Asymptotic Mean Ergodicity of Average Consensus Estimators

Bryan Van Scoy, Randy A. Freeman, Kevin M. Lynch

Northwestern University

June 6, 2014

What is average consensus?

• Group of *n* agents

- Each agent has a local input u^i
- Communication with neighbors represented by directed graph
- Want all agents to be able to calculate the average of

all the inputs,
$$\frac{1}{n} \sum_{i=1}^{n}$$

What is average consensus?

- Group of *n* agents
- Each agent has a local input u^i
- Communication with neighbors represented by directed graph
- Want all agents to be able to calculate the average of

all the inputs,
$$\frac{1}{n} \sum_{i=1}^{n}$$

What is average consensus?

- Group of *n* agents
- Each agent has a local input u^i
- Communication with neighbors represented by directed graph
- Want all agents to be able to calculate the average of all the inputs, $\frac{1}{n} \sum_{i=1}^{n} u^{i}$

What is average consensus?

- Group of *n* agents
- Each agent has a local input u^i
- Communication with neighbors represented by directed graph
- Want all agents to be able to calculate the average of all the inputs, $\frac{1}{n} \sum_{i=1}^{n} u^{i}$

Why average consensus?

Average consensus is a key building block in many distributed algorithms such as the following:

- Formation control
- Distributed Kalman filtering
- Distributed sensor fusion

Introduction

Average Consensus Estimators Polynomial Linear Protocol Asymptotic Mean Ergodicity and Main Theorem Conclusions

Why random switching graphs?

Asymptotic Mean Ergodicity of Average Consensus Estimators

Introduction

Average Consensus Estimators Polynomial Linear Protocol Asymptotic Mean Ergodicity and Main Theorem Conclusions

Why random switching graphs?

Assumptions

The graph Laplacian at time k is $L_k \equiv D_k - A_k$ where D_k is the degree matrix and A_k is the adjacency matrix of the graph.

Assumptions

- E[L_k] balanced and connected
- *L_k* i.i.d.
- L_k independent of the estimator initial state for all k

Assumptions

The graph Laplacian at time k is $L_k \equiv D_k - A_k$ where D_k is the degree matrix and A_k is the adjacency matrix of the graph.

Assumptions

- E[L_k] balanced and connected
- *L_k* i.i.d.
- L_k independent of the estimator initial state for all k

Note

We do not require L_k to be balanced or connected at every time step.

Initial condition estimator P estimator PI estimator

Outline

- 2 Average Consensus Estimators
 - Initial condition estimator
 - P estimator
 - PI estimator
- Polynomial Linear Protocol
 Definition and Examples
 - Separated System
- 4 Asymptotic Mean Ergodicity and Main Theorem
- 5 Conclusions

Initial condition estimator P estimator PI estimator

Initial Condition Estimator

Consider the well-known distributed algorithm

$$\begin{aligned} x_{k+1}^{i} &= x_{k}^{i} - \sum_{j \in \mathcal{N}_{i}} a_{ij}(x_{k}^{i} - x_{k}^{j}) & (\text{agent } i) \\ x_{k+1} &= x_{k} - L_{k}x_{k} & (\text{vectorized}) \end{aligned}$$

where x_k is the state and L_k is the graph Laplacian at time k, and $x_0 = u$ is the input.

Initial condition estimator P estimator PI estimator

• Consensus is achieved.

- Estimate converges to a random variable whose mean is the correct average (Li and Zhang, 2010).
- Average could be approximated by averaging multiple trials.
- This is inefficient...

Initial condition estimator P estimator PI estimator

- Consensus is achieved.
- Estimate converges to a random variable whose mean is the correct average (Li and Zhang, 2010).
- Average could be approximated by averaging multiple trials.
- This is inefficient...

Initial condition estimator P estimator PI estimator

- Consensus is achieved.
- Estimate converges to a random variable whose mean is the correct average (Li and Zhang, 2010).
- Average could be approximated by averaging multiple trials.
- This is inefficient..

