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Introduction
Distributed optimization problem:

minimize
x∈Rd

1
n

n∑
i=1

fi(x)

• fi : Rd → R is the local objective function on agent i
• n is the number of agents
• d is the dimension of the objective function
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Goal: agents compute the global optimizer by communicating
with local neighbors and performing local computations.

Communication Network
We model the communication network using a gossip matrix.

• A matrix W = {wij} ∈ Rn×n is a gossip matrix if
wij = 0 whenever agent i does not receive information
from agent j.

• The spectral gap is σ = ‖W − 1
n11

T‖.
• W is stochastic if W1 = 1 and 1TW = 1T.

For example, a gossip matrix for the above network is

W =
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 with σ ≈ 0.7853.

Assumptions
(1) Each local function fi is µ-smooth and L-strongly convex.
(2) At each round of communication, each agent i has access

to the ith row of a stochastic gossip matrix with spectral
gap σ ∈ [0, 1).

(3) Each agent knows the global parameters µ, L, and σ.

Algorithm
Notation: Bold indicates concatenated vectors, for example,

xk :=

x
k
1
...
xkn

 and ∇f(vk) :=

∇f1(vk1 )
...

∇fn(vkn)

 .
Initialization:

• Set y0 = 0 and x0 arbitrary.
• Define the contraction factor ρ = L−µ

L+µ and
• the number of communications per gradient evaluation

m = minimize
r≥ρ, s≥σ

⌈
logs

(√1+r−
√

1−r
2

)⌉
.

for iteration k = 0, 1, 2, . . . do
vk = (Wk,1 · · ·Wk,m ⊗ Id) xk m communications
uk = ∇f(vk) gradient evaluation

yk+1 = yk + xk − vk state update

xk+1 = vk − 2
L+µ uk −

√
1− ρ2 yk+1 state update

end for

Theoretical Results
Theorem (Linear convergence). The iterate sequence {xki }k≥0
of each agent i ∈ {1, . . . , n} converges to the global optimizer
x? linearly with rate ρ. In other words,

‖xki − x?‖ = O(ρk) for all i ∈ {1, . . . , n}.

Our decentralized algorithm has the same worst-
case convergence rate as centralized gradient descent
in terms of the number of gradient evaluations.

Corollary (Time complexity). Suppose it takes
• τ time per communication round and
• unit time for evaluating local gradients.

Then the time to obtain a solution with precision ε > 0 is

O
(
κ
(
1 + τ√

1−σ

)
ln
( 1
ε

))
as κ→∞ and σ → 1, where κ = L/µ.

Convergence Rate
Our algorithm uses an optimized ratio between the number of
communication rounds and gradient evaluations.
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To account for the extra communication, define a step as one
round of communication and at most one gradient evaluation.

iteration 1 2 3
step 1 2 3 4 5 6 7 8 9

communication X X X X X X X X X
gradient evaluation X X X

The convergence rate of our algorithm per step is ρ1/m as shown
below, where dashed lines indicate the optimal algorithma.
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Our algorithm has near-optimal convergence rate in
terms of the number of steps.
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