Optimal Worst-Case Dynamic Average Consensus

Bryan Van Scoy, Randy A. Freeman, Kevin M. Lynch

Northwestern University

July 3, 2015

- 2 Motivation: Static consensus
- 3 Problem Setup
- 4 Robust Optimization of Spectral Radius
- 5 Example: 2-state estimator

What is average consensus?

• Group of N agents

- Each agent has a local input u^t
- Communication with neighbors represented by an undirected graph
- Want all agents to calculate the average of all the inputs,
 - $\frac{1}{N}\sum_{i=1}^{N}u^{i}$

What is average consensus?

- Group of N agents
- Each agent has a local input uⁱ
- Communication with neighbors represented by an undirected graph
- Want all agents to calculate the average of all the inputs,

What is average consensus?

- Group of N agents
- Each agent has a local input uⁱ
- Communication with neighbors represented by an undirected graph
- Want all agents to calculate the average of all the inputs, $\frac{1}{N} \sum_{i=1}^{N} u^{i}$

What is average consensus?

- Group of N agents
- Each agent has a local input uⁱ
- Communication with neighbors represented by an undirected graph
- Want all agents to calculate the average of all the inputs,

$$\frac{1}{N}\sum_{i=1}^{N}u^{i}$$

Applications of average consensus

Average consensus is a key building block in many distributed algorithms such as the following:

- Formation control (Yang, Freeman, and Lynch, 2008)
- Distributed merging of feature-based maps (Aragues, Cortes, and Sagues, 2012)
- Distributed environmental monitoring (Bai, Freeman, and Lynch; Cortes; Olfati-Saber; Peterson and Paley, 2011; 2009; 2005; 2013)

Design average consensus estimators which are:

- simple
- scalable
- robust
 - to initial conditions
 - to changes in graph topology
- accurate
- internally stable
- able to track dynamic signals
- fast (asymptotic convergence factor)

- 2 Motivation: Static consensus
- 3 Problem Setup
- 4 Robust Optimization of Spectral Radius
- 5 Example: 2-state estimator

Initial condition estimator

Agent *i*:

Initial condition estimator

Agent *i*:

Full system:

$$x_{k+1} = \underbrace{(I - k_p L)}_{W} x_k \qquad \qquad x_0 = u$$

Initial condition estimator

Agent *i*:

Full system:

$$x_{k+1} = \underbrace{(I - k_p L)}_{W} x_k \qquad \qquad x_0 = u$$

This is referred to as *static* consensus since the input appears in the initial condition rather than the update equations.

Static consensus

Assumption 1

- The graph is connected and undirected.
- All non-zero eigenvalues of L are in the interval $[\lambda_{min}, \lambda_{max}]$.

Static consensus

Assumption 1

- The graph is connected and undirected.
- All non-zero eigenvalues of L are in the interval $[\lambda_{min}, \lambda_{max}]$.

$$x_{k+1} = (I - k_p L) x_k, \quad x_0 = u$$

Static consensus

Assumption 1

- The graph is connected and undirected.
- All non-zero eigenvalues of L are in the interval $[\lambda_{min}, \lambda_{max}]$.

$$x_{k+1} = (I - k_p L) x_k, \quad x_0 = u$$

Then the worst-case asymptotic convergence factor is

$$\alpha = \max_{\lambda \in [\lambda_{\min}, \lambda_{\max}]} |1 - k_{p}\lambda|.$$

Static consensus design

Choose k_p to minimize the asymptotic convergence factor:

2 Motivation: Static consensus

3 Problem Setup

- 4 Robust Optimization of Spectral Radius
- 5 Example: 2-state estimator

Static vs. Dynamic

Static

$$\begin{array}{ll} x_{k+1} = (I - k_p L) x_k, & x_0 = u \\ y_k = x_k & (\text{estimate of the average of } u) \end{array}$$

Static vs. Dynamic

Static

$$egin{aligned} & x_{k+1} = (I-k_p L) x_k, \quad x_0 = u \ & y_k = x_k \end{aligned}$$
 (estimate of the average of u)

Dynamic (non-robust)

$$x_{k+1} = (I - k_p L)x_k - k_p L u_k, \quad x_0 = 0$$
$$y_k = x_k + u_k$$

Static vs. Dynamic

Static

$$\begin{aligned} x_{k+1} &= (I - k_p L) x_k, \quad x_0 = u \\ y_k &= x_k \qquad (\text{estimate of the average of } u) \end{aligned}$$