Initial condition estimator P estimator PI estimator

- Consensus is achieved.
- Estimate converges to a random variable whose mean is the correct average (Li and Zhang, 2010).
- Average could be approximated by averaging multiple trials.
- This is inefficient...

Initial condition estimator P estimator PI estimator

P Estimator

The P estimator equations are

$$x_{k+1} = (1 - \gamma)x_k - k_p L_k y_k$$
$$y_k = x_k + u$$

where x_k is the internal state and y_k is the output at time k, and γ and k_p are system parameters.

Initial condition estimator P estimator PI estimator

P Estimator

The P estimator equations are

$$\begin{aligned} x_{k+1} &= (1-\gamma)x_k - k_p L_k y_k \\ y_k &= x_k + u \end{aligned}$$

where x_k is the internal state and y_k is the output at time k, and γ and k_p are system parameters.

Special case

For $\gamma = 0$ and $k_p = 1$, we have

$$y_{k+1} = y_k - L_k y_k$$

where $y_0 = x_0 + u$.

Initial condition estimator P estimator PI estimator

P Estimator ($\gamma \neq 0$)

• Consensus is not achieved.

- The time average of the output converges to the statistical average.
- But the statistical average is not the average of the inputs...

Initial condition estimator P estimator PI estimator

P Estimator ($\gamma \neq 0$)

• Consensus is not achieved.

- The time average of the output converges to the statistical average.
- But the statistical average is not the average of the inputs...

Initial condition estimator P estimator PI estimator

P Estimator ($\gamma \neq 0$)

• Consensus is not achieved.

- The time average of the output converges to the statistical average.
- But the statistical average is not the average of the inputs...

Initial condition estimator P estimator PI estimator

PI Estimator

The PI estimator equations are

$$\nu_{k+1} = (1 - \gamma)\nu_k + \gamma u - k_p L_k \nu_k + k_l L_k \eta_k$$
$$\eta_{k+1} = \eta_k - k_l L_k \nu_k$$
$$y_k = \nu_k$$

- Convex combination of input and previous state.
- Proportional error term.
- Integral error term.

Initial condition estimator P estimator PI estimator

PI Estimator

The PI estimator equations are

$$\nu_{k+1} = (1 - \gamma)\nu_k + \gamma u - k_p L_k \nu_k + k_l L_k \eta_k$$
$$\eta_{k+1} = \eta_k - k_l L_k \nu_k$$
$$y_k = \nu_k$$

- Convex combination of input and previous state.
- Proportional error term.
- Integral error term.

Initial condition estimator P estimator PI estimator

PI Estimator

The PI estimator equations are

$$\nu_{k+1} = (1 - \gamma)\nu_k + \gamma u - \frac{k_p L_k \nu_k}{\mu_k + k_l L_k \eta_k}$$
$$\eta_{k+1} = \eta_k - \frac{k_l L_k \nu_k}{\mu_k + \mu_k}$$
$$y_k = \nu_k$$

- Convex combination of input and previous state.
- Proportional error term.
- Integral error term.

Initial condition estimator P estimator PI estimator

PI Estimator

The PI estimator equations are

$$\nu_{k+1} = (1 - \gamma)\nu_k + \gamma u - k_p L_k \nu_k + k_l L_k \eta_k$$
$$\eta_{k+1} = \eta_k - k_l L_k \nu_k$$
$$y_k = \nu_k$$

- Convex combination of input and previous state.
- Proportional error term.
- Integral error term.

Initial condition estimator P estimator PI estimator

PI Estimator

• Consensus is achieved for the time average process.

- The time average of the output converges to the statistical average.
- The statistical average is the average of the inputs, so average consensus is achieved!

Initial condition estimator P estimator PI estimator

PI Estimator

- Consensus is achieved for the time average process.
- The time average of the output converges to the statistical average.
- The statistical average is the average of the inputs, so average consensus is achieved!

