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What is average consensus?

Group of n agents

Each agent has a local input
ui

Communication with
neighbors represented by
directed graph

Want all agents to be able
to calculate the average of

all the inputs,
1

n

n∑
i=1

ui
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Why average consensus?

Average consensus is a key building block in many distributed
algorithms such as the following:

Formation control

Distributed Kalman filtering

Distributed sensor fusion
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Why random switching graphs?

[fragile]
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Assumptions

The graph Laplacian at time k is Lk ≡ Dk − Ak where Dk is the
degree matrix and Ak is the adjacency matrix of the graph.

Assumptions

E[Lk ] balanced and connected

Lk i.i.d.

Lk independent of the estimator initial state for all k

Note

We do not require Lk to be balanced or connected at every time
step.
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Initial condition estimator
P estimator
PI estimator

Initial Condition Estimator

Consider the well-known distributed algorithm

x ik+1 = x ik −
∑
j∈Ni

aij(x
i
k − x jk) (agent i)

xk+1 = xk − Lkxk (vectorized)

where xk is the state and Lk is the graph Laplacian at time k, and
x0 = u is the input.
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P estimator
PI estimator

Simulation

Consensus is achieved.

Estimate converges to a random variable whose mean is the
correct average (Li and Zhang, 2010).

Average could be approximated by averaging multiple trials.

This is inefficient...
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P Estimator

The P estimator equations are

xk+1 = (1− γ)xk − kpLkyk

yk = xk + u

where xk is the internal state and yk is the output at time k, and γ
and kp are system parameters.

Special case

For γ = 0 and kp = 1, we have

yk+1 = yk − Lkyk

where y0 = x0 + u.
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P Estimator (γ 6= 0)

Consensus is not achieved.

The time average of the output converges to the statistical
average.

But the statistical average is not the average of the inputs...
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PI Estimator

The PI estimator equations are

νk+1 = (1− γ)νk + γu − kpLkνk + kILkηk

ηk+1 = ηk − kILkνk

yk = νk

where νk and ηk are the internal states at time k and γ, kp, and kI
are system parameters.

Convex combination of input and previous state.

Proportional error term.

Integral error term.
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PI Estimator

Consensus is achieved for the time average process.

The time average of the output converges to the statistical
average.

The statistical average is the average of the inputs, so average
consensus is achieved!
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Initial condition estimator
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PI estimator

For average consensus, we need

Time average = Statistical average (ergodicity)

Statistical average = Average of inputs (correctness).

Then we can low-pass filter the output process to obtain the
average of the inputs.

Average
Consensus
Estimator

Low−pass
Filter

Neighboring Agents

ui y i ỹ i
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Initial condition estimator
P estimator
PI estimator

Estimator Properties

Estimator Ergodic Correct

P, γ = 0 No Yes1

P, γ 6= 0 Yes No

PI Yes Yes

1 If the expectation of the initial state is zero.
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Initial condition estimator
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PI estimator

Contribution: Confirm simulations with analysis

Strategy: Do analysis for a general estimator and apply
results to the P and PI estimators
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Polynomial Linear Protocol

A polynomial linear protocol (Freeman, Nelson, and Lynch, 2010)
of degree ` is the collection Σ(L) = [A(L),B(L),C (L),D(L)] where

A(L) ≡
∑̀
i=0

Li ⊗ Ai B(L) ≡
∑̀
i=0

Li ⊗ Bi

C (L) ≡
∑̀
i=0

Li ⊗ Ci D(L) ≡
∑̀
i=0

Li ⊗ Di

are polynomials in L which describe the linear system

xk+1 = A(L)xk + B(L)uk

yk = C (L)xk + D(L)uk .
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Examples

Example 1 (P Estimator)

The P estimator is a polynomial linear protocol of degree one with
parameters γ and kp where[

A(L) B(L)

C (L) D(L)

]
= I ⊗

[
1− γ 0

1 0

]
+ L⊗

[
−kp −kp

0 0

]

Example 2 (PI Estimator)

The PI estimator is a polynomial linear protocol of degree one with
parameters γ, kp, and kI where[

A(L) B(L)

C (L) D(L)

]
= I ⊗

 1− γ 0 γ
0 1 0

1 0 0

+ L⊗

 −kp kI 0
−kI 0 0

0 0 0


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Objective

Objective

Want conditions under which the output process yk of a
polynomial linear protocol Σ(Lk) is

1 Asymptotically mean ergodic

2 Correct (i.e., the expectation converges to the average of the
inputs)

Then the low-pass filtered output converges to the average of the
inputs.
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Correctness

A polynomial linear protocol Σ(Lk) of degree one is correct if
and only if Σ(E[Lk ]) converges to the average of the inputs.

