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Overview

Problem

Efficiently determine if the system is robustly stable.
e if stable, provide a Lyapunov function

® otherwise, construct an unstable trajectory



Literature

® Megretski and Rantzer (1997)

- frequency-domain
- soft IQCs
- use KYP lemma to obtain an LMI with symmetric P

Remark 4: It is important to note that if A satisfies several

1QC’s, defined by 11,.--- 11, then a sufficient condition for
stability is the existence of . ---,wx, > (0 such that (9) holds
for 11 a1l + -+ + 2,11, Hence, the more IQC’s that

can be verified for A, the better. Furthermore, the condition
is necessary in the following sense. If it fails for all «; = 0.
then (5) fails for some signals [, v, w with v = Gw + [ and
w,w satisfying all the IQC's [17]. [18].

® Seiler (2015)
- time-domain
- hard IQCs
- dissipation LMI with positive semidefinite P

Contribution

Prove that the IQC theorem is tight by constructing worst-case trajectories.



Review: autonomous LTI systems

Tp1 = Axy,

Stability

Certificate  there exists a quadratic
Lyapunov function

LMI  there exists P > 0 such
that ATPA— P <0

Spectral radius p(A) <1

see Balakrishnan and Vandenberghe (2003) for an overview on alternatives for problems in control



Spectral radius

p(A) = infimum P

p, P
subject to 0 > ATPA— sz
p>0
P=0

® Checking feasibility for fixed p is an LMI.
® There exists a feasible point for any p > p(A).

® There does not exist a feasible point for any p < p(A).

We can efficiently compute the spectral radius by bisecting over p.



Stability

p(4) <1 —> asymptotically stable
p(A) <1 and optimum attained = bounded

The optimum may not be attained.

® Consider the example A = [(1) ﬂ .

® The spectral radius is p(A) = 1, but there does not exist P > 0 such
that ATPA— P < 0.

® The state grows unbounded with initial condition zo = [}].



Worst-case trajectory
When p(A) =1, we can construct an unstable trajectory as follows:

(1) Find nonzero @ = 0 such that AQAT — Q = 0.

(2) Factor @ = XXT.

(3) Find an orthonormal matrix F' such that AX = XF.
(4) Then for any nonzero vector v, a worst-case trajectory is

Ty = X FFky.

Note that this is a valid trajectory since

Tht1 = XFFly = AXFFy = Az,



LTI system subject to IQCs

‘[ ka:Axk—i—Buk ]
Vl yr = Cxy + Duy, J

Efficiently determine if the system is robustly stable.
® if stable, provide a Lyapunov function

® otherwise, construct an unstable trajectory



From dynamic to static 1QCs

The frequency-domain 1QCs may have dynamics. Instead, we can
® factor each multiplier II;(2),
® combine the dynamic parts with the LTI system, and
® use Parseval's theorem to produce static time-domain 1QCs.

|

:l £k+1:AZEk+Buk J

u

N—-1 T
F’“} M, {x’“} >B8, VNeN,ieT
k=0 Uk Uk

Note: A, B, and x; have been modified to include the IQC dynamics



Generalized spectral radius

p(A, B,M) = lr;filr,g’lgirn P

ATPA - p*P A'PB
. . A
subject to 0 > BTP BTPR + E A M;

ieZ
p>0
P=0
N >0 foralliel

® Generalizes the spectral radius of a matrix.

Efficiently computable by bisecting over p.

The optimum may not be attained.

For fixed p, this is similar to the LMI obtained from applying the KYP
lemma to the IQC theorem, but with positive definite P.

10



Robust stability

p(A,B,M) < 1 = robustly asymptotically stable
p(A, B, M) <1 and opt attained = robustly bounded

® Result is similar to the autonomous case.
® Proof uses the Lyapunov function
k=l 9T -
et LI (5o o]
§=0 s

® Straighforward generalization to robust exponential stability.

11



Robust exponential stability

:[ Tr4+1 = Az + Buy, }

N-—-1 T
p2k [‘”k] M, Fk] >B3, VYNeN, icT
o U U

Corollary

Let p = p(A, B, M), and suppose the optimum is attained. Then there
exists a constant ¢ > 0 such that ||z < ¢ p¥ ||zo|| for all k.
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Worst-case trajectory

Lemma

Suppose p(A, B, M) =1 and B is full column rank. Then there exist
matrices X, U, and F' with X nonzero and F' orthonormal such that

AX +BU =XF

and

-
trace([‘g] M; [?ﬂ) >0 forallieZ.

® Result is similar to the autonomous case.
® Proof uses SDP duality and linear algebra.

® If B is not full column rank, then combine inputs to make it full rank.

13



Worst-case trajectory

Theorem

Suppose p(A, B, M) =1, B is full column rank, and there exists a
vector v that satisfies a technical condition for some (X, U, F') from the

previous lemma. Then
27% I P
)= 2] =

is a trajectory that is not asymptotically stable.

® |n some cases, the trajectory also satisfies the hard or pointwise 1QCs.

e Static state feedback: If X is full column rank, then
U = (UXT) Tk

® |n contrast to the autonomous case, we require an additional
technical condition (more on next slide).
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Technical condition

Even without the technical condition, the trajectory
Xi| _ | X ok
=[]

satisfies the following dynamics:

[ Xpy1 = AXy, + BU ]

i J

N-1

-
trace([)U(k} M,; [)U(kb >p8, YVNeN,ieTl
k k

k=0

The technical condition ensures that we can
construct a vector xj from the matrix X.
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Summary

o \We efficiently characterize robust stability of an LTI system subject to
a set of integral quadratic constraints.
— If robustly stable, we provide a Lyapunov function of the form
kel 4T .
_ T J M J
Vi = 3P+ Z Lﬁj <Z & Mz) [“a] '
7=0 i€L

— Otherwise, we construct a worst-case trajectory of the form

-

® Generalizes linear-quadratic Lyapunov theory for autonomous systems.

® Provides a constructive proof of the worst-case trajectory mentioned
in Remark 4 of Megretski and Rantzer (1997).
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