Initial condition estimator P estimator PI estimator

PI Estimator

- Consensus is achieved for the time average process.
- The time average of the output converges to the statistical average.
- The statistical average is the average of the inputs, so average consensus is achieved!

Initial condition estimator P estimator PI estimator

For average consensus, we need

```
Time average = Statistical average (ergodicity)
Statistical average = Average of inputs (correctness).
```

Then we can low-pass filter the output process to obtain the average of the inputs.

Initial condition estimator P estimator PI estimator

For average consensus, we need

```
Time average = Statistical average (ergodicity)
Statistical average = Average of inputs (correctness).
```

Then we can low-pass filter the output process to obtain the average of the inputs.

Introduction
Average Consensus Estimators
Polynomial Linear Protocol
Asymptotic Mean Ergodicity and Main Theorem
Conclusions
Initial condition estimator
P estimator
PI estimator

Estimator Properties

¹ If the expectation of the initial state is zero.

Van Scoy, Freeman, Lynch Asymptotic Mean Ergodicity of Average Consensus Estimators

Initial condition estimator P estimator PI estimator

• Contribution: Confirm simulations with analysis

• **Strategy:** Do analysis for a general estimator and apply results to the P and PI estimators

Initial condition estimator P estimator PI estimator

- Contribution: Confirm simulations with analysis
- **Strategy:** Do analysis for a general estimator and apply results to the P and PI estimators

Definition and Examples Separated System

Outline

Conclusions

Definition and Examples Separated System

Polynomial Linear Protocol

A polynomial linear protocol (Freeman, Nelson, and Lynch, 2010) of degree ℓ is the collection $\Sigma(L) = [A(L), B(L), C(L), D(L)]$ where

are polynomials in L which describe the linear system

$$x_{k+1} = A(L)x_k + B(L)u_k$$
$$y_k = C(L)x_k + D(L)u_k.$$

Definition and Examples Separated System

Examples

Example 1 (P Estimator)

The P estimator is a polynomial linear protocol of degree one with parameters γ and k_p where

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1 - \gamma & 0 \\ \hline 1 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_p & -k_p \\ \hline 0 & 0 \end{bmatrix}$$
Definition and Examples Separated System

Examples

Example 1 (P Estimator)

The P estimator is a polynomial linear protocol of degree one with parameters γ and k_p where

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1-\gamma & 0 \\ \hline 1 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_p & -k_p \\ \hline 0 & 0 \end{bmatrix}$$

Example 2 (PI Estimator)

The PI estimator is a polynomial linear protocol of degree one with parameters γ , k_p , and k_l where

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1 - \gamma & 0 & \gamma \\ 0 & 1 & 0 \\ \hline 1 & 0 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_p & k_l & 0 \\ -k_l & 0 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix}$$

Asymptotic Mean Ergodicity of Average Consensus Estimators

Definition and Examples Separated System

Objective

Objective

Want conditions under which the output process y_k of a polynomial linear protocol $\Sigma(L_k)$ is

- Asymptotically mean ergodic
- Correct (i.e., the expectation converges to the average of the inputs)

Then the low-pass filtered output converges to the average of the inputs.

Definition and Examples Separated System

- A polynomial linear protocol Σ(L_k) of degree one is correct if and only if Σ(E[L_k]) converges to the average of the inputs.
- This has been characterized (Freeman, Nelson, and Lynch, 2010).
- A necessary condition is A_0 must have an eigenvalue at one.

Definition and Examples Separated System

- A polynomial linear protocol Σ(L_k) of degree one is correct if and only if Σ(E[L_k]) converges to the average of the inputs.
- This has been characterized (Freeman, Nelson, and Lynch, 2010).
- A necessary condition is A_0 must have an eigenvalue at one.

