization package for Julia.
Journal of Open Source Software, 3(24):615, 2018.

33



[31] H. Mohammadi, M. Razaviyayn, and M. R. Jovanović. Robustness of accelerated first-order
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Stockholm Sweden, Jul 2018. PMLR.

[40] A. B. Taylor, J. M. Hendrickx, and F. Glineur. Smooth strongly convex interpolation and exact
worst-case performance of first-order methods. Mathematical Programming, 161(1-2):307–345,
2017.

[41] M. Udell, K. Mohan, D. Zeng, J. Hong, S. Diamond, and S. Boyd. Convex optimization in
Julia. SC14 Workshop on High Performance Technical Computing in Dynamic Languages,
2014.

[42] B. Van Scoy, R. A. Freeman, and K. M. Lynch. The fastest known globally convergent
first-order method for minimizing strongly convex functions. IEEE Control Systems Letters,
2(1):49–54, 2017.

[43] Wolfram Research, Inc. Mathematica, Version 12.3.1. Champaign, IL, 2021.

[44] G. Zames and P. Falb. Stability conditions for systems with monotone and slope-restricted
nonlinearities. SIAM Journal on Control, 6(1):89–108, 1968.

[45] K. Zhou, J. C. Doyle, and K. Glover. Robust and optimal control. Prentice-Hall, Inc., 1996.

34



A Proofs

A.1 Proof of Corollary 8 (Qm,L analysis, reduced)

Convergence rate. Given a polynomial z2 + a1z + a0 with real coefficients, a necessary and
sufficient condition for its roots to lie inside the unit circle is given by the Jury test [17, §4.5]. In
this case, the Jury test amounts to the inequalities

1 + a1 + a0 > 0, 1− a1 + a0 > 0, −1 < a0 < 1.

Substituting the algorithm form (10) into Proposition 7, we obtain

ρ(A, Qm,L) = sup
q∈[m,L]

ρ

([
β + 1− α(η + 1)q −β + αηq

1 0

])
︸ ︷︷ ︸

φ(q)

(37)

We will prove that the function inside the supremum, φ(q), is quasiconvex [8, §3.4]. The character-
istic polynomial associated with the matrix in (37) is χ(z) = z2 + (α(η+ 1)q−β− 1)z+ (β−αηq).
Applying the Jury test to χ(ρz), we find that φ(q) < ρ if and only if

(1− ρ)(β − ρ) + α(ηρ− η + ρ)q > 0 (38a)

(1 + ρ)(β + ρ)− α(ηρ+ η + ρ)q > 0 (38b)

ρ2 + β − αηq > 0 (38c)

ρ2 − β + αηq > 0 (38d)

The inequalities (38) are linear in q, so the sublevel sets {q | φ(q) < ρ} are open intervals, which
are convex. Therefore, φ is quasiconvex and attains its supremum over q ∈ [m,L] at one of the
endpoints q = m or q = L. The explicit formula for φ(q) can be found by applying the quadratic
formula to find the roots of χ(z).

Sensitivity. Substituting the algorithm form (10) into Proposition 7, we can explicitly solve the
linear equation for Pq in (16) and substitute it into ψ(q) = BTPqB to obtain

ψ(q) =
α(1 + β + (1 + 2η)αηq)σ2

q(1− β + αηq)(2 + 2β − (1 + 2η)αq)

When ρ = 1, the Jury conditions (38) reduce to:

αq > 0 (39a)

2β + 2− α(2η + 1)q > 0 (39b)

1 + β − αηq > 0 (39c)

1− β + αηq > 0. (39d)
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We will prove that when ρ(A, Qm,L) < 1, ψ(q) is a positive and convex function of q. Evaluating
ψ(q) and ψ′′(q) and performing algebraic manipulations, we obtain:

ψ(q) =
α2(2η + 1)2

2(1− β + αηq)(2β + 2− α(2η + 1)q)
+

α2

2αq(αηq − β + 1)
(40a)

ψ′′(q) =
α4(2η + 1)2

(
3(2αη(2η + 1)q − 4βη − β + 1)2 + (4η − β + 1)2

)
4(1− β + αηq)3(2β + 2− α(2η + 1)q)3

+
αq
(

3
(
2αηq + 1− β

)2
+
(
1− β

)2)
4q4(αηq − β + 1)3

(40b)

In the form (40), it is clear that whenever ρ(A, Qm,L) < 1 (i.e., when (39) holds) we have ψ(q) > 0
and ψ′′(q) > 0. So the quantity under the square root in (16) is always positive, and ψ(q) is convex,
so it attains its supremum over q ∈ [m,L] at one of the endpoints q = m or q = L.

