A Distributed Optimization Algorithm over Time-Varying Graphs with Efficient Gradient Evaluations

BRYAN VAN SCOY AND LAURENT LESSARD UNIVERSITY OF WISCONSIN–MADISON

Introduction

Distributed optimization problem:

\[
\text{minimize } x \in \mathbb{R}^d \quad \frac{1}{n} \sum_{i=1}^{n} f_i(x)
\]

- \(f_i : \mathbb{R}^d \rightarrow \mathbb{R} \) is the local objective function on agent \(i \)
- \(n \) is the number of agents
- \(d \) is the dimension of the objective function

Goal: agents compute the global optimizer by communicating with local neighbors and performing local computations.

Communication Network

We model the communication network using a gossip matrix.

- A matrix \(W = [w_{ij}] \in \mathbb{R}^{n \times n} \) is a gossip matrix if \(w_{ij} = 0 \) whenever agent \(i \) does not receive information from agent \(j \).
- The spectral gap is \(\sigma = \|W - \frac{1}{n} \mathbf{1} \mathbf{1}^T\| \).
- \(W \) is stochastic if \(W \mathbf{1} = \mathbf{1} \) and \(\mathbf{1}^T W = \mathbf{1}^T \).

For example, a gossip matrix for the above network is

\[
W = \begin{bmatrix}
0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\
0 & 0 & \frac{3}{4} & \frac{1}{4} & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{4} & 0 \\
\frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{2} \\
\frac{1}{4} & 0 & 0 & \frac{1}{4} & 0 \\
\end{bmatrix}
\]

with \(\sigma \approx 0.7853 \).

Algorithm

Notation: Bold indicates concatenated vectors, for example,

\[
x^k := \begin{bmatrix} x_{k1}^T \\ \vdots \\ x_{kn}^T \end{bmatrix}
\]

\[
\nabla f(v^k) := \begin{bmatrix} \nabla f_1(v_{1k}) \\ \vdots \\ \nabla f_n(v_{nk}) \end{bmatrix}
\]

Initialization:
- Set \(y^0 = 0 \) and \(x^0 \) arbitrary.
- Define the contraction factor \(\rho = \frac{L - \mu}{L + \mu} \) and
- the number of communications per gradient evaluation \(m \) as a function of the spectral gap \(\sigma \).

for iteration \(k = 0, 1, 2, \ldots \) do

\[
v^k = (W_{k,1} \cdots W_{k,m} \otimes I_d) x^k
\]

\[
u^k = \nabla f(v^k)
\]

\[
y^{k+1} = y^k + x^k - v^k
\]

\[
x^{k+1} = x^k - \frac{2}{L + \mu} u^k - \sqrt{1 - \rho^2} y^{k+1}
\]

end for

Theoretical Results

Theorem (Linear convergence). The iterate sequence \(\{x^k\}_{k \geq 0} \) of each agent \(i \in \{1, \ldots, n\} \) converges to the global optimizer \(x^* \) linearly with rate \(\rho \). In other words,

\[
\|x^k - x^*\| = \mathcal{O}(\rho^k)
\]

for all \(i \in \{1, \ldots, n\} \).

Our decentralized algorithm has the same worst-case convergence rate as centralized gradient descent in terms of the number of gradient evaluations.

Assumptions

1. Each local function \(f_i \) is \(\mu \)-smooth and \(L \)-strongly convex.
2. At each round of communication, each agent \(i \) has access to the \(i \)th row of a stochastic gossip matrix with spectral gap \(\sigma \in (0, 1) \).
3. Each agent knows the global parameters \(\mu, L, \) and \(\sigma \).

Corollary (Time complexity). Suppose it takes

- \(\tau \) time per communication round and
- unit time for evaluating local gradients.

Then the time to obtain a solution with precision \(\epsilon > 0 \) is

\[
\mathcal{O}\left(\kappa \left(1 + \frac{1}{\sqrt{\sigma}} \right) \ln \left(\frac{1}{\epsilon} \right) \right)
\]

as \(\kappa \to \infty \) and \(\sigma \to 1 \), where \(\kappa = L/\mu \).

Convergence Rate

Our algorithm uses an optimized ratio between the number of communication rounds and gradient evaluations.

To account for the extra communication, define a step as one round of communication and at most one gradient evaluation.

The convergence rate of our algorithm per step is \(\rho^{1/m} \) as shown below, where dashed lines indicate the optimal algorithm.

Theorem (Linear convergence). The iterate sequence \(\{x^k\}_{k \geq 0} \) of each agent \(i \in \{1, \ldots, n\} \) converges to the global optimizer \(x^* \) linearly with rate \(\rho \). In other words,
\[
\|x^k - x^*\| = \mathcal{O}(\rho^k)
\]
for all \(i \in \{1, \ldots, n\} \).

Our decentralized algorithm has the same worst-case convergence rate as centralized gradient descent in terms of the number of gradient evaluations.

#communications
#gradient evaluations = 1
2
3
\leq 5
\leq 10
\leq 20
\leq 100
well-conditioned
ill-conditioned
fully-connected
disconnected

\|x^k - x^*\| = \mathcal{O}(\rho^k)
\]
for all \(i \in \{1, \ldots, n\} \).

Our decentralized algorithm has the same worst-case convergence rate as centralized gradient descent in terms of the number of gradient evaluations.

Assumptions

1. Each local function \(f_i \) is \(\mu \)-smooth and \(L \)-strongly convex.
2. At each round of communication, each agent \(i \) has access to the \(i \)th row of a stochastic gossip matrix with spectral gap \(\sigma \in (0, 1) \).
3. Each agent knows the global parameters \(\mu, L, \) and \(\sigma \).

Corollary (Time complexity). Suppose it takes

- \(\tau \) time per communication round and
- unit time for evaluating local gradients.

Then the time to obtain a solution with precision \(\epsilon > 0 \) is

\[
\mathcal{O}\left(\kappa \left(1 + \frac{1}{\sqrt{\sigma}} \right) \ln \left(\frac{1}{\epsilon} \right) \right)
\]

as \(\kappa \to \infty \) and \(\sigma \to 1 \), where \(\kappa = L/\mu \).

Convergence Rate

Our algorithm uses an optimized ratio between the number of communication rounds and gradient evaluations.

To account for the extra communication, define a step as one round of communication and at most one gradient evaluation.

The convergence rate of our algorithm per step is \(\rho^{1/m} \) as shown below, where dashed lines indicate the optimal algorithm.

Our algorithm has near-optimal convergence rate in terms of the number of steps.