Dynamic (non-robust)

$$x_{k+1} = (I - k_p L)x_k - k_p L u_k, \quad x_0 = 0$$
$$y_k = x_k + u_k$$

Dynamic (robust)

$$\begin{aligned} x_{k+1} &= A(L)x_k + B(L)u_k, \quad x_0 = \text{anything} \\ y_k &= C(L)x_k + D(L)u_k \end{aligned}$$

where A(L), B(L), C(L), D(L) satisfy certain properties (Freeman, Nelson, and Lynch, 2010).

Separated System

Full system:

 $\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix}$

Separated System

Full system:

$$\begin{bmatrix} A(L) & B(L) \\ C(L) & D(L) \end{bmatrix}$$

Separated system:

$$\begin{bmatrix} A(\lambda_i) & B(\lambda_i) \\ \hline C(\lambda_i) & D(\lambda_i) \end{bmatrix}, \quad \lambda_i \in \mathsf{eig}(L)$$

Separated System

Full system:

$$\begin{bmatrix} A(L) & B(L) \\ \hline C(L) & D(L) \end{bmatrix}$$

Separated system:

$$\begin{bmatrix} A(\lambda_i) & B(\lambda_i) \\ \hline C(\lambda_i) & D(\lambda_i) \end{bmatrix}, \quad \lambda_i \in \mathsf{eig}(L)$$

Separated system (unknown graph):

$$\begin{bmatrix} A(\lambda) & B(\lambda) \\ \hline C(\lambda) & D(\lambda) \end{bmatrix}, \quad \lambda \in \{0\} \cup [\lambda_{\min}, \lambda_{\max}]$$

Problem 1

Determine conditions on $A(\lambda)$ such that $B(\lambda)$, $C(\lambda)$, and $D(\lambda)$ can be chosen such that the estimator

- achieves exact average consensus for constant inputs and
- is robust to initial conditions.

Problem 1

Determine conditions on $A(\lambda)$ such that $B(\lambda)$, $C(\lambda)$, and $D(\lambda)$ can be chosen such that the estimator

- achieves exact average consensus for constant inputs and
- is robust to initial conditions.

Problem 2

Design an estimator which minimizes the worst-case asymptotic convergence factor over all graphs with $eig(L) \subseteq \Lambda$ and has the properties listed in Problem 1. That is, solve

 $\alpha = \min_{A_i} \max_{\lambda \in \Lambda} \rho(A(\lambda)) \quad subject \ to \ conditions \ from \ Problem \ 1.$

Condition 1 (Condition on $A(\lambda) = A_0 + \lambda A_1$)

There exist $v, w, p_0, p_1, q_0, q_1 \in \mathbb{R}^n$ such that

$$0 = \begin{bmatrix} I - A_0 \\ -A_1 & I - A_0 \end{bmatrix} \begin{bmatrix} p_1 \\ p_0 - v \end{bmatrix}$$
$$0 = \begin{bmatrix} I - A_0^T \\ -A_1^T & I - A_0^T \end{bmatrix} \begin{bmatrix} q_1 \\ q_0 - w \end{bmatrix}$$
$$1 = (q_0 - w)^T (I - A_0)(p_0 - v).$$

Main Theorem

Theorem 3

Consider an estimator with $A(\lambda)$ convergent for all $\lambda \in eig(L)$.

- (Necessity) If the estimator achieves average consensus for constant inputs and is robust to initial conditions, then A(λ) satisfies Condition 1.
- (Sufficiency) If A(λ) satisfies Condition 1, then there exist B(λ), C(λ), and D(λ) such that the estimator achieves average consensus for constant inputs and is robust to initial conditions.

