Systematic Analysis of Distributed Optimization Algorithms over Jointly-Connected Networks

Bryan Van Scoy Miami University Laurent Lessard Northeastern University

IEEE Conference on Decision and Control

December 16, 2020

Want each agent to compute the global optimizer x_{\star} by communicating with local neighbors and performing local computations.

$$x_i(k+1) = \sum_{j=1}^n W_{ij}(k) \, x_j(k) - \alpha \, y_i(k)$$
$$y_i(k+1) = \sum_{j=1}^n W_{ij}(k) \, y_j(k) + \nabla f_i(x_i(k+1)) - \nabla f_i(x_i(k))$$

- analyzed in (Nedić, Olshevsky, and Shi, 2017) and (Qu, Li, 2018)
- linear convergence over time-varying networks

$$\|x_i(k) - x_\star\| = O(\rho^k)$$

iterations to converge $\,\propto\,\,-1/\log\rho$

$$x_i(k+1) = \sum_{j=1}^n W_{ij}(k) \, x_j(k) - \alpha \, y_i(k)$$
$$y_i(k+1) = \sum_{j=1}^n W_{ij}(k) \, y_j(k) + \nabla f_i \big(x_i(k+1) \big) - \nabla f_i \big(x_i(k) \big)$$

Issues:

- the bound grows with the number of agents
- the bound does not apply to large stepsizes
- the analysis is specific to DIGing

main contribution = sharp and systematic analysis

main contribution = sharp and systematic analysis

Function assumptions

Each local objective function f_i is L-smooth and m-strongly convex with respect to the global optimizer.

The condition ratio $\kappa = L/m$ characterizes how much the curvature varies.

For all x, $\left(\nabla f_i(x) - \nabla f_i(x_\star) - m(x - x_\star)\right)^{\mathsf{T}} \left(\nabla f_i(x) - \nabla f_i(x_\star) - L(x - x_\star)\right) \le 0$

Spectral gap

The spectral gap characterizes the connectivity of a graph.

spectral gap =
$$\left\|\frac{1}{n}\mathbf{1}\mathbf{1}^{\mathsf{T}} - W\right\|_{2}$$

Network assumptions

sparsity $W_{ij}(k) = 0$ if agent *i* does not receive information from agent *j* at time *k*

balanced $W(k)\mathbf{1} = W(k)^{T}\mathbf{1} = \mathbf{1}$

spectrum the spectral gap of W(k) is less than or equal to one

joint spectrum for some fixed *B*, the spectral gap of

$$\left[W(k) W(k+1) \cdots W(k+B-1)\right]^{1/B}$$

is less than or equal to $\sigma < 1$

The spectral gap σ characterizes the connectivity of the time-varying network averaged over B iterations.

Algorithm

$$\begin{bmatrix} x_i(k+1) \\ y_i(k) \\ z_i(k) \end{bmatrix} = \begin{bmatrix} A & B_u & B_v \\ C_y & D_{yu} & D_{yv} \\ C_z & D_{zu} & D_{zv} \end{bmatrix} \begin{bmatrix} x_i(k) \\ u_i(k) \\ v_i(k) \end{bmatrix}$$
state update

 $u_i(k) =
abla f_iig(y_i(k)ig)$ gradient computation

$$v_i(k) = \sum_{j=1}^n W_{ij}(k) \, z_j(k) \qquad \text{communication}$$

$$0 = \sum_{j=1}^{n} \left(F_x \, x_j(k) + F_u \, u_j(k) \right) \qquad \text{invariant}$$