This has been characterized (Freeman, Nelson, and Lynch,
2010).

A necessary condition is A0 must have an eigenvalue at one.
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Note

A0 must have an eigenvalue at one for the system to be
correct.

The Laplacian always has an eigenvalue at zero.

Therefore, correct systems have an eigenvalue at one.

Problem

The steady-state variance of the state could be infinite!

Solution

The state corresponding to the eigenvalue at one must be
unobservable.
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Separated System

Definition 3 (Reduced Laplacian)

The reduced Laplacian L̂ is defined as L̂ := STLS where
Q =

[
v S

]
∈ Rn×n is orthogonal and v = 1n/

√
n.

Performing the change of variable x̃k = (Q ⊗ I )T xk , the separated
system Σ̃(L) is

Ã(L) =

[
A0 (v ⊗ I )TA(L)(S ⊗ I )

0 A(L̂)

]
B̃(L) =

[
(v ⊗ I )TB(L)
(S ⊗ I )TB(L)

]
C̃ (L) =

[
v ⊗ C0 C (L)(S ⊗ I )

]
D̃(L) = D(L).
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Definition 4 (Asymptotically Wide-Sense Stationary)

The process Xk is asymptotically wide-sense stationary if and only
if the mean and covariance of the steady-state process do not
change with time; that is, the limits

mX ≡ lim
n→∞

E [Xn] and CX (k) ≡ lim
n→∞

COV[Xk+n,Xn]

exist and are finite where mX is the mean and CX (k) is the
covariance of the steady-state process.
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Theorem 5 (Asymptotic Mean Ergodicity)

Let {Xk}∞k=1 be a single-sided asymptotically wide-sense stationary
discrete-time random process with limiting mean mX and limiting
covariance CX (k). The process is asymptotically mean ergodic,
that is,

lim
T→∞

lim
n→∞

1

T

T−1∑
k=0

Xk+n = mX

in the mean square sense if and only if

lim
T→∞

1

T

T−1∑
k=−(T−1)

(
1− |k |

T

)
CX (k) = 0

(similar to a result in (Leon-Garcia, 2008)).
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Corollary 6

An asymptotically wide-sense stationary random process Xk with
steady-state covariance given by

CX (k) = λ|k|

is asymptotically mean ergodic if and only if |λ| ≤ 1 and λ 6= 1.

Corollary 7

An asymptotically wide-sense stationary random process Xk with
steady-state covariance given by

CX (k) = CA|k|B

where A ∈ Rn×n is convergent, B ∈ Rn×1, C ∈ R1×n, and any
eigenvalue of A at one is either uncontrollable through B or
unobservable through C, is asymptotically mean ergodic.
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Main Theorem

Theorem 8 (Asymptotically Mean Ergodic)

Consider the time-varying polynomial linear protocol Σ(Lk) of
degree ` based on the time-varying Laplacian Lk where E[Lk ] is
balanced and connected, and Lk are i.i.d. and independent of the
initial state for all k. The output process due to a constant input
is asymptotically mean ergodic if the following hold:

1 A0 is convergent,

2 any eigenvalues of A0 at one are unobservable through C0,

3 ρ
(
E
[
A(L̂k)

])
< 1, and

4 Ci = Di = 0 for 1 ≤ i ≤ `.
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Estimator Properties

Estimator Ergodic Correct

P, γ = 0 No Yes1

P, γ 6= 0 Yes No

PI Yes Yes

1 If the expectation of the initial state is zero.
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Summary

Defined asymptotic mean ergodicity and gave an ergodic
theorem.

Characterized the asymptotic mean ergodicity property for
polynomial linear protocols.

Applied results to the P and PI estimators to explain behavior
over i.i.d. random graphs.
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