Definition and Examples Separated System

- A polynomial linear protocol Σ(L_k) of degree one is correct if and only if Σ(E[L_k]) converges to the average of the inputs.
- This has been characterized (Freeman, Nelson, and Lynch, 2010).
- A necessary condition is A_0 must have an eigenvalue at one.

Definition and Examples Separated System

Note

- A₀ must have an eigenvalue at one for the system to be correct.
- The Laplacian always has an eigenvalue at zero.
- Therefore, correct systems have an eigenvalue at one.

Definition and Examples Separated System

Note

- A₀ must have an eigenvalue at one for the system to be correct.
- The Laplacian always has an eigenvalue at zero.
- Therefore, correct systems have an eigenvalue at one.

Problem

The steady-state variance of the state could be infinite!

Definition and Examples Separated System

Note

- A₀ must have an eigenvalue at one for the system to be correct.
- The Laplacian always has an eigenvalue at zero.
- Therefore, correct systems have an eigenvalue at one.

Problem

The steady-state variance of the state could be infinite!

Solution

The state corresponding to the eigenvalue at one must be unobservable.

Definition and Examples Separated System

Separated System

Definition 3 (Reduced Laplacian)

The reduced Laplacian \hat{L} is defined as $\hat{L} := S^T L S$ where $Q = \begin{bmatrix} v & S \end{bmatrix} \in \mathbb{R}^{n \times n}$ is orthogonal and $v = 1_n / \sqrt{n}$.

Definition and Examples Separated System

Separated System

Definition 3 (Reduced Laplacian)

The reduced Laplacian \hat{L} is defined as $\hat{L} := S^T L S$ where $Q = \begin{bmatrix} v & S \end{bmatrix} \in \mathbb{R}^{n \times n}$ is orthogonal and $v = 1_n / \sqrt{n}$.

Performing the change of variable $\tilde{x}_k = (Q \otimes I)^T x_k$, the separated system $\tilde{\Sigma}(L)$ is

$$\tilde{A}(L) = \begin{bmatrix} A_0 & (v \otimes I)^T A(L)(S \otimes I) \\ 0 & A(\hat{L}) \end{bmatrix} \quad \tilde{B}(L) = \begin{bmatrix} (v \otimes I)^T B(L) \\ (S \otimes I)^T B(L) \end{bmatrix} \\ \tilde{C}(L) = \begin{bmatrix} v \otimes C_0 & C(L)(S \otimes I) \end{bmatrix} \quad \tilde{D}(L) = D(L).$$

Outline

- 2 Average Consensus Estimators
 - Initial condition estimator
 - P estimator
 - PI estimator
- 3 Polynomial Linear Protocol
 - Definition and Examples
 - Separated System

Asymptotic Mean Ergodicity and Main Theorem

Conclusions

Definition 4 (Asymptotically Wide-Sense Stationary)

The process X_k is asymptotically wide-sense stationary if and only if the mean and covariance of the steady-state process do not change with time; that is, the limits

$$m_X \equiv \lim_{n \to \infty} E[X_n]$$
 and $C_X(k) \equiv \lim_{n \to \infty} \text{COV}[X_{k+n}, X_n]$

exist and are finite where m_X is the mean and $C_X(k)$ is the covariance of the steady-state process.

Theorem 5 (Asymptotic Mean Ergodicity)

Let $\{X_k\}_{k=1}^{\infty}$ be a single-sided asymptotically wide-sense stationary discrete-time random process with limiting mean m_X and limiting covariance $C_X(k)$. The process is asymptotically mean ergodic, that is,

$$\lim_{T\to\infty}\lim_{n\to\infty}\frac{1}{T}\sum_{k=0}^{T-1}X_{k+n}=m_X$$

in the mean square sense if and only if

$$\lim_{T\to\infty}\frac{1}{T}\sum_{k=-(T-1)}^{T-1}\left(1-\frac{|k|}{T}\right) C_X(k)=0$$

(similar to a result in (Leon-Garcia, 2008)).