	2 state variables		3 state variables	
ated variable	SVL	$\begin{bmatrix} 1-\gamma & \beta & -\alpha & -\gamma \\ -1 & 1 & 0 & -1 \\ 1-\delta & 0 & 0 & \delta \\ \hline 1 & 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	EXTRA	$\begin{bmatrix} 1 & -\frac{1}{2} & \alpha & -\alpha & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & -\frac{1}{2} & 0 & 0 & 0 \\ 1 & -1 & \alpha & 0 \end{bmatrix}$
1 communic	Exact Diffusion (ExDIFF)	$\begin{bmatrix} 1 & -1 & -\alpha & 1 \\ \frac{1}{2} & 0 & -\alpha & \frac{1}{2} \\ 1 & 0 & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix}$	NIDS	$\begin{bmatrix} 1 & -\frac{1}{2} & \frac{\alpha}{2} & -\frac{\alpha}{2} & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -\frac{1}{2} & \frac{\alpha}{2} & -\frac{\alpha}{2} & 0 \\ \hline 1 & -1 & \alpha & 0 \end{bmatrix}$
ted variables	Unified DIGing (uDIG)	$ \begin{bmatrix} 0 & -\alpha & -\alpha & 1 & 0 \\ \frac{L+m}{2} & 0 & -1 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ \hline -1 & 0 & 0 & 0 & 0 & 0 \\ -\frac{L+m}{2} & 1 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & - \end{bmatrix} $	DIGing	$ \begin{bmatrix} 0 & -\alpha & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \hline 0 & -\alpha & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & - \end{bmatrix} $
2 communica	Unified EXTRA (uEXTRA)	$\begin{bmatrix} 0 & -\alpha & -\alpha & 1 & 0 \\ 0 & 0 & -1 & L & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & -L & 0 \\ 0 & 1 & 0 & & \end{bmatrix}$	AugDGM	$ \left[\begin{array}{ccccccccc} 0 & 0 & 0 & 0 & 1 & -\alpha \\ 0 & 0 & -1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & -\alpha \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \end{array} \right] $

LMI

Find $P\succ 0,\, Q\succ 0,\, R\succeq 0,\, S\succeq 0,$ and $\lambda\geq 0$ such that

$$0 \succeq \Psi^{\mathsf{T}} \left(\boldsymbol{\xi}_{+}^{\mathsf{T}} P \, \boldsymbol{\xi}_{+} - \rho^{2} \left(\boldsymbol{\xi}^{\mathsf{T}} P \, \boldsymbol{\xi} \right) + \sum_{\ell=0}^{B-1} \lambda(\ell) \begin{bmatrix} \boldsymbol{y}(\ell) \\ \boldsymbol{u}(\ell) \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} -2 & \kappa+1 \\ \kappa+1 & -2\kappa \end{bmatrix} \begin{bmatrix} \boldsymbol{y}(\ell) \\ \boldsymbol{u}(\ell) \end{bmatrix} \right) \Psi$$

and

$$0 \succeq \boldsymbol{\xi}_{+}^{\mathsf{T}} Q \, \boldsymbol{\xi}_{+} - \rho^{2} \left(\boldsymbol{\xi}^{\mathsf{T}} Q \, \boldsymbol{\xi} \right) + \sum_{\ell=0}^{B-1} \lambda(\ell) \begin{bmatrix} \boldsymbol{y}(\ell) \\ \boldsymbol{u}(\ell) \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} -2 & \kappa+1 \\ \kappa+1 & -2\kappa \end{bmatrix} \begin{bmatrix} \boldsymbol{y}(\ell) \\ \boldsymbol{u}(\ell) \end{bmatrix} \\ + \begin{bmatrix} \boldsymbol{w}(0) \\ \boldsymbol{w}(B) \end{bmatrix}^{\mathsf{T}} \left(\begin{bmatrix} \sigma^{2B} & 0 \\ 0 & -1 \end{bmatrix} \otimes R \right) \begin{bmatrix} \boldsymbol{w}(0) \\ \boldsymbol{w}(B) \end{bmatrix} \\ + \sum_{\ell=0}^{B-1} \begin{bmatrix} \boldsymbol{z}(\ell) \\ \boldsymbol{w}(\ell) \\ \boldsymbol{v}(\ell) \\ \boldsymbol{w}(\ell+1) \end{bmatrix}^{\mathsf{T}} \left(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \otimes S(\ell) \right) \begin{bmatrix} \boldsymbol{z}(\ell) \\ \boldsymbol{w}(\ell) \\ \boldsymbol{v}(\ell) \\ \boldsymbol{w}(\ell+1) \end{bmatrix}$$

Solved in Julia using Convex.jl and Mosek.

- dashed lines are from (Nedić, Olshevsky, and Shi, 2017)
- solid line is from our LMI
- · lower bound corresponds to only optimization and only consensus

• the bound in (Nedić, Olshevsky, and Shi, 2017) is vacuous

SVL is designed to optimize the worst-case performance when B = 1.

main contribution = sharp and systematic analysis

open questions:

- is SVL asymptotically optimal in the limit as $\sigma \rightarrow 1$?
- what is the optimal algorithm for B > 1?

https://vanscoy.github.io