A.2 Proof of Theorem 9 (Robust Heavy Ball, RHB)

Applying Corollary 8, substitute α = 1
m(1− ρ)2, β = ρ2, and η = 0 into (15) to obtain

∆ = −(1− ρ)4
( q
m
− 1
)((1 + ρ

1− ρ

)2

− q

m

)
.

Rearranging the inequalities m ≤ q ≤ L and
√
L−
√
m√

L+
√
m
≤ ρ < 1 yields 1 ≤ q

m ≤ L
m ≤

(1+ρ
1−ρ
)2
< ∞.

Thus, we conclude that ∆ ≤ 0 and we have ρ(A, Qm,L) =
√
β = ρ, as required.

Substituting α = 1
m(1 − ρ)2, β = ρ2, and η = 0 into (16), the expression under the square root is

h(q) :=
σ2d(1−ρ)(1+ρ2)

q(1+ρ)(2m−q+2qρ+2mρ2−qρ2) , which is maximized when q = m. To see why, observe that:

h(m)− h(L) =
σ2d(1− ρ)

(
ρ2 + 1

) (
L
m − 1

) ((1+ρ
1−ρ
)2 − L

m

)
Lm(ρ+ 1)3

(
1 +

(1+ρ
1−ρ
)2 − L

m

) ≥ 0

If follows that γ(A, Qm,L, σ2) =
√
h(m) = σ

√
d

m

√
1−ρ4
(1+ρ)4

as required.

A.3 Proof of Lemma 11 (Sm,L analysis)

Consider any trajectory (ξ̃t, ũt, ỹt, wt)t≥0 of the dynamics (6) with wt = 0, where we have shifted
the fixed point as per Lemma 3 and Assumption 2. Multiply the LMI (18) on the left and right by[
(ξ̃t)T (ũt)T

]
and its transpose, respectively, and obtain

(ξ̃t+1)TP ξ̃t+1 − ρ2(ξ̃t)TP ξ̃t + λ

[
ỹt

ũt

]T [−2mL m+ L
m+ L −2

] [
ỹt

ũt

]
� 0

Taking the trace of both sides, defining V (ξ) := tr
(
ξTPξ

)
, and applying (17), we conclude that

V (ξt+1) ≤ ρ2V (ξt). Moreover, since P � CTC, we have V (ξt) ≥ ‖yt − y?‖2. In other words,
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V satisfies the lower bound condition and decrease condition from Section 4.1; it is a Lyapunov
function. Specifically,

‖yt − y?‖2 = ‖Cξ̃t‖2 ≤ V (ξ̃t) ≤ ρ2V (ξ̃t−1) ≤ · · · ≤ ρ2tV (ξ̃0) ≤ λmax(P )ρ2t‖ξ̃0‖2.

Consequently, ‖yt − y?‖ ≤
√
λmax(P )ρt‖ξ0 − ξ?‖ and therefore ρ(A, Sm,L) ≤ ρ.

For the second part, do not restrict wt = 0, multiply the LMI (19) on the left and right by[
(ξ̃t)T (ũt)T

]
and its transpose, respectively, and obtain

(ξ̃t+1 −Bwt)TP (ξ̃t+1 −Bwt)− (ξ̃t)TP ξ̃t + λ

[
ỹt

ũt

]T [−2mL m+ L
m+ L −2

] [
ỹt

ũt

]
+ ‖ỹt‖2 � 0

Taking the trace of both sides, defining V̂ (ξ) := tr
(
ξTPξ

)
, and applying (17), we obtain

V̂ (ξ̃t+1)− V̂ (ξ̃t)− 2 tr
(
Aξ̃t +Bũt

)T
PBwt + ‖ỹt‖2 ≤ tr

(
(wt)TBTPBwt

)
Taking expectations of both sides with respect to w ∼ P, the third term vanishes because of the
independence-across-time assumption and we may bound the right-hand side using the covariance
bound σ2Id. B ∈ Rn×1 so BTPB is a scalar, and we obtain

E V̂ (ξt+1)− E V̂ (ξt) + E‖ỹt‖2 ≤ σ2d (BTPB)

In addition, P � 0 implies that E V̂ (ξt) ≥ 0. Thus V̂ satisfies the lower bound condition and the
increment condition from Section 4.1. Specifically, if we average over t = 0, 1, . . . , T − 1, we obtain

0 ≤ 1

T
E V̂ (ξT ) ≤ 1

T
E V̂ (ξ0) + E

T−1∑
t=0

‖ỹt‖2 ≤ σ2d (BTPB).