Corollary 6

An asymptotically wide-sense stationary random process X_k with steady-state covariance given by

$$C_X(k) = \lambda^{|k|}$$

is asymptotically mean ergodic if and only if $|\lambda| \leq 1$ and $\lambda \neq 1$.

Corollary 6

An asymptotically wide-sense stationary random process X_k with steady-state covariance given by

$$C_X(k) = \lambda^{|k|}$$

is asymptotically mean ergodic if and only if $|\lambda| \leq 1$ and $\lambda \neq 1$.

Corollary 7

An asymptotically wide-sense stationary random process X_k with steady-state covariance given by

$$C_X(k) = CA^{|k|}B$$

where $A \in \mathbb{R}^{n \times n}$ is convergent, $B \in \mathbb{R}^{n \times 1}$, $C \in \mathbb{R}^{1 \times n}$, and any eigenvalue of A at one is either uncontrollable through B or unobservable through C, is asymptotically mean ergodic.

Main Theorem

Theorem 8 (Asymptotically Mean Ergodic)

Consider the time-varying polynomial linear protocol $\Sigma(L_k)$ of degree ℓ based on the time-varying Laplacian L_k where $E[L_k]$ is balanced and connected, and L_k are i.i.d. and independent of the initial state for all k. The output process due to a constant input is asymptotically mean ergodic if the following hold:

- **()** A_0 is convergent,
- 2) any eigenvalues of A_0 at one are unobservable through C_0 ,
- **3** $\rho(E[A(\hat{L}_k)]) < 1$, and
- $C_i = D_i = 0 \text{ for } 1 \le i \le \ell.$

Outline

- 2 Average Consensus Estimators
 - Initial condition estimator
 - P estimator
 - PI estimator
- 3 Polynomial Linear Protocol
 - Definition and Examples
 - Separated System
- 4 Asymptotic Mean Ergodicity and Main Theorem

5 Conclusions

P Estimator

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1 - \gamma^{0} & 0 \\ \hline 1 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_{p} & -k_{p} \\ \hline 0 & 0 \end{bmatrix}$$

Case 1: $\gamma = 0$

A₀ is convergent

Any eigenvalues of A_0 at one are unobservable through C_0

 $\checkmark \rho(\mathsf{E}[A(\hat{L}_k)]) < 1 \text{ (for appropriate } k_p)$

 $\checkmark \quad C_i = D_i = 0 \text{ for } 1 \le i \le \ell$

✓ Correct (if the expectation of the initial state is zero)

P Estimator

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1 - \gamma^0 & 0 \\ \hline 1 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_p & -k_p \\ \hline 0 & 0 \end{bmatrix}$$

Case 1: $\gamma = 0$ $\checkmark A_0$ is convergent

× any eigenvalues of A_0 at one are unobservable through C_0 $\checkmark \rho(\mathsf{E}[A(\hat{L}_k)]) < 1$ (for appropriate k_p)

 $\checkmark \quad C_i = D_i = 0 \text{ for } 1 \le i \le \ell$

✓ Correct (if the expectation of the initial state is zero)

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1 - \gamma^0 & 0 \\ \hline 1 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_p & -k_p \\ \hline 0 & 0 \end{bmatrix}$$

Case 1: $\gamma = 0$ $\checkmark A_0$ is convergent \thickapprox any eigenvalues of A_0 at one are unobservable through C_0 $\checkmark \rho(\mathbb{E}[A(\hat{L}_k)]) < 1$ (for appropriate k_p) $\checkmark C_i = D_i = 0$ for $1 \le i \le \ell$ \checkmark Correct (if the expectation of the initial state is zero)

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1 - \gamma^0 & 0 \\ \hline 1 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_p & -k_p \\ \hline 0 & 0 \end{bmatrix}$$

