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Distributed optimization
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Distributed optimization
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x?

x?

x?

x?

We must achieve both consensus and optimality.
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DGD [Nedic,Ozdaglar, 2009]

xk+1
i =

n∑
j=1

wijx
k
j − αk∇fi(xki )

• local state xi ∈ Rd for each agent i ∈ {1, . . . , n}

• mixing weights wij

• converges slowly even for strongly convex fi

Want linear (exponential) convergence: ‖xki − x?‖ = O(ρk).

• If n = 1 (ordinary gradient descent) or
• If fi are quadratic (average consensus).
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Motivation

Exact Diffusion [Yuan, et al, 2017]

xk+1
i = zki − α∇fi(zki )

zk+1
i =

n∑
j=1

wij (xk+1
j − xkj + zkj )

NIDS [Li, et al, 2017]

xk+2
i =

n∑
j=1

w̃ij

(
2xk+1

j − xkj − α∇fj(xk+1
j ) + α∇fj(xkj )

)
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How does one design a distributed algorithm?

Inspirations include:

• dual decomposition

• discretization of ODEs

• gradient tracking

Lots of structural variety!
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Algorithm family

[
ξk+1
i

yki

]
=

[
A0 B0

C0 D0

] [
ξki
uki

]
+

[
A1 B1

C1 D1

] n∑
j=1

Lij

[
ξkj
ukj

]
uki = ∇fi (yki )

Agent i[
ξkj
ukj

]
from

neighbors [
ξki
uki

]
to

neighbors

• local state ξi and gradient ui are communicated

• local gradient evaluated at yi

Parameterization is pretty general. But...

• not all choices of (A0,B0,C0,D0,A1,B1,C1,D1) are valid

• this set is overparameterized
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Main result (canonical form)

We can uniquely represent algorithms in this family
using five scalars (α, ζ0, ζ1, ζ2, ζ3).

With ξki :=

[
xki
w k
i

]
, Agent i performs:xk+1

i

w k+1
i

y k
i

 =

 1 ζ0 −α
0 1 0

1 0 0

xkiw k
i

uk
i

+

 −ζ1 −ζ2 0
−1 0 0

− ζ3 0 0

 n∑
j=1

Lij

xkjw k
j

uk
j


uk
i = ∇fi(y k

i )
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Implementation

Initialize: x0i arbitrary, and w 0
i = 0

Communicate: v k
1i =

∑n
j=1 Lij x

k
j v k

2i =
∑n

j=1 Lij w
k
j

Compute gradient: y k
i = xki − ζ3 v k

1i uk
i = ∇fi(y k

i )

Update state:
xk+1
i = xki + ζ0 w

k
i − α uk

i − ζ1v k
1i + ζ2v

k
2i

w k+1
i = w k

i − v k
1i
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Existing algorithms

α ζ0 ζ1 ζ2 ζ3

Shi, et. al, 2015 EXTRA α 1
2

1 0 0

Yuan, et. al, 2017 Exact Diffusion α 1
2

1 0 1
2

Li, et. al, 2017 NIDS α 1
2

1 0 1
2

Qu, Li, 2018 DIGing α 0 2 1 0

Xu, 2018 AsynDGM α 0 2 1 1

Jakovetić, 2019 (B = βI ) α αβ 2 1 0

Jakovetić, 2019 (B = βW ) α αβ 2 1− αβ 0
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Jakovetić, 2019 (B = βI ) α αβ 2 1 0
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Properties of canonical form

Given a distributed algorithm that converges to a solution x?,
it can be put into canonical form in a unique way.

Given an algorithm in canonical form,
it has a fixed point x? that is a solution
(but doesn’t necessarily converge to it).

These results are independent of assumptions on local functions!
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Multidimensional transfer function interpretation

G (z , λ)

∇f

yu
ξ

• encode constraints on fixed points in the frequency domain

• simplify G (z , λ) according to the following:

1. G (z , 0) has a pole at z = 1 and is marginally stable.

2. G (z , λ) has a zero at z = 1 and is strictly stable for λ > 0.
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Impossibility result

At least two states are required for a time-invariant distributed
algorithm to achieve both consensus and optimality.

• Explains why DGD requires a diminishing stepsize
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What’s next?

Conventional approach:

• come up with a design

• prove something about it

• repeat

With a canonical form:

• prove something about canonical form

• holds over broad class of algorithms
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Algorithm design

• universal analysis framework

• worst-case linear rate guarantees

• optimal algorithm design

• algorithm robust to time-varying graphs

• check arXiv on Monday!
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Thanks!
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