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Introduction

Distributed optimization problem:

1 n
minimize — Z fi(x)
1=1
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e f;:R% = R is the local objective function on agent ¢
e 7 is the number of agents
e d is the dimension of the objective function

Goal: agents compute the global optimizer by communicating
with local neighbors and performing local computations.

Communication Network

We model the communication network using a gossip matrix.

o A matrix W = {w;;} € R"™"™ is a gossip matrix if
w;; = 0 whenever agent ¢+ does not receive information
from agent 3.

o The spectral gap is o = |[W — =
e W isstochasticif Wl=1Tand1'W =17T.

For example, a gossip matrix for the above network is

-

with o ~ 0.7853.
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Assumptions

(1) Each local function f; is u-smooth and L-strongly convex.

(2) At each round of communication, each agent ¢ has access

to the i*" row of a stochastic gossip matrix with spectral
gap o € [0,1).

(3) Each agent knows the global parameters u, L, and o.

Algorithm

Notation: Bold indicates concatenated vectors, for example,

Vfi(vf)

and

37. _vfn (US)_

Initialization:

e Set yY =0 and x" arbitrary.

e Define the contraction factor p = ﬁ—jrﬁ and

e the number of communications per gradient evaluation

m—mﬂ
5 :

m = minimize [logs(
r>p,8>0

for iteration £ =0,1,2,... do
V= (Wit Wi @ 1) X"

u® = Vf(v")
vyl — vk xk _y

k+1 _ _k 2 -k 2 k+1
X =V T U —\/1—,0y

end for

m communications

osradient evaluation

& state update
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Theoretical Results

Theorem (Linear convergence). The iterate sequence {x}r>0
of each agent i € {1,...,n} converges to the global optimizer
x* linearly with rate p. In other words,

|z — z*|| = O(pF) forallie {1,...,n}.

Our decentralized algorithm has the same worst-
case convergence rate as centralized gradient descent
in terms of the number of gradient evaluations.

Corollary (Time complexity). Suppose it takes
e T time per communication round and
e unit time for evaluating local gradients.

Then the time to obtain a solution with precision € > 0 is

- ) In(4))

as kK — oo and 0 — 1, where Kk = L/ .
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Convergence Rate

Our algorithm uses an optimized ratio between the number of

communication rounds and gradient evaluations.
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To account for the extra communication, define a step as one
round of communication and at most one gradient evaluation.

iteration | 1 2 3
step| 1 2 3|14 5 6|7 8 9
communication | vv v VvV |V Vv Vv |V Vv V
ocradient evaluation v v v

The convergence rate of our algorithm per step is p!/™ as shown
below, where dashed lines indicate the optimal algorithm®.
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Our algorithm has near-optimal convergence rate in
terms of the number of steps.
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