Case 1: $\gamma = 0$ $\checkmark A_0$ is convergent \thickapprox any eigenvalues of A_0 at one are unobservable through C_0 $\checkmark \rho(\mathsf{E}[A(\hat{L}_k)]) < 1$ (for appropriate k_p) $\checkmark C_i = D_i = 0$ for $1 \le i \le \ell$ \checkmark Correct (if the expectation of the initial state is zero)

$$\left[\begin{array}{c|c} A(L) & B(L) \\ \hline C(L) & D(L) \end{array}\right] = I \otimes \left[\begin{array}{c|c} 1 - \gamma^0 & 0 \\ \hline 1 & 0 \end{array}\right] + L \otimes \left[\begin{array}{c|c} -k_p & -k_p \\ \hline 0 & 0 \end{array}\right]$$

Case 1: $\gamma = 0$ $\checkmark A_0$ is convergent \thickapprox any eigenvalues of A_0 at one are unobservable through C_0 $\checkmark \rho(\mathsf{E}[A(\hat{L}_k)]) < 1$ (for appropriate k_p) $\checkmark C_i = D_i = 0$ for $1 \le i \le \ell$ \checkmark Correct (if the expectation of the initial state is zero)

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1 - \gamma^0 & 0 \\ \hline 1 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_p & -k_p \\ \hline 0 & 0 \end{bmatrix}$$

Case 1: $\gamma = 0$ $\checkmark A_0$ is convergent \thickapprox any eigenvalues of A_0 at one are unobservable through C_0 $\checkmark \rho(\mathsf{E}[A(\hat{L}_k)]) < 1$ (for appropriate k_p) $\checkmark C_i = D_i = 0$ for $1 \le i \le \ell$ \checkmark Correct (if the expectation of the initial state is zero)

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1 - \gamma & 0 \\ \hline 1 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_p & -k_p \\ \hline 0 & 0 \end{bmatrix}$$

Case 2: $\gamma \neq 0$

 A_0 is convergent

✓ any eigenvalues of A_0 at one are unobservable through C_0 ✓ $\rho(\mathsf{E}[A(\hat{L}_k)]) < 1$ (for appropriate k_p , γ)

 $\checkmark \quad C_i = D_i = 0 \text{ for } 1 \le i \le \ell$

imes Correct (need A_0 to have an eigenvalue at one)

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1 - \gamma & 0 \\ \hline 1 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_p & -k_p \\ \hline 0 & 0 \end{bmatrix}$$

Case 2: $\gamma \neq 0$

 \checkmark A_0 is convergent

✓ any eigenvalues of A_0 at one are unobservable through C_0 ✓ $\rho(\mathsf{E}[A(\hat{L}_k)]) < 1$ (for appropriate k_p , γ) ✓ $C_i = D_i = 0$ for $1 \le i \le \ell$

imes Correct (need A_0 to have an eigenvalue at one)

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1 - \gamma & 0 \\ \hline 1 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_p & -k_p \\ \hline 0 & 0 \end{bmatrix}$$

Case 2: $\gamma \neq 0$

 \checkmark A_0 is convergent

✓ any eigenvalues of A_0 at one are unobservable through C_0 ✓ $\rho(E[A(\hat{L}_k)]) < 1$ (for appropriate k_p , γ) ✓ $C_i = D_i = 0$ for $1 \le i \le \ell$ ✓ Correct (need A_0 to have an eigenvalue at one)

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1 - \gamma & 0 \\ 1 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_p & -k_p \\ 0 & 0 \end{bmatrix}$$

Case 2: $\gamma \neq 0$

 \checkmark A_0 is convergent

✓ any eigenvalues of A_0 at one are unobservable through C_0 ✓ $\rho(\mathsf{E}[A(\hat{L}_k)]) < 1$ (for appropriate k_p , γ) ✓ $C_i = D_i = 0$ for $1 \le i \le \ell$

imes Correct (need A_0 to have an eigenvalue at one)