Consequently, γ(A, Sm,L,Σ) ≤
√
σ2d (BTPB), as required.

A.4 Proof of Remark 12

Assume (18) holds; multiply by
[
I
qC

]T
and

[
I
qC

]
on the left and right, respectively, and obtain:

(A+ qBC)TP (A+ qBC)− ρ2P + 2λ(L− q)(q −m)CTC � 0

So whenever q ∈ [m,L], we have (A + qBC)TP (A + qBC) � ρ2P . Let µ be an eigenvalue of
(A+ qBC) with eigenvector v. Multiply by v∗ and v on the left and right, respectively, to obtain:(
ρ2 − |µ|2

)
(v∗Pv) ≥ 0. Since P � In, we have v∗Pv > 0 and so |µ| ≤ ρ, and ρ(A+ qBC) ≤ ρ.

Now assume (19) holds. Proceeding in the same fashion as before, we deduce that when q ∈ [m,L]
and ρ(A, Qm,L) < 1, we have

(A+ qBC)TP (A+ qBC)− P + CTC � 0 and γ2 ≤ σ2d(BTPB).

In an effort to find the least upper bound on γ(A, Sm,L, σ2), we consider the optimization problem:

p? = minimize
P�0

BTPB

subject to (A+ qBC)TP (A+ qBC)− P + CTC � 0.
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An upper bound to p? can be found by replacing the semidefinite constraint by an equality. This
is a standard Lyapunov equation and since ρ(A + qBC) < 1, its solution has the explicit form

P =
∑∞

k=0 (A+ qBC)T
k
CTC(A + qBC)k, and therefore p? ≤ BTPB =

∑∞
k=0

[
C(A+ qBC)kB

]2
.

A lower bound to p? can be found via the dual, which is the optimization problem:

d? = maximize
Q�0

CQCT

subject to (A+ qBC)Q(A+ qBC)T −Q+BBT � 0.

A lower bound to d? can be found by replacing the semidefinite constraint by an equality. Then we

have Q =
∑∞

k=0 (A+ qBC)kBBT(A+ qBC)T
k

and then
∑∞

k=0

[
C(A+ qBC)kB

]2
= CQCT ≤ d?.

So by weak duality, we have

∞∑
k=0

[
C(A+ qBC)kB

]2
≤ d? ≤ p? ≤

∞∑
k=0

[
C(A+ qBC)kB

]2
.

It follows that d? = p? and the optimal solution to the primal is achieved when the semidefinite
constraint is at equality. In other words, we recover (A + qBC)TP (A + qBC) − P + CTC = 0 as
in Proposition 7.

A.5 Proof of Theorem 13 (Gradient Descent, GD)

For the case of Gradient Descent, the algorithm parameters from (6) are given by A = C = 1 and
B = −α. So the LMIs (18)–(19) become:[

(1− ρ2)P1 − 2mLλ1 −αP1 + (L+m)λ1
−αP1 + (L+m)λ1 α2P1 − 2λ1

]
� 0, P1 ≥ 1, λ ≥ 0,[

1− 2mLλ2 −αP2 + (L+m)λ2
−αP2 + (L+m)λ2 α2P2 − 2λ2

]
� 0, P2 ≥ 0, λ2 ≥ 0, γ(A, Sm,L, σ2) ≤ σα

√
dP2.

