Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

Feedforward Estimators for the Distributed Average Tracking of Bandlimited Signals in Discrete Time with Switching Graph Topology

Bryan Van Scoy, Randy A. Freeman, Kevin M. Lynch

Northwestern University

Dec. 13, 2016

Distributed average tracking

Distributed average tracking

Assumptions on the input signals

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams Analysis

Assumption (Input signals)

The input signals are bandlimited with cutoff frequency $\theta_c < \pi$ where θ_c is known.

Assumptions on the graph

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

Assumption (Graph)

At each iteration k,

- the graph is connected,
- the graph is undirected, and
- the nonzero eigenvalues of L_k are in the interval $[\lambda_{\min}, \lambda_{\max}]$ where λ_{\min} and λ_{\max} are known.

Robustness Properties

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

Definition (Robust to initial conditions)

Initial states do not affect the steady-state.

Definition (Robust to changes in the graph)

For a given set of graphs,

Robustness Properties

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

Definition (Robust to initial conditions)

Initial states do not affect the steady-state.

Definition (Robust to changes in the graph)

For a given set of graphs,

maximum steady-state error with worst-case constant graph maximum steady-state error

 with worst-case sequence of switching graphs

Example: Robust to changes in the graph

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams Analysis Scenario: The graph changes once at iteration 300 and then at every iteration past 600.

Example: Robust to changes in the graph

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams Analysis Simulation Scenario: The graph changes once at iteration 300 and then at every iteration past 600.

Contribution

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

We propose an estimator for distributed average tracking which has all of the following properties:

- discrete-time updates
- robust to initial conditions
- robust to changes in the graph
 - proof for undirected graphs
 - simulations for balanced directed graphs
- arbitrarily small steady-state error (using exact arithmetic)

Literature review

Distributed Average Tracking							
Van Scoy, Freeman, Lynch			he	Č	, day	shaphs	-101-10 11 eur.
Problem Setup		rex.				inced o	
Block Diagrams	Estimator	<i>S</i> .	A.00	Swi	and	Ar6,	
Analysis	(F. Chen, Y. Cao, W. Ren, 2012)	X	X	√	√	\checkmark	
Simulations	(M. Zhu, S. Martínez, 2010)	 Image: A set of the set of the	X	\checkmark	\checkmark	X	
	(S. Kia, J. Cortés, S. Martínez, 2013)	√	X	1	\checkmark	×	
	(M. Franceschelli, A. Gasparri, 2016)	√	\checkmark	1	\checkmark	X	
	(B. Van Scoy, R. Freeman, K. Lynch, 2015)	√	\checkmark	X	X	×	
	This paper	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Static consensus (Tsitsiklis, 1984)

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

As a first step, consider the following estimator:

$$x_{k+1} = \underbrace{(I - k_p L)}_{W} x_k, \quad x_0 = u$$

Output:
$$y_k = x_k = (I - k_p L)^k u$$

Static consensus: *u* enters system as initial condition

Issue

Can only track constant inputs.

Static consensus (Tsitsiklis, 1984)

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

As a first step, consider the following estimator:

$$x_{k+1} = \underbrace{(I - k_p L)}_{W} x_k, \quad x_0 = u$$

Output:
$$y_k = x_k = (I - k_p L)^k u$$

Static consensus: *u* enters system as initial condition

Issue

Can only track constant inputs.

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

Instead, apply n steps of consensus in a feedforward fashion.

Output:
$$y_k = (I - k_p L)^n u_{k-n}$$

Issue

The output is delayed from the input by n iterations.

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

Instead, apply n steps of consensus in a feedforward fashion.

Output:
$$y_k = (I - k_p L)^n u_{k-n}$$

lssue

The output is delayed from the input by n iterations.

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

To get rid of the delay in the passband, replace 1/z by a filter f(z) where

- f is strictly proper, and
- $f(e^{j\theta}) \approx 1$ for $\theta \in [0, \theta_c]$.