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1 - \gamma & 0 \\ 1 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_p & -k_p \\ \hline 0 & 0 \end{bmatrix}$$

Case 2: $\gamma \neq 0$

✓ any eigenvalues of A_0 at one are unobservable through C_0 ✓ $\rho(\mathsf{E}[A(\hat{L}_k)]) < 1$ (for appropriate k_p , γ)

$$\checkmark \quad C_i = D_i = 0 \text{ for } 1 \le i \le \ell$$

 \nearrow Correct (need A_0 to have an eigenvalue at one)

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1 - \gamma & 0 \\ 1 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_p & -k_p \\ 0 & 0 \end{bmatrix}$$

Case 2: $\gamma \neq 0$ $\checkmark A_0$ is convergent \checkmark any eigenvalues of A_0 at one are unobservable through C_0 $\checkmark \rho(\mathsf{E}[A(\hat{L}_k)]) < 1$ (for appropriate k_p , γ) $\checkmark C_i = D_i = 0$ for $1 \le i \le \ell$ \checkmark Correct (need A_0 to have an eigenvalue at one)

PI Estimator

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1 - \gamma & 0 & \gamma \\ 0 & 1 & 0 \\ \hline 1 & 0 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_p & k_l & 0 \\ -k_l & 0 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix}$$

✓ A_0 is convergent ✓ any eigenvalues of A_0 at one are unobservable through C_0 ✓ $\rho(E[A(\hat{L}_k)]) < 1$ (for appropriate k_p , k_l , γ) ✓ $C_i = D_i = 0$ for $1 \le i \le \ell$ ✓ Correct

PI Estimator

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1 - \gamma & 0 & \gamma \\ 0 & 1 & 0 \\ \hline 1 & 0 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_p & k_l & 0 \\ -k_l & 0 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix}$$

\checkmark A_0 is convergent

✓ any eigenvalues of A_0 at one are unobservable through C_0 ✓ $\rho(E[A(\hat{L}_k)]) < 1$ (for appropriate k_p , k_l , γ) ✓ $C_i = D_i = 0$ for $1 \le i \le \ell$ ✓ Correct

PI Estimator

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1 - \gamma & 0 & \gamma \\ 0 & 1 & 0 \\ \hline 1 & 0 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_p & k_l & 0 \\ -k_l & 0 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix}$$

✓ A₀ is convergent
✓ any eigenvalues of A₀ at one are unobservable through C₀
✓ ρ(E[A(L̂_k)]) < 1 (for appropriate k_p, k_l, γ)
✓ C_i = D_i = 0 for 1 ≤ i ≤ ℓ
✓ Correct

PI Estimator

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1 - \gamma & 0 & \gamma \\ 0 & 1 & 0 \\ \hline 1 & 0 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_p & k_l & 0 \\ -k_l & 0 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix}$$

✓ A_0 is convergent ✓ any eigenvalues of A_0 at one are unobservable through C_0 ✓ $\rho(\mathsf{E}[A(\hat{L}_k)]) < 1$ (for appropriate k_p , k_I , γ) ✓ $C_i = D_i = 0$ for $1 \le i \le \ell$ ✓ Correct

PI Estimator

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1 - \gamma & 0 & \gamma \\ 0 & 1 & 0 \\ \hline 1 & 0 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_p & k_l & 0 \\ -k_l & 0 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix}$$

✓ A_0 is convergent ✓ any eigenvalues of A_0 at one are unobservable through C_0 ✓ $\rho(\mathsf{E}[A(\hat{L}_k)]) < 1$ (for appropriate k_p , k_l , γ) ✓ $C_i = D_i = 0$ for $1 \le i \le \ell$ ✓ Correct

PI Estimator

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix} = I \otimes \begin{bmatrix} 1 - \gamma & 0 & \gamma \\ 0 & 1 & 0 \\ \hline 1 & 0 & 0 \end{bmatrix} + L \otimes \begin{bmatrix} -k_p & k_l & 0 \\ -k_l & 0 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix}$$

✓ A_0 is convergent ✓ any eigenvalues of A_0 at one are unobservable through C_0 ✓ $\rho(\mathsf{E}[A(\hat{L}_k)]) < 1$ (for appropriate k_p , k_l , γ) ✓ $C_i = D_i = 0$ for $1 \le i \le \ell$ ✓ Correct

Estimator Properties

¹ If the expectation of the initial state is zero.