Estimator Structure

For an estimator which satisfies Condition 1,

$$\begin{bmatrix} A(\lambda) & B(\lambda) \\ \hline C(\lambda) & D(\lambda) \end{bmatrix} = \begin{bmatrix} A_0 & (I - A_0)v \\ \hline w^T(I - A_0) & 1 - w^T(I - A_0)v \end{bmatrix} \\ + \lambda \begin{bmatrix} A_1 & -A_1p_0 \\ \hline -q_0^T A_1 & -q_0^T A_1p_0 \end{bmatrix}$$

Estimator Structure

For an estimator which satisfies Condition 1,

$$\begin{bmatrix} A(\lambda) & B(\lambda) \\ \hline C(\lambda) & D(\lambda) \end{bmatrix} = \begin{bmatrix} A_0 & (I - A_0)v \\ \hline w^T(I - A_0) & 1 - w^T(I - A_0)v \end{bmatrix} \\ + \lambda \begin{bmatrix} A_1 & -A_1p_0 \\ \hline -q_0^T A_1 & -q_0^T A_1p_0 \end{bmatrix}$$

Corollary 4 (Van Scoy, Freeman, and Lynch, 2014)

The above estimator is asymptotically mean ergodic if $q_0 = 0$.

Estimator Structure

For an estimator which satisfies Condition 1,

$$\begin{bmatrix} A(\lambda) & B(\lambda) \\ \hline C(\lambda) & D(\lambda) \end{bmatrix} = \begin{bmatrix} A_0 & (I - A_0)\mathbf{v} \\ \hline \mathbf{w}^T(I - A_0) & 1 - \mathbf{w}^T(I - A_0)\mathbf{v} \\ + \lambda \begin{bmatrix} A_1 & -A_1p_0 \\ \hline -q_0^T A_1 & -q_0^T A_1p_0 \end{bmatrix}$$

Corollary 4 (Van Scoy, Freeman, and Lynch, 2014)

The above estimator is asymptotically mean ergodic if $q_0 = 0$.

Corollary 5 (Zhu and Martinez, 2010 and Kia, Cortes, and Martinez, 2013)

The above estimator is cascadable if v = 0.

Estimator Structure

For an estimator which satisfies Condition 1 and is asymptotically mean ergodic and cascadable,

$$\begin{bmatrix} A(\lambda) & B(\lambda) \\ \hline C(\lambda) & D(\lambda) \end{bmatrix} = \begin{bmatrix} A_0 & 0 \\ \hline w^T(I - A_0) & 1 \end{bmatrix} + \lambda \begin{bmatrix} A_1 & -A_1p_0 \\ \hline 0 & 0 \end{bmatrix}$$

Estimator Structure

For an estimator which satisfies Condition 1 and is asymptotically mean ergodic and cascadable,

$$\begin{bmatrix} A(\lambda) & B(\lambda) \\ \hline C(\lambda) & D(\lambda) \end{bmatrix} = \begin{bmatrix} A_0 & 0 \\ \hline w^T(I - A_0) & 1 \end{bmatrix} + \lambda \begin{bmatrix} A_1 & -A_1p_0 \\ \hline 0 & 0 \end{bmatrix}$$

Now choose A_0 and A_1 to minimize the worst-case asymptotic convergence factor subject to Condition 1.

Introduction

2 Motivation: Static consensus

3 Problem Setup

- 4 Robust Optimization of Spectral Radius
- 5 Example: 2-state estimator

Robust Optimization of Spectral Radius

 $\text{Solve:} \quad \alpha = \min_{\substack{\mathcal{A}_i \quad \lambda \in \Lambda}} \max \rho(\mathcal{A}(\lambda)) \quad \text{subject to Condition 1}$

Robust Optimization of Spectral Radius

 $\begin{array}{ll} \mathsf{Solve:} & \alpha = \min_{\mathsf{A}_i} \max_{\lambda \in \mathsf{A}} \rho(\mathsf{A}(\lambda)) & \mathsf{subject to Condition 1} \end{array}$

Lemma 6 (Henrion et al., 2003)

Let $\overline{\lambda}$ be fixed. Then $\rho(A(\overline{\lambda})) < \alpha$ if and only if H > 0 where H is a matrix whose coefficients are polynomials in A_0 and A_1 .

Robust Optimization of Spectral Radius

Solve: $\alpha = \min_{A_i} \max_{\lambda \in \Lambda} \rho(A(\lambda))$ subject to Condition 1

Lemma 6 (Henrion et al., 2003)

Let $\overline{\lambda}$ be fixed. Then $\rho(A(\overline{\lambda})) < \alpha$ if and only if H > 0 where H is a matrix whose coefficients are polynomials in A_0 and A_1 .

