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Neighbors

Ly : Graph Laplacian at time k
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Assumptions on the input signals
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|FFT(Inputs)|
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Assumptions on the graph
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Assumption (Graph)

Problem

Setup At each iteration k,

® the graph is connected,
@ the graph is undirected, and

@ the nonzero eigenvalues of Ly are in the interval
[Amins Amax] where Amin and A\max are known.
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Robustness Properties

Definition (Robust to initial conditions)

Initial states do not affect the steady-state.
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Definition (Robust to initial conditions)

Initial states do not affect the steady-state.

Problem
Setup

Definition (Robust to changes in the graph)

For a given set of graphs,

maximum steady-state maximum steady-state error
error with worst-case = with worst-case sequence of
constant graph switching graphs
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Example: Robust to changes in the graph
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Contribution
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Van Scoy,
FitzzEn, We propose an estimator for distributed average tracking which

Lynch
has all of the following properties:

Problem

Setup @ discrete-time updates

@ robust to initial conditions
@ robust to changes in the graph

e proof for undirected graphs
e simulations for balanced directed graphs

@ arbitrarily small steady-state error (using exact arithmetic)
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Static consensus (Tsitsiklis, 1984)
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xpe1 = —kpl)xx, xo=1u
~—_——

w
Block

Diagrams Output: Yk = Xk = (I — ka)kU

Static consensus: u enters system as initial condition
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Van Scoy, As a first step, consider the following estimator:
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Lynch

xpe1 = —kpl)xx, xo=1u
~—_——

w
Block

Diagrams Output: Yk = Xk = (I — ka)kU

Static consensus: u enters system as initial condition

Can only track constant inputs.
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Block Diagram 1
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Average Instead, apply n steps of consensus in a feedforward fashion.
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Block Diagram 1

Distributed

Average Instead, apply n steps of consensus in a feedforward fashion.
racking

Van Scoy,

Freeman, 1 1
Lynch u _l_) O—)_l—)y

-
~
.
N
~c>\‘
~
.
N

Block
Diagrams

n times

Output: yx = (I — kpL)"up—p

The output is delayed from the input by n iterations.

Van Scoy, Freeman, Lynch Distributed Average Tracking



Distributed
Average
Tracking

Van Scoy,
Freeman,
Lynch

Block
Diagrams

Block Diagram 2

f(z) where

To get rid of the delay in the passband, replace 1/z by a filter

o f is strictly proper, and
o f(e?) ~1for 6 c|0,6.].

u O~ f(2)!

n times
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Block Diagram 2

Distributed To get rid of the delay in the passband, replace 1/z by a filter

Average

Tracking f(z) Where

Van Scoy, o f is strictly proper, and

Freeman,

Lynch [ f(eje) ~1 for 9 S [O, HC]

u O~ f(2)!

Block -
Diagrams
kL

n times

Output: yx ~ (I — kpL)"

The estimator is not robust to changes in the graph.

Uk

kL_j

p
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Block Diagram 3
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Tracking We could instead place f(z) only in the disagreement directions
Van Scoy, so that the gain in the consensus direction is unity.
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Block Diagram 3

We could instead place f(z) only in the disagreement directions

so that the gain in the consensus direction is unity.

u

kol

n times

i

kol

f(z)l

1

This estimator is also not robust to changes in the graph.
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Block Diagram 4
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To make the estimator robust to changes in the graph, move

f(z) before any communication.
Van Scoy,
Freeman,

Lynch

[B)lizg:ams u —> [Zf(z)]n/

kol

n times

The output is not delayed and the estimator is robust to
changes in the graph.
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Block Diagram 4
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To make the estimator robust to changes in the graph, move

f(z) before any communication.
Van Scoy, '

r
Freeman, : n_Step ! : :
Lynch 1 mi 1 .
+ bandlimited | n-step average consensus estimator
 prediction 1, :
1 . 1
' filter . .
1 1 1
Block 1 1 1

Diagrams U —> [Zf(z)]n/

The output is not delayed and the estimator is robust to
changes in the graph.
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Singular values of the error system
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Let o(0, \) denote the singular values of the error transfer
function. Then the maximum singular value is

Analysis Omax -— max 0(9, )\)
)‘G{O}U[)\mina)\maX]
0€[0,0.]

The maximum steady-state error is bounded by

el < Umax\/NHUHoo-
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Main design problem
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@ the cutoff frequency (0.)
@ the Laplacian eigenvalue region (Amin and Amax)

choose

@ the number of stages (n)
Analysis o the f//ter f(Z)

to minimize o max-

Van Scoy, Freeman, Lynch Distributed Average Tracking



Distributed
Average
Tracking

Van Scoy,

Freeman,
Lynch

Analysis

Main design problem

Problem

Given

@ the cutoff frequency (0.)
@ the Laplacian eigenvalue region (Amin and Amax)

choose

@ the number of stages (n)
@ the filter f(z)

to minimize o max-

Question
How to design f(z) such that

e f is strictly proper, and
o f(ef)~1 forfc0,6.]?
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Design of f(z)

Bode plot (m =8, e = 107%, . = 7/4)

T T T T 1 1] T LI i\ T T
Ma 100 f(Z) 1
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Phase 0 g(2)
(deg.) f(z)
-360 | ‘ '
102 10-1 100
Frequency
flz)—1- 83
lim; . g(2)
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Design of f(z)

Distributed Bode p|ot (m = 8' €= ]_074, QC — 77/4)

Average

Tracking T T ‘f(‘z‘)”w T T \i\\: T >

Van Scoy, 0
Freeman, M ag. 10

Lynch

CON 6@ i ot
360 —
Analysis Phase 0
(deg.)
-360 |
1072

Frequency

If ||f]|oo is too large, the estimator is numerically unstable!
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Optimization problem
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Average Problem

Tracking o
Given 8¢, Amin, Amax, Hmax, and mpay, solve
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Freeman,

Lynch min O max s.t. ||H||OO S Hmaxa m S Mmax-
n,m,e

Analysis
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Optimization problem
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Given 8¢, Amin, Amax, Hmax, and mpay, solve
Van Scoy,
Freeman,

Lynch min 0max St ||H|loo < Hmax, M < Mpax.
n,m,e

IS Solution for
. | e Hinae = 2 x 1013
\\\ RN and Mpyax = 8.

i
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Theorem: Arbitrarily small error

The steady-state error can be made arbitrarily small if
© the number of stages is arbitrarily large
@ the number of states on each estimator is arbitrarily large

© exact arithmetic is used
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Simulation: 6. = 7/10
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Simulation: 6. = 7/3
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Simulation: 6. = 27/3
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Dropped packets
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p=0%, Connected=100%, Balanced=100%, Eig. Range=100%

N O N

Outputs

Sl i e 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
p=10%, Connected=85.6%, Balanced=35.7%, Eig. Range=43.4%
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Lyl 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
p=0%, Connected=100%, Balanced=100%, Eig. Range=100%

Outputs
N O N

1 1 1 1 1 1 1 1 1
Sl i e 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
p=10%, Connected=85.6%, Balanced=35.7%, Eig. Range=43.4%
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Conclusions

Distributed
Average
Tracking

Van Scoy, . . . -
Freeman, A feedforward estimator is proposed to solve the distributed

pne average tracking problem of bandlimited signals in
discrete-time. The estimator has the following properties:
@ discrete-time updates

robust to initial conditions
Simulations robust to changes in the graph

°
o
@ robust to directed communication (from simulations)
°

arbitrarily small steady-state error (using exact arithmetic)
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