Van Scoy, Freeman, Lynch Asymptotic Mean Ergodicity of Average Consensus Estimators

- Defined asymptotic mean ergodicity and gave an ergodic theorem.
- Characterized the asymptotic mean ergodicity property for polynomial linear protocols.
- Applied results to the P and PI estimators to explain behavior over i.i.d. random graphs.

- Defined asymptotic mean ergodicity and gave an ergodic theorem.
- Characterized the asymptotic mean ergodicity property for polynomial linear protocols.
- Applied results to the P and PI estimators to explain behavior over i.i.d. random graphs.

- Defined asymptotic mean ergodicity and gave an ergodic theorem.
- Characterized the asymptotic mean ergodicity property for polynomial linear protocols.
- Applied results to the P and PI estimators to explain behavior over i.i.d. random graphs.

References

- Cai, Kai and H. Ishii (2012). "Average Consensus on Arbitrary Strongly Connected Digraphs with Dynamic Topologies". In: Proceedings of the 2012 American Control Conference, pp. 14–19.
- Chen, Yin et al. (2010). "Corrective Consensus: Converging to the Exact Average". In: Proceedings of the 49th IEEE Conference on Decision and Control, pp. 1221–1228. DOI: 10.1109/CDC.2010.5717925.
- Cortes, J. (2009). "Distributed Kriged Kalman Filter for Spatial Estimation". In: IEEE Transactions on Automatic Control 54.12, pp. 2816–2827. ISSN: 0018-9286. DOI: 10.1109/TAC.2009.2034192.
- Freeman, R.A., T.R. Nelson, and K.M. Lynch (2010). "A Complete Characterization of a Class of Robust Linear Average Consensus Protocols". In: Proceedings of the 2010 American Control Conference, pp. 3198–3203.
- Freeman, R.A., Peng Yang, and K.M. Lynch (2006). "Stability and Convergence Properties of Dynamic Average Consensus Estimators". In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 338–343. DOI: 10.1109/CDC.2006.377078.
- Leon-Garcia, A. (2008). Probability, Statistics, and Random Processes for Electrical Engineering. Pearson/Prentice Hall.
- Li, Tao and Ji-Feng Zhang (2010). "Consensus Conditions of Multi-Agent Systems With Time-Varying Topologies and Stochastic Communication Noises". In: IEEE Transactions on Automatic Control 55.9, pp. 2043–2057. ISSN: 0018-9286. DOI: 10.1109/TAC.2010.2042982.
- Peterson, Cameron K. and Derek A. Paley (2013). "Distributed Estimation for Motion Coordination in an Unknown Spatially Varying Flowfield". In: Journal of Guidance, Control, and Dynamics 36.3, pp. 894–898. ISSN: 0731-5090. DOI: 10.2514/1.59453.
- Vaidya, N.H., C.N. Hadjicostis, and A.D. Dominguez-Garcia (2012). "Robust Average Consensus over Packet Dropping Links: Analysis via Coefficients of Ergodicity". In: Proceedings of the 51st IEEE Conference on Decision and Control, pp. 2761–2766. DOI: 10.1109/CDC.2012.6428252.
- Yang, Peng, R.A. Freeman, and K.M. Lynch (2008). "Multi-Agent Coordination by Decentralized Estimation and Control". In: *IEEE Transactions on Automatic Control* 53.11, pp. 2480–2496. ISSN: 0018-9286. DOI: 10.1109/TAC.2008.2006925.