Output: $y_k \approx (I - k_p L)^n u_k$

Issue

The estimator is not robust to changes in the graph.

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

To get rid of the delay in the passband, replace 1/z by a filter f(z) where

- f is strictly proper, and
- $f(e^{j\theta}) \approx 1$ for $\theta \in [0, \theta_c]$.

Output: $y_k \approx (I - k_p L)^n u_k$

lssue

The estimator is not robust to changes in the graph.

Van Scoy, Freeman, Lynch Distributed Average Tracking

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

We could instead place f(z) only in the disagreement directions so that the gain in the consensus direction is unity.

lssue

This estimator is also not robust to changes in the graph.

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

We could instead place f(z) only in the disagreement directions so that the gain in the consensus direction is unity.

Issue

This estimator is also not robust to changes in the graph.

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

To make the estimator robust to changes in the graph, move f(z) before any communication.

The output is not delayed and the estimator is robust to changes in the graph.

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

To make the estimator robust to changes in the graph, move f(z) before any communication.

The output is not delayed and the estimator is robust to changes in the graph.

Comparison

Singular values of the error system

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

$$u \longrightarrow H_{err}(z, L) \longrightarrow e$$

Let $\sigma(\theta, \lambda)$ denote the singular values of the error transfer function. Then the maximum singular value is

$$\sigma_{\max} := \max_{\substack{\lambda \in \{0\} \cup [\lambda_{\min}, \lambda_{\max}] \\ \theta \in [0, \theta_c]}} \sigma(\theta, \lambda).$$

The maximum steady-state error is bounded by

$$||e||_{\infty} \leq \sigma_{\max} \sqrt{N} ||u||_{\infty}.$$

Main design problem

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

Problem

Given

- the cutoff frequency (θ_c)
- the Laplacian eigenvalue region (λ_{min} and λ_{max})

choose

- the number of stages (n)
- the filter f(z)

to minimize σ_{max} .

Main design problem

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

Problem

Given

- the cutoff frequency (θ_c)
- the Laplacian eigenvalue region (λ_{min} and λ_{max})

choose

- the number of stages (n)
- the filter f(z)

to minimize σ_{max} .

Question

How to design f(z) such that

- f is strictly proper, and
- $f(e^{j\theta}) \approx 1$ for $\theta \in [0, \theta_c]$?

Design of f(z)

Van Scoy, Freeman, Lynch Distributed Average Tracking

Design of f(z)

Van Scoy, Freeman, Lynch Distributed Average Tracking

Optimization problem

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

Problem

Given θ_c , λ_{min} , λ_{max} , H_{max} , and m_{max} , solve

 $\min_{n,m,\epsilon} \sigma_{max} \quad s.t. \ ||H||_{\infty} \leq H_{max}, \quad m \leq m_{max}.$

Optimization problem

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Theorem: Arbitrarily small error

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

Theorem

The steady-state error can be made arbitrarily small if

- the number of stages is arbitrarily large
- the number of states on each estimator is arbitrarily large

exact arithmetic is used

Simulation: $\theta_c = \pi/10$

Simulation: $\theta_c = \pi/3$

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagram

Analysis

Simulations

Simulation: $\theta_c = 2\pi/3$

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagram

Analysis

Simulations

Dropped packets

Simulations

Dropped packets

Dropped packets

Van Scoy, Freeman, Lynch Distributed Average Tracking

Conclusions

Distributed Average Tracking

Van Scoy, Freeman, Lynch

Problem Setup

Block Diagrams

Analysis

Simulations

A feedforward estimator is proposed to solve the distributed average tracking problem of bandlimited signals in discrete-time. The estimator has the following properties:

- discrete-time updates
- robust to initial conditions
- robust to changes in the graph
- robust to directed communication (from simulations)
- arbitrarily small steady-state error (using exact arithmetic)