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Introduction

What is average consensus?

@ Group of N agents @
e Each agent has a local input v/

@ Communication with neighbors
represented by an undirected @ @

graph
@ Want all agents to calculate the
average of all the inputs,

N
1 i
L @ o
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Introduction

Applications of average consensus

Average consensus is a key building block in many distributed
algorithms such as the following:
e Formation control (Yang, Freeman, and Lynch, 2008)
e Distributed merging of feature-based maps (Aragues, Cortes,
and Sagues, 2012)
e Distributed environmental monitoring (Bai, Freeman, and
Lynch; Cortes; Olfati-Saber; Peterson and Paley, 2011; 2009;
2005; 2013)
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Introduction

Design average consensus estimators which are:
@ simple
@ scalable

@ robust

e to initial conditions
e to changes in graph topology

accurate
internally stable
able to track dynamic signals

fast (asymptotic convergence factor)
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Motivation: Static consensus

Initial condition estimator

i _ i o j i i
Xey1 = Xk = kp E , aij (%K — %) Xo=u
new current JEN;

estimate estimate
weighted sum of estimate
differences among neighbors
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Initial condition estimator

i _ i o j i i
Xey1 = Xk = kp E , aij (%K — %) Xo=u
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Xk+1 = (I — ka) Xk Xo=u
—_——
w

Van Scoy, Freeman, Lynch Optimal Worst-Case Dynamic Average Consensus



Motivation: Static consensus

Initial condition estimator

i _ i o j i i
Xey1 = Xk = kp E , aij (%K — %) Xo=u
new current JEN;

estimate estimate
weighted sum of estimate
differences among neighbors

Full system:

Xk+1 = (I — ka) Xk Xo=u
———

w

This is referred to as static consensus since the input appears in
the initial condition rather than the update equations.
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Static consensus

@ The graph is connected and undirected.

@ All non-zero eigenvalues of L are in the interval [Amin, Amax]-
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Motivation: Static consensus

Static consensus

@ The graph is connected and undirected.

@ All non-zero eigenvalues of L are in the interval [Amin, Amax]-

Xet1 = (I — kpl)xk, xo=u
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Motivation: Static consensus

Static consensus

@ The graph is connected and undirected.

@ All non-zero eigenvalues of L are in the interval [Amin, Amax]-

Then the worst-case asymptotic convergence factor is

a=_max |1—kp]l
Aep\mim)\max]
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Motivation: Static consensus

Static consensus design

Choose kp, to minimize the asymptotic convergence factor:

o = mina It
kp !
. @

=min  max |1 —kpA| [ KT
kP )\e[)\mim)\maxl |

_ 1- )\min/)\max
1+ )\min/)\max

1 ko
[

where |
5 0 Amn \ Amax

)\min + )\max ‘

ko =
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Problem Setup

Static vs. Dynamic

Static
k1 = (I — kpL)xk, xo=u
Vi = Xk (estimate of the average of u)
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Problem Setup

Static vs. Dynamic

Static
k1 = (I — kpL)xk, xo=u
Vi = Xk (estimate of the average of u)

Dynamic (non-robust)

X1 = (I — kpL)x — kpLuk, xp =0

Yk = Xk + Uk
Dynamic (robust)
xk+1 = A(L)xk + B(L)uk, xo = anything
Yk = C(L)xk + D(L)ux

where A(L), B(L), C(L), D(L) satisfy certain properties (Freeman,
Nelson, and Lynch, 2010).
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Separated System

Full system:
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Problem Setup

Separated System

Full system:

Separated system:

AN) | B(N) .
[C(A,-)D(A,-)]’ A € eig(l)

Separated system (unknown graph):

|: A()‘) B()\) :| , \E {O} U [)\minu Amax]
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Problem Setup

Problem 1

Determine conditions on A(\) such that B(\), C(\), and D())
can be chosen such that the estimator

@ achieves exact average consensus for constant inputs and

@ s robust to initial conditions.
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Problem Setup

Problem 1

Determine conditions on A(\) such that B(\), C(\), and D())
can be chosen such that the estimator

@ achieves exact average consensus for constant inputs and

@ s robust to initial conditions.

Problem 2

Design an estimator which minimizes the worst-case asymptotic
convergence factor over all graphs with eig(L) C A and has the
properties listed in Problem 1. That is, solve

a= n}\in max p(A(X)) subject to conditions from Problem 1.
i €
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Problem Setup

Condition 1 (Condition on A(\) = Ag + \A;p)

There exist v, w, po, p1, o, g1 € R" such that

0— I — Ao P1
—A1 /—Ao Po—V
/—AoT qi

0= T T

1= (qo—w)"(I = Ao)(po — v)-

|
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Problem Setup

Main Theorem

Consider an estimator with A(\) convergent for all X € eig(L).

© (Necessity) If the estimator achieves average consensus for
constant inputs and is robust to initial conditions, then A(\)
satisfies Condition 1.

@ (Sufficiency) If A(\) satisfies Condition 1, then there exist
B(X), C(X), and D(\) such that the estimator achieves

average consensus for constant inputs and is robust to initial
conditions.
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Problem Setup

Estimator Structure

For an estimator which satisfies Condition 1,
A | BV
c() | D)

B Ao | (1Al
W= A) [1-wT(l - Ag)v
A1 ‘ —Ai1po ]

+ A
—qo" A ‘ —qo " A1po
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Problem Setup

Estimator Structure

For an estimator which satisfies Condition 1,
AV [BX) ] [ A | (= A
C(\) | D) wT(l—Ao) | 1—wT(l - Ag)v

A1 ‘ —Ai1po
—qo " A ‘ —qo " A1po

+A

Corollary 4 (Van Scoy, Freeman, and Lynch, 2014)

The above estimator is asymptotically mean ergodic if gg = 0.

