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Overview

xk+1 = Axk +Buk

yk = Cxk +Duk

∫ π

−π

[
ŷ(e𝕚θ)
û(e𝕚θ)

]∗
Πi(e𝕚θ)

[
ŷ(e𝕚θ)
û(e𝕚θ)

]
dθ ≥ 0, ∀i ∈ I

yu

Problem
Efficiently determine if the system is robustly stable.
• if stable, provide a Lyapunov function
• otherwise, construct an unstable trajectory
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Literature
• Megretski and Rantzer (1997)

- frequency-domain
- soft IQCs
- use KYP lemma to obtain an LMI with symmetric P

• Seiler (2015)
- time-domain
- hard IQCs
- dissipation LMI with positive semidefinite P

Contribution
Prove that the IQC theorem is tight by constructing worst-case trajectories.
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Review: autonomous LTI systems

xk+1 = Axk

Stability Instability

Certificate there exists a quadratic
Lyapunov function

there exists an unstable
trajectory

LMI there exists P � 0 such
that ATPA− P ≺ 0

there exists nonzero Q � 0
such that AQAT −Q � 0

Spectral radius ρ(A) < 1 ρ(A) ≥ 1

see Balakrishnan and Vandenberghe (2003) for an overview on alternatives for problems in control
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Spectral radius

ρ(A) = infimum
ρ, P

ρ

subject to 0 � ATPA− ρ2P

ρ > 0
P � 0

• Checking feasibility for fixed ρ is an LMI.

• There exists a feasible point for any ρ > ρ(A).

• There does not exist a feasible point for any ρ < ρ(A).

We can efficiently compute the spectral radius by bisecting over ρ.
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Stability

ρ(A) < 1 =⇒ asymptotically stable
ρ(A) ≤ 1 and optimum attained =⇒ bounded

The optimum may not be attained.

• Consider the example A =
[
1 1
0 1

]
.

• The spectral radius is ρ(A) = 1, but there does not exist P � 0 such
that ATPA− P � 0.

• The state grows unbounded with initial condition x0 = [ 1
1 ].
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Worst-case trajectory

When ρ(A) = 1, we can construct an unstable trajectory as follows:

(1) Find nonzero Q � 0 such that AQAT −Q = 0.

(2) Factor Q = XXT.

(3) Find an orthonormal matrix F such that AX = XF .

(4) Then for any nonzero vector v, a worst-case trajectory is

xk = XF kv.

Note that this is a valid trajectory since

xk+1 = XF k+1v = AXF kv = Axk.
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LTI system subject to IQCs

xk+1 = Axk +Buk

yk = Cxk +Duk

∫ π

−π

[
ŷ(e𝕚θ)
û(e𝕚θ)

]∗
Πi(e𝕚θ)

[
ŷ(e𝕚θ)
û(e𝕚θ)

]
dθ ≥ 0, ∀i ∈ I

yu

Problem
Efficiently determine if the system is robustly stable.
• if stable, provide a Lyapunov function
• otherwise, construct an unstable trajectory
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From dynamic to static IQCs
The frequency-domain IQCs may have dynamics. Instead, we can
• factor each multiplier Πi(z),
• combine the dynamic parts with the LTI system, and
• use Parseval’s theorem to produce static time-domain IQCs.

xk+1 = Axk +Buk

N−1∑
k=0

[
xk
uk

]T
Mi

[
xk
uk

]
≥ β, ∀N ∈ N, i ∈ I

xu

Note: A, B, and xk have been modified to include the IQC dynamics
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Generalized spectral radius

ρ(A,B,M) = infimum
ρ, P, λi

ρ

subject to 0 �
[
ATPA− ρ2P ATPB

BTPA BTPB

]
+
∑
i∈I

λiMi

ρ > 0
P � 0
λi ≥ 0 for all i ∈ I

• Generalizes the spectral radius of a matrix.
• Efficiently computable by bisecting over ρ.
• The optimum may not be attained.
• For fixed ρ, this is similar to the LMI obtained from applying the KYP
lemma to the IQC theorem, but with positive definite P .
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Robust stability

Theorem
ρ(A,B,M) < 1 =⇒ robustly asymptotically stable
ρ(A,B,M) ≤ 1 and opt attained =⇒ robustly bounded

• Result is similar to the autonomous case.

• Proof uses the Lyapunov function

Vk = xT
kPxk +

k−1∑
j=0

[
xj
uj

]T
(∑
i∈I

λiMi

)[
xj
uj

]
.

• Straighforward generalization to robust exponential stability.
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Robust exponential stability

xk+1 = Axk +Buk

N−1∑
k=0

ρ−2k
[
xk
uk

]T
Mi

[
xk
uk

]
≥ β, ∀N ∈ N, i ∈ I

xu

Corollary
Let ρ = ρ(A,B,M), and suppose the optimum is attained. Then there
exists a constant c > 0 such that ‖xk‖ ≤ c ρk ‖x0‖ for all k.
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Worst-case trajectory

Lemma
Suppose ρ(A,B,M) = 1 and B is full column rank. Then there exist
matrices X, U , and F with X nonzero and F orthonormal such that

AX +BU = XF

and

trace
([X
U

]T
Mi

[
X
U

])
≥ 0 for all i ∈ I.

• Result is similar to the autonomous case.

• Proof uses SDP duality and linear algebra.

• If B is not full column rank, then combine inputs to make it full rank.
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Worst-case trajectory

Theorem
Suppose ρ(A,B,M) = 1, B is full column rank, and there exists a
vector v that satisfies a technical condition for some (X,U, F ) from the
previous lemma. Then [

xk
uk

]
=
[
X
U

]
F kv

is a trajectory that is not asymptotically stable.

• In some cases, the trajectory also satisfies the hard or pointwise IQCs.

• Static state feedback: If X is full column rank, then

uk = (UX†)xk.

• In contrast to the autonomous case, we require an additional
technical condition (more on next slide).
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Technical condition
Even without the technical condition, the trajectory[

Xk

Uk

]
=
[
X
U

]
F k

satisfies the following dynamics:

Xk+1 = AXk +BUk

N−1∑
k=0

trace
([Xk

Uk

]T
Mi

[
Xk

Uk

])
≥ β, ∀N ∈ N, i ∈ I

xu

The technical condition ensures that we can
construct a vector xk from the matrix Xk.
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Summary

• We efficiently characterize robust stability of an LTI system subject to
a set of integral quadratic constraints.

– If robustly stable, we provide a Lyapunov function of the form

Vk = xT
kPxk +

k−1∑
j=0

[
xj
uj

]T
(∑
i∈I

λiMi

)[
xj
uj

]
.

– Otherwise, we construct a worst-case trajectory of the form[
xk
uk

]
=
[
X
U

]
F kv.

• Generalizes linear-quadratic Lyapunov theory for autonomous systems.

• Provides a constructive proof of the worst-case trajectory mentioned
in Remark 4 of Megretski and Rantzer (1997).
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