Where P1 and P2 are now scalars. Substituting α = 1
m(1 − ρ), we can satisfy these LMIs using

P1 = P2 = 1
1−ρ2 and λ1 = λ2 = ρ

m(L−m)(ρ+1) . With this solution choice, the two large matrices are
equal to one another and the LMIs simplify to

− L+m

m(L−m)(1 + ρ)

(
ρ− L−m

L+m

)[
m −1
−1 1

m

]
� 0,

1

1− ρ2 ≥ 0,
ρ

m(L−m)(ρ+ 1)
≥ 0.

and this is satisfied for all L−mL+m ≤ ρ < 1. Therefore, ρ(A, Sm,L) ≤ ρ and γ(A, Sm,L, σ2) ≤ σα
√
dP2 =

σ
√
d

m

√
1−ρ
1+ρ . To show that these upper bounds are tight, we will find a matching lower bound by

consider the particular function f ∈ Sm,L defined by f(y) = 1
2m‖y‖2. Since f ∈ Qm,m, we can find

ρ(A, f) and γ(A, f, σ2) by applying Corollary 8 with L = m. This results in the matching lower

bounds ρ = ρ(A, f) ≤ ρ(A, Sm,L) and σ
√
d

m

√
1−ρ
1+ρ = γ(A, f, σ2) ≤ γ(A, Sm,L, σ2).
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A.6 Proof of Theorem 14 (Robust Gradient Descent, RGD)

Define X to be the left-hand side of (18),

X :=

[
A B
I 0

]T [
P 0
0 −ρ2P

] [
A B
I 0

]
+ λ

[
C 0
0 1

]T [−2mL m+ L
m+ L −2

] [
C 0
0 1

]
,

and substitute A,B,C as functions of (α, β, η) using (10), so we have X ∈ R3×3. A feasible solution
to this LMI is given by λ = 1 and P = [ p11 p12p12 p22 ], where

p11 =
−αL(ρ−1)(αm+ρ2−1)−α2m2(ρ+1)+αm(ρ+1)(ρ−1)2+2ρ(ρ−1)4

α2(ρ−1)ρ(αm(ρ+1)+(ρ−1)3) ,

p12 =
αL(ρ−1)(3αm−ρ2+4ρ−3)+α2m2(ρ+1)−αm(3ρ−1)(ρ−1)2−2(ρ−1)4

α2(ρ−1)(αm(ρ+1)+(ρ−1)3) ,

p22 =
αL(−2α2m2−αm(ρ2+3ρ−4)+(ρ−1)2(ρ2−ρ−2))+α2m2(ρ2−5ρ+2)+αm(ρ2+5ρ−4)(ρ−1)2+2(ρ−1)4

α2(ρ−1)(αm(ρ+1)+(ρ−1)3) .

Using Mathematica [43], it is straightforward to verify that this choice satisfies P � 0 and X � 0 for

all choices of (m,L, ρ, α) satisfying 0 < m ≤ L, L−m
L+m < ρ < 1, and (1−ρ)2

m < α < 1−ρ2
m . Therefore,

there exists a positive rescaling of (P, λ) that satisfies the original requirement P � In. So far, we
have shown that ρ(A, Sm,L) ≤ ρ. To prove equality, we proceed as in the proof of Theorem 13.
Again considering the function f(y) = 1

2m‖y‖2 and substituting the algorithm parameters from
Theorem 14, the algorithm dynamics become

ξt+1 = (A+mBC)ξt =

[
1−ρ2−αm

1−ρ −ρ(1−ρ−αm)
1−ρ

1 0

]
ξt.

The eigenvalues of this matrix are ρ and 1−ρ−αm
1−ρ . We see that −ρ ≤ 1−ρ−αm

1−ρ ≤ ρ precisely when
(1−ρ)2
m ≤ α ≤ 1−ρ2

m , and so ρ = ρ(A, f) ≤ ρ(A, Sm,L), as required.

To prove the second part of the theorem, we work with the γ-LMI (19). At optimality, the
LMI is rank-1. Equivalently, all 2 × 2 minors of the LMI vanish. Also, the objective of the
optimization is γ2 = α2P11. Eliminating P from these equations yields a polynomial equation
g(α, β, η,m,L, γ, λ) = 0. Since we are minimizing γ subject to g = 0, the KKT conditions imply
that dg

dλ = 0. Since g and its derivative are both zero, equivalently, the discriminant of g with re-
spect to λ is zero. Now substitute the expressions for β and η from the theorem statement to obtain
an equation of the form Ĵ(α, ρ, γ,m,L) = 0. We would like to show that along solutions of Ĵ = 0,
when m,L, ρ are held fixed, γ is a decreasing function of α near the initial point α = 1

m(1 − ρ)2

and γ = σ
√
d

m

√
1−ρ
1+ρ , which corresponds to GD. Computing total derivatives, we find

dγ

dα
= − Ĵα

Ĵγ
and

d2γ

dα2
= −

ĴααĴ
2
γ − 2Ĵαγ ĴαĴγ + Ĵγγ Ĵ

2
α

Ĵ3
γ

,

where subscripts indicate partial derivatives. Evaluating at the initial point, we obtain

dγ

dα
= 0,

d2γ

dα2
= −

σ
√
dm L+m

L−m (ρ− L−m
L+m)

ρ(1− ρ)7/2(1 + ρ)3/2
< 0.