Van Scoy, Freeman, Lynch Optimal Worst-Case Dynamic Average Consensus



Problem Setup

Estimator Structure

For an estimator which satisfies Condition 1,
AV [BX) ] [ A | (= A
C(\) | D) wT(l—Ao) | 1—wT (I - Ag)v

A1 ‘ —Ai1po
—qo" A ‘ —qo " A1po

+A

Corollary 4 (Van Scoy, Freeman, and Lynch, 2014)

The above estimator is asymptotically mean ergodic if gg = 0.

Corollary 5 (Zhu and Martinez, 2010 and Kia, Cortes, and Martinez, 2013)

The above estimator is cascadable if v = 0.
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Problem Setup

Estimator Structure

For an estimator which satisfies Condition 1 and is asymptotically
mean ergodic and cascadable,

+A

0 0

Ao ‘ A1 | —A1po
w4 |1 '
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Problem Setup

Estimator Structure

For an estimator which satisfies Condition 1 and is asymptotically
mean ergodic and cascadable,

A Lo
_[WT(/—A0)1]+>\

Now choose Ap and A; to minimize the worst-case asymptotic
convergence factor subject to Condition 1.

0 0

A1 | —A1po ]
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Robust Optimization of Spectral Radius

Robust Optimization of Spectral Radius

Solve: o = minmaxp(A())) subject to Condition 1
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Robust Optimization of Spectral Radius

Robust Optimization of Spectral Radius

Solve: o = minmaxp(A())) subject to Condition 1

Lemma 6 (Henrion et al., 2003)

Let ) be fixed. Then p(A(N\)) < « if and only if H > 0 where H is
a matrix whose coefficients are polynomials in Ay and A;.
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Robust Optimization of Spectral Radius

Robust Optimization of Spectral Radius

Solve: o = minmaxp(A())) subject to Condition 1

Lemma 6 (Henrion et al., 2003)

Let ) be fixed. Then p(A(N\)) < « if and only if H > 0 where H is
a matrix whose coefficients are polynomials in Ay and A;.

Lemma 7 (Chesi, 2013)

P(A(N)) < « for all X € [Amin, Amax| if and only if the following
conditions hold:

° p(A(S\)) < « for some \ € Plvaartan Az 2

@ several matrix inequalities are satisfied which are polynomials
in Ag and A;.
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Robust Optimization of Spectral Radius

Polynomial Matrix Inequality (PMI)

Solutions to PMIs (Henrion and Lasserre, 2006):
@ Solve convex LMI relaxations

@ Solution converges to the global optimum as size of relaxation
increases

@ Finite convergence can be detected
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Robust Optimization of Spectral Radius

Polynomial Matrix Inequality (PMI)

Solutions to PMIs (Henrion and Lasserre, 2006):
@ Solve convex LMI relaxations

@ Solution converges to the global optimum as size of relaxation
increases

@ Finite convergence can be detected

For Ag, A1 € R?*2, the conditions can be expressed as LMls.
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Example: 2-state estimator

Problem 1

To satisfy Condition 1, we can use the parameterization

A(N) = [107 (1)] +)\[_k1” ’(‘)’]

without loss of generality which gives

0 0
[ p1 }: —v/ ki [ a1 ]: 1
po— v -1 | qo — w -1/

0 0

Choose v = qg = 0 for the estimator to be asymptotically mean
ergodic and cascadable.
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Example: 2-state estimator

Estimator Form

1—v 0]0 —kp ki | —k
c DM 1 0|1 0 0] 0

Choose v, kp, and k; to minimize the worst-case asymptotic
convergence factor of A(\).
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Example: 2-state estimator
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Worst-case asymptotic convergence factor ()
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Example: 2-state estimator

General design procedure

In general,

o o= a()\min/)\max)r
@ « is monotonically non-increasing.
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Example: 2-state estimator

General design procedure

In general,
o o= a()\min/)\max)r

@ « is monotonically non-increasing.

General design procedure:

© Design the weighted Laplacian to maximize the ratio
/\min/)\max-
@ Design the estimator to have the desired properties:
o exact

robust to initial conditions
asymptotically mean ergodic
asymptotic convergence factor

Van Scoy, Freeman, Lynch Optimal Worst-Case Dynamic Average Consensus



Example: 2-state estimator

Conclusions

To conclude, we have:

@ characterized the structure of estimators which are exact and
robust to initial conditions,
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Example: 2-state estimator

Conclusions

To conclude, we have:

@ characterized the structure of estimators which are exact and
robust to initial conditions,

@ used this structure to minimize the worst-case asymptotic
convergence factor for a two-dimensional estimator, and
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Example: 2-state estimator

Conclusions

To conclude, we have:
@ characterized the structure of estimators which are exact and
robust to initial conditions,
@ used this structure to minimize the worst-case asymptotic
convergence factor for a two-dimensional estimator, and
@ setup the problem of designing higher dimensional estimators

as a set of PMlIs. Techniques exist for finding the global
optimal solution, although they are computationally difficult.
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Example: 2-state estimator

Closed-Form Solution

The LMIs in Lemma 7 can be solved in closed-form to obtain

A2 -8\, +38
cr V' = < _
. 5 a2 0<A\<3—-5
Y VA =)BAZ =3 +4) - A\ (1-),)

3—vB< A\ <1

2(02+1) ’
where A\, = Aqin/Amax and the estimator parameters are

71—0[

1 a(l—a)\ P
I —

:]_— k = .
7 @ P Amax @+ Ap — 1’ Amin
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