Lemma 7 (Chesi, 2013)

 $\rho(A(\lambda)) < \alpha$ for all $\lambda \in [\lambda_{\min}, \lambda_{\max}]$ if and only if the following conditions hold:

- $\rho(A(\bar{\lambda})) < \alpha$ for some $\bar{\lambda} \in [\lambda_{\min}, \lambda_{\max}];$
- several matrix inequalities are satisfied which are polynomials in A₀ and A₁.

Polynomial Matrix Inequality (PMI)

Solutions to PMIs (Henrion and Lasserre, 2006):

- Solve convex LMI relaxations
- Solution converges to the global optimum as size of relaxation increases
- Finite convergence can be detected

Polynomial Matrix Inequality (PMI)

Solutions to PMIs (Henrion and Lasserre, 2006):

- Solve convex LMI relaxations
- Solution converges to the global optimum as size of relaxation increases
- Finite convergence can be detected

For $A_0, A_1 \in \mathbb{R}^{2 \times 2}$, the conditions can be expressed as LMIs.

- 2 Motivation: Static consensus
- 3 Problem Setup
- 4 Robust Optimization of Spectral Radius
- 5 Example: 2-state estimator

Problem 1

To satisfy Condition 1, we can use the parameterization

$$\mathcal{A}(\lambda) = egin{bmatrix} 1-\gamma & 0 \ 0 & 1 \end{bmatrix} + \lambda egin{bmatrix} -k_p & k_l \ -1 & 0 \end{bmatrix}$$

without loss of generality which gives

$$\begin{bmatrix} p_1 \\ p_0 - v \end{bmatrix} = \begin{bmatrix} 0 \\ -\gamma/k_l \\ -1 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} q_1 \\ q_0 - w \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -1/\gamma \\ 0 \end{bmatrix}$$

Choose $v = q_0 = 0$ for the estimator to be asymptotically mean ergodic and cascadable.

Estimator Form

$$\begin{bmatrix} A(\lambda) & B(\lambda) \\ \hline C(\lambda) & D(\lambda) \end{bmatrix} = \begin{bmatrix} 1-\gamma & 0 & 0 \\ 0 & 1 & 0 \\ \hline 1 & 0 & 1 \end{bmatrix} + \lambda \begin{bmatrix} -k_p & k_l & -k_p \\ -1 & 0 & -1 \\ \hline 0 & 0 & 0 \end{bmatrix}$$

Choose γ , k_p , and k_l to minimize the worst-case asymptotic convergence factor of $A(\lambda)$.

General design procedure

In general,

- $\alpha = \alpha (\lambda_{\min} / \lambda_{\max})$,
- α is monotonically non-increasing.

General design procedure

In general,

- $\alpha = \alpha (\lambda_{\min} / \lambda_{\max})$,
- α is monotonically non-increasing.

General design procedure:

- Design the weighted Laplacian to maximize the ratio $\lambda_{\min}/\lambda_{\max}$.
- 2 Design the estimator to have the desired properties:
 - exact
 - robust to initial conditions
 - asymptotically mean ergodic
 - asymptotic convergence factor

To conclude, we have:

- characterized the structure of estimators which are exact and robust to initial conditions,
- used this structure to minimize the worst-case asymptotic convergence factor for a two-dimensional estimator, and
- setup the problem of designing higher dimensional estimators as a set of PMIs. Techniques exist for finding the global optimal solution, although they are computationally difficult.

To conclude, we have:

- characterized the structure of estimators which are exact and robust to initial conditions,
- used this structure to minimize the worst-case asymptotic convergence factor for a two-dimensional estimator, and
- setup the problem of designing higher dimensional estimators as a set of PMIs. Techniques exist for finding the global optimal solution, although they are computationally difficult.

To conclude, we have:

- characterized the structure of estimators which are exact and robust to initial conditions,
- used this structure to minimize the worst-case asymptotic convergence factor for a two-dimensional estimator, and
- setup the problem of designing higher dimensional estimators as a set of PMIs. Techniques exist for finding the global optimal solution, although they are computationally difficult.