Therefore, γ is a decreasing function of α in a neighborhood of α = 1
m(1− ρ)2, as required.
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A.7 Proof of Lemma 17

For each i ∈ I, define the vectors ỹi := eTi y
t and ũi := eTi u

t and f̃i := eTi f
t. By definition, the

points (ỹi, ũi, f̃i) are interpolated by the function f ∈ Fm,L, so by Proposition 16 the interpolation
conditions (20) are satisfied. The proof is then completed by noting that the inequality (29) can
be expanded as∑

i,j∈I
Λij

(
−mL‖ỹi − ỹj‖2 + 2 (ỹi − ỹj)(mũi − Lũj)T − ‖ũi − ũj‖2 + 2(L−m)(f̃i − f̃j)

)
≥ 0,

which is a weighted combination of the interpolation conditions, where the interpolation condition
between index i and j is scaled by the nonnegative quantity 2 (L−m)Λij ≥ 0.

A.8 Proof of Theorem 18 (Fm,L analysis)

Consider any trajectory of the dynamics (6) with wt = 0, and form the augmented vectors and
state as described in Section 5.1. Multiply the LMIs (32a) and (32c) on the right and left by
(xtr, ũ

t) ∈ Rn+`+1 and its transpose, respectively, and take the trace. Also, take the inner product
of (32b) and (32d) with f t, which is valid because f t is elementwise nonnegative. The resulting
inequalities are:

tr (xt+1
r )TPxt+1

r − ρ2 tr (xtr)
TPxtr + tr

[
yt

ut

]T
Π(Λ1)

[
yt

ut

]
≤ 0 (41a)

pT(Z+ − ρ2Z)f t + π(Λ1)
Tf t ≤ 0 (41b)

‖ξ̃t‖2 − tr (xtr)
TPxtr + tr

[
yt

ut

]T
Π(Λ1)

[
yt

ut

]
≤ 0 (41c)

−pTZf t + π(Λ2)
Tf t ≤ 0 (41d)

Summing (41a)+(41b) and (41c)+(41d) and applying (29), we recover the lower bound and expo-
nential decrease properties

V (xt+1
r ,f t+1) ≤ ρ2 V (xtr,f

t) and V (xtr,f
t) ≥ ‖ξ̃t‖2

Applying the lower bound and then the exponential decrease bound recursively, we obtain

‖ξt − ξ?‖2 ≤ V (xtr,f
t) ≤ . . . ≤ ρ2t V (x0

r ,f
0)

which implies that ρ(A, Fm,L) ≤ ρ.

For the second part of the proof, we do not restrict wt = 0, and perform similar operations to
the inequalities (33) as in the first part, except that we multiply the linear matrix inequalities by
(xt, ũt) instead to obtain the inequalities

tr (xt+1 −Hwt)TP (xt+1 −Hwt)− tr (xt)TPxt + tr

[
yt

ut

]T
Π(Λ1)

[
yt

ut

]
+ ‖ỹt‖2 ≤ 0 (42a)

pT(Z+ − Z)f t + π(Λ1)
Tf t ≤ 0 (42b)

− tr (xt)TPxt + tr

[
yt

ut

]T
Π(Λ2)

[
yt

ut

]
≤ 0 (42c)

−pTZf t + π(Λ2)
Tf t ≤ 0 (42d)
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Summing (42a)+(42b) and (42c)+(42d) and applying (29), we obtain the inequalities

V (xt+1,f t+1)− V (xt,f t) + ‖ỹt‖2 − 2 tr (Axt + Bũt)TPHwt − trwt
T
HTPHwt ≤ 0 (43a)

−V (xt,f t) ≤ 0 (43b)

Taking the expectation of both inequalities, the term −2(Axt + Bũt)TPHwt in the first in-
equality vanishes because wt is zero-mean and is independent of xt and ut, which only depend
on wt−1, wt−2, . . . . Also, since wt has covariance bound σ2I, we have trE

(
wt

T
HTPHwt

)
≤

σ2d(HTPH). Thus, the previous inequalities imply the decrease and nonnegativity conditions

EV (xt+1,f t+1)− EV (xt,f t) + ‖ỹt‖2 ≤ σ2d (HTPH) and EV (xt,f t) ≥ 0.

