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Distributed optimization

We must achieve both consensus and optimality.
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e local state x; € R? for each agent i € {1,...,n}
e mixing weights w;;
e converges slowly even for strongly convex f;

Want linear (exponential) convergence: ||x — x*|| = O(p¥).

1

e If n =1 (ordinary gradient descent) or
e If f; are quadratic (average consensus).
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Exact Diffusion [Yuan, et al, 2017]
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Motivation

Exact Diffusion [Yuan, et al, 2017]
Xik+1 = Zik —a vfl(zlk)
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NIDS [Li, et al, 2017]
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How does one design a distributed algorithm?

Inspirations include:

e dual decomposition
e discretization of ODEs

e gradient tracking

Lots of structural variety!
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Motivation

Exact Diffusion [Yuan, et al, 2017]

XKL = Zk — o VFi(2F)

A= S 2
j=1
NIDS [Li, et al, 2017]

T2 =) Wi (27 = X — aVE( T + a V()
j=1

NIDS and Exact Diffusion are in fact the same!
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Algorithm family

from to
neighbors Agent i neighbors
1 rieay T o R PTG [E
[”14 | Fi ) } _ [Ao Bo] [5,-[(] n |:A1 81] ZLIJ ij} ! [ulk]
R 7 C Do |y; G D = uj i—>
i_ U,k = Vf;(ylk) E

e |local state &; and gradient u; are communicated

e |ocal gradient evaluated at y;

Parameterization is pretty general. But...
e not all choices of (Ao, By, Co, Do, A1, B1, C1, D1) are valid
e this set is overparameterized
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Main result (canonical form)

We can uniquely represent algorithms in this family
using five scalars (a, (o, (1, (2, (3).

k
With fk {X’k] , Agent i performs:

w
x,-kJrl 1 (| —« x,-k -G —¢ |0 n
Wik:—l —10 1 W{ + -1 0 |0 Z L;
Yi 1 0] 0 u; —¢ 0 ‘ 0] =t
U - vf’(.ylk)
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Implementation

Initialize:
Communicate:

Compute gradient:

x? arbitrary, and w? =0

kK xonog Lk kK N~ Lk
Vli_ijlLUXj V2i—zj:1Lqu

)/-k = X,-k — (3 Vlk,- U,k = Vﬁ'(}’ik)
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Implementation

Initialize: x? arbitrary, and w? =0
. ] k _ n ok k __ n ok
Communicate: vy = i Lijx; Vai = 2 L w;

Compute gradient: yk = X,-k — (3 Vf,- U,!( = Vfi()’ik)
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Implementation

Initialize: x? arbitrary, and w? =0
. ) k _ n Uk k _ n .k
Communicate: vi; =2 Lipx Vai = 21 L w;

Compute gradient: yk = X,-k — (3 Vf,- U,!( = Vfi()’ik)

1

k+1 _ k k k k k
Undate state: X=X+ Qwp — au) — Cuvy; + Qavy;
pdate state: wh+1 k k

=W =V



Existing algorithms

G G G G
Shi, et. al, 2015  EXTRA 1 0 0
Yuan, et. al, 2017 Exact Diffusion % 1 0 %
Li, et. al, 2017 NIDS 1 0 :
Qu, Li, 2018 DIGing 0 2 1 0
Xu, 2018 AsynDGM 0 2 1 1
Jakoveti¢, 2019 (B=pI) af 2 1 0
Jakoveti¢, 2019 (B=pW) af 2 1—af 0
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Properties of canonical form

Given a distributed algorithm that converges to a solution x*,
it can be put into canonical form in a unique way.

Given an algorithm in canonical form,
it has a fixed point x* that is a solution
(but doesn’t necessarily converge to it).

These results are independent of assumptions on local functions!
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Multidimensional transfer function interpretation

G(z,\)
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e encode constraints on fixed points in the frequency domain
e simplify G(z,\) according to the following:

1. G(z,0) has a pole at z =1 and is marginally stable.
2. G(z, ) has a zero at z = 1 and is strictly stable for A > 0.
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Impossibility result

At least two states are required for a time-invariant distributed
algorithm to achieve both consensus and optimality.
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Impossibility result

At least two states are required for a time-invariant distributed
algorithm to achieve both consensus and optimality.

e Explains why DGD requires a diminishing stepsize
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What's next?

Conventional approach:
e come up with a design
e prove something about it

e repeat

With a canonical form:
e prove something about canonical form

e holds over broad class of algorithms
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Algorithm design

e universal analysis framework
e worst-case linear rate guarantees
e optimal algorithm design

e algorithm robust to time-varying graphs

e check arXiv on Monday!
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Thanks!