References I

- Aragues, R., J. Cortes, and C. Sagues (2012). "Distributed Consensus on Robot Networks for Dynamically Merging Feature-Based Maps". In: *IEEE Trans. Robot.* 28.4, pp. 840–854. ISSN: 1552-3098. DOI: 10.1109/TR0.2012.2192012.
- Bai, He, R.A. Freeman, and K.M. Lynch (2011). "Distributed Kalman Filtering Using the Internal Model Average Consensus Estimator". In: Proc. of the 2011 Amer. Control Conf. Pp. 1500–1505.
- Chesi, Graziano (2013). "Exact robust stability analysis of uncertain systems with a scalar parameter via LMIs". In: Automatica 49.4, pp. 1083 – 1086. ISSN: 0005-1098. DOI: http://dx.doi.org/10.1016/j.automatica.2013.01.033.
- Cortes, J. (2009). "Distributed Kriged Kalman Filter for Spatial Estimation". In: IEEE Trans. Autom. Control 54.12, pp. 2816–2827. ISSN: 0018-9286. DOI: 10.1109/TAC.2009.2034192.
- Freeman, R.A., T.R. Nelson, and K.M. Lynch (2010). "A Complete Characterization of a Class of Robust Linear Average Consensus Protocols". In: Proc. of the 2010 Amer. Control Conf. Pp. 3198–3203.
- Freeman, R.A., Peng Yang, and K.M. Lynch (2006). "Stability and Convergence Properties of Dynamic Average Consensus Estimators". In: Proc. of the 45th IEEE Conf. on Decision and Control, pp. 338–343. DOI: 10.1109/CDC.2006.377078.
- Henrion, D. and J.-B. Lasserre (2006). "Convergent relaxations of polynomial matrix inequalities and static output feedback". In: *IEEE Trans. Autom. Control* 51.2, pp. 192–202. ISSN: 0018-9286. DOI: 10.1109/TAC.2005.863494.
- Henrion, D. et al. (2003). "Ellipsoidal approximation of the stability domain of a polynomial". In: IEEE Trans. Autom. Control 48.12, pp. 2255–2259. ISSN: 0018-9286. DOI: 10.1109/TAC.2003.820161.
- Olfati-Saber, R. (2005). "Distributed Kalman Filter with Embedded Consensus Filters". In: Proc. of the Joint 44th IEEE Conf. on Decision and Control and 2005 European Control Conf. Pp. 8179–8184. DOI: 10.1109/COC.2005.1583486.

References II

- Peterson, Cameron K. and Derek A. Paley (2013). "Distributed Estimation for Motion Coordination in an Unknown Spatially Varying Flowfield". In: Journal of Guidance, Control, and Dynamics 36.3, pp. 894–898. ISSN: 0731-5090. DOI: 10.2514/1.59453.
- Van Scoy, B., R.A Freeman, and K.M. Lynch (2014). "Asymptotic mean ergodicity of average consensus estimators". In: Proc. of the 2014 Amer. Control Conf. Pp. 4696–4701. DOI: 10.1109/ACC.2014.6859059.
- (2015). "Optimal Robust Dynamic Average Consensus". In: Proc. of the 2015 Amer. Control Conf.
- Yang, Peng, R.A. Freeman, and K.M. Lynch (2008). "Multi-Agent Coordination by Decentralized Estimation and Control". In: *IEEE Trans. Autom. Control* 53.11, pp. 2480–2496. ISSN: 0018-9286. DOI: 10.1109/TAC.2008.2006925.
- Zhu, Minghui and Sonia Martnez (2010). "Discrete-time dynamic average consensus". In: Automatica 46.2, pp. 322 –329. ISSN: 0005-1098. DOI: http://dx.doi.org/10.1016/j.automatica.2009.10.021.

Closed-Form Solution

The LMIs in Lemma 7 can be solved in closed-form to obtain

$$\alpha = \begin{cases} \frac{\lambda_r^2 - 8\lambda_r + 8}{8 - \lambda_r^2}, & 0 < \lambda_r \le 3 - \sqrt{5} \\ \frac{\sqrt{(1 - \lambda_r)(5\lambda_r^2 - \lambda_r^3 + 4)} - \lambda_r(1 - \lambda_r)}{2(\lambda_r^2 + 1)}, & 3 - \sqrt{5} < \lambda_r \le 1 \end{cases}$$

where $\lambda_r = \lambda_{\min}/\lambda_{\max}$ and the estimator parameters are

$$\gamma = 1 - \alpha, \qquad k_p = \frac{1}{\lambda_{\max}} \frac{\alpha(1 - \alpha)\lambda_r}{\alpha + \lambda_r - 1}, \qquad k_I = \frac{1 - \alpha}{\lambda_{\min}}$$