Summing the decrease condition over t = 0, . . . , T − 1, the sum telescopes and upon applying the
nonnegativity condition, we obtain

0 ≤ EV (xT ,fT ) ≤ EV (x0,f0)− E
T−1∑
k=0

‖ỹt‖2 + Tσ2d (HTPH).

Rearranging, dividing by T , and letting T →∞, we obtain

lim sup
T→∞

E
1

T

T−1∑
t=0

‖ỹt‖2 ≤ σ2d (HTPH)

which implies that γ(A, Fm,L, σ2) ≤
√
σ2d (HTPH).

A.9 Proof of Theorem 21 (Robust Accelerated Method, RAM)

To prove that RAM converges with rate ρ when there is no noise, we provide a feasible solution
to the LMI (32) with lifting dimension ` = 1. In fact, our solution has the same structure as the
weighted off-by-one IQC formulation in (34), where the positive definite matrix Q � 0 is given by

Q =
m

(3− ρ)(1− ρ)2(1 + ρ)3
(
m− L (1− ρ)2

)
q11 q12 q13
q12 q22 q23
q13 q23 q33

 , with

q11 = ρ
(
2m2(1− ρ) + 2Lm (4 + ρ− 2ρ2 + ρ3)− L2(1− ρ2)2

)
,

q12 = ρ
(
−2m2(1− ρ)− 2Lm (1 + ρ)2 + L2(4− ρ)(1− ρ2)2

)
,

q13 = (3− ρ)(1− ρ2)
(
−m (1 + ρ2) + L (1 + ρ− 2ρ2 − ρ3 + ρ4)

)
,

q22 = ρ
(
2m2(1− ρ)− 2Lm (2− 3ρ− 4ρ2 + ρ3) + L2(2− 4ρ+ ρ2)(1− ρ2)2

)
,

q23 = ρ (3− ρ)(1− ρ2)
(
m (−1 + 2ρ+ ρ2)− L (−1 + ρ− ρ3 + ρ4)

)
,

q33 = ρ (3− ρ)2(1− ρ2)2.

Using Mathematica [43], it is straightforward to verify that, for all parameters 0 < m ≤ L with
1−

√
m
L ≤ ρ < 1, this is a feasible solution to a modified version of the LMI (32) in which the term

XT
r Xr is replaced by XT

r T
TQTXr, where

T =

[
A B
−LC 1

]
.

41



Since TTQT is strictly positive definite, we have XT
r T

TQTXr � cXT
r Xr, where c > 0 is the

minimum eigenvalue of TTQT . Therefore, scaling the entire solution by 1/c provides a feasible
solution to the original LMI (32). Theorem 18 then implies that RAM has convergence rate at
least ρ. To show that the convergence rate is exactly ρ, note that the spectral radius of A+mBC
is precisely ρ, which completes the proof.

A.10 Proof of Lemma 23 (algorithm parameter restriction)

The Jury criterion for stability (ρ < 1) is given in (39). Combining (39b) + 2 · (39d) together with
(39a), we obtain: 0 < αq < 4. This must hold for all q ∈ [m,L], so we conclude that 0 < α < 4

L .
Combining (39c) and (39d), we obtain −1 + αηq < β < 1 + αηq. This must hold for all q ∈ [m,L].
We consider two cases. When αη ≥ 0, the β range reduces to −1 + L(αη) < β < 1 + m(αη) and
consequently, αη < 2

L−m . When αη < 0, we instead obtain −1 + m(αη) < β < 1 + L(αη) and
−2
L−m < αη, thus completing the proof. Although these bounds are derived for the function class
Qm,L, the nestedness property Qm,L ⊆ Fm,L ⊆ Sm,L implies that these necessary conditions on
(α, β, η) also hold for Fm,L and Sm,L.

B Numerical considerations for solving LMIs

This section explains the details of how we numerically solved the linear matrix inequalities in
Lemma 11 and Theorem 18. We used the Julia programming language version 1.6 [6] along with the
Convex.jl package version 0.14 [41] to model the optimization problems that were then solved using
Mosek version 9.3 [3]. For RGD, we used Brent’s method in the Optim.jl package version 1.3 [30]
to find the stepsize α that minimizes the sensitivity. All simulations and numerical experiments
were conducted on a laptop computer with conventional hardware.

Solving LMIs for the class Sm,L. Given an algorithm (α, β, η), each solve of (19) to find γ
took approximately 2 ms. Finding ρ required multiple solves of (18) using a bisection search, which
took approximately 44 ms (using a tolerance of 10−6). Therefore, each plot in Fig. 6 took roughly
7 hours to compute.

Solving LMIs for the class Fm,L. Solving the LMIs in Theorem 18 first requires choosing a
lifting dimension `. Increasing ` yields potentially tighter bounds on ρ and γ, but at the expense of
making the LMIs larger and more time-consuming to solve. We also found empirically that the γ
LMI (33), becomes poorly conditioned when ` is large or when L/m is large. One way to improve
the conditioning of the problem is via a similarity transform. For example, given any invertible
matrix T , the LMI (33) used to compute γ for the function class Fm,L is feasible if and only if it is
feasible under the transformation

(A,B,H,C,Y ) 7→
(
TAT−1, TB, TH,CT−1,Y

[
T−1 0

0 1

])
,

which corresponds to transforming the lifted state as xt 7→ Txt and the solution transforms as
P 7→ T−TPT−1 with p, Λ1, Λ2, and γ unchanged. A similar transformation is also possible for
computing ρ via (32). Transforming the LMIs via an appropriately chosen T can lead to improved
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conditioning and solver performance. As a heuristic, we used a transformation inspired by the
balanced realization [45, §3.9]. In particular, we chose T to be the transformation that balances the
scaled system (θ−1A, θ−1

[
B H

]
, θ−1C), with θ := 1.1 · ρ(A).

To decide which lifting dimension to use, we performed pilot tests to observe how the ρ and γ
bounds improved as ` was increased8. In Table 3, we show some representative results, evaluating
the performance of Nesterov’s Fast Gradient method with or without balancing. By definition, the
bounds computed for ρ and γ should decrease (or stay the same) as we increase `. Any observed
increases must be due to numerical solver error.

Table 3: Numerical values for Nesterov’s Fast Gradient method with standard tuning (see
Table 1), with additional parameters d = 1, σ = 1, m = 1, and L = 100. Results obtained
by computationally solving the LMIs from Theorem 18 using various values of the lifting
dimension `. Numerical results are more reliable when balancing is used. Last column
indicates the wall clock time for computing γ with balancing (one LMI solve).

` Rate ρ Balanced ρ Sensitivity γ Balanced γ Time (sec.)

1 0.9279379028 0.9279330969 0.2007657395 0.2007653112 0.0053

2 0.9279357392 0.9279330772 error 0.1859082519 0.0094

3 0.9279401124 0.9279330707 error 0.1837282849 0.0169

4 0.9279420203 0.9279330510 error 0.1835113705 0.0323

5 0.9279418892 0.9279330248 error 0.1834890908 0.0796

6 0.9279397845 0.9279329461 error 0.1834856744 0.1042

7 0.9279395616 0.9279328346 0.1834918867 0.1834813977 0.2000

8 0.9279494816 0.9279329133 0.1834920874 0.1834817113 0.3434

9 0.9279330379 0.9279327232 0.1834930651 0.1834868332 0.5947

10 0.9279350966 0.9279327756 error 0.1834840969 1.0601

In Table 3, we observe that ρ reaches its minimal value at ` = 1, beyond which there is no
improvement. Meanwhile, γ continues to improve as ` increases. These observations regarding
ρ and γ were robust across all algorithms we tested, so for all subsequent numerical simulations,
including those of Fig. 6, we used ` = 1 for ρ and ` = 6 for γ, both with balancing. In computing
ρ, we used a bisection search with tolerance 10−6. Using these parameters, finding ρ and γ each
took about 100 ms. Consequently each plot in Fig. 6 took roughly 30 hours to compute.

8As noted in Remark 19, using ` = 0 (no lifting) is equivalent to solving the LMIs in Lemma 11 for the function
class Sm,L.
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