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Absolute stability
Find conditions on the LTI system G with state x that ensure stability for
all initial states and all nonlinearities φ in a function class.
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Contributions

• directly construct a Lyapunov function
• simple dissipation proof that naturally generalizes to other settings
• relate the set of all valid multipliers to interpolation
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Absolute stability
Find conditions on the LTI system G with state x that ensure stability for
all initial states and all nonlinearities φ in a function class.
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Assumptions

• G is SISO
• φ : R→ R is the gradient of a convex function and φ(0) = 0
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Quadratic constraints

Quadratic inequalities that hold between u and y when ut = φ(yt) for
some φ that is the gradient of a convex function.

• Willems, Brockettu`

...
u0


T

M

y`

...
y0

 ≥ 0 where M doubly hyperdominant

• Zames, Falb, O’Shea
∞∑

t=−∞
ut (Πy)t ≥ 0 where

∞∑
t=−∞

πt ≥ 0 and πt ≤ 0 for t 6= 0
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Frequency domain

The system is absolutely stable if there exists a multiplier Π such that

Re{Π(z)G(z)} < 0

for all z on the unit circle.

• follows from the main IQC result (Megretski & Rantzer, 1996)
• frequency domain inequality must hold at an infinite number of points
• tractable search in the time domain over a subset of multipliers
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Multiplier factorization
If π has finite duration `, then we can factor the multiplier as

Π(z) = Ψ(z)∗
[

0 MT

M 0

]
Ψ(z)

where

Ψ(z) =



1 0
z−1 0
. . . 0
z−` 0
0 1
0 z−1

0 . . .
0 z−`


and M =


π0 π1 . . . π`

π−1 0 . . . 0
...

...
. . .

...
π−` 0 . . . 0



Use the factorization to define the augmented system with state xt[
A B

C D

]
= Ψ(z)

[
G(z)

1

]
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Time domain

Apply the positive real lemma to the FDI to obtain the equivalent LMI

P � 0

0 �
[
ATPA− P ATPB

BTPA BTPB

]
+ 1

2
[
C D

]T[ 0 MT

M 0

][
C D

]

LMI feasible
PR

=⇒ FDI feasible
IQC
=⇒ absolute stability

Issues

• does not produce a Lyapunov function
• how to construct the multipliers for other function classes?
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A simple time-domain proof

Multiply the LMI by (xt, ut) to obtain the dissipation inequality

0 > xT
t+1Pxt+1 − xT

t Pxt +


ut

ut−1
...

ut−`


T 

π0 π1 . . . π`

π−1 0 . . . 0
...

...
. . .

...
π−` 0 . . . 0



yt

yt−1
...

yt−`


Then sum over t from 0 to T

0 > xT
T +1PxT +1 − xT

0Px0 +


uT

uT−1
...
u0


T

π0 π1 . . . πT

π1 π0 . . . πT−1
...

...
. . .

...
π−T π1−T . . . π0



yT

yT−1
...
y0


From the conditions on the multiplier, the matrix involving π is doubly
hyperdominant, so the quadratic form is nonnegative.
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A conservative approach

Feasibility of the LMI implies V (x) = xTPx is a Lyapunov function.

P � 0

0 �
[
ATPA− P ATPB

BTPA BTPB

]
+ 1

2
[
C D

]T[ 0 MT

M 0

][
C D

]
M doubly hyperdominant

But this approach is very conservative!
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Main idea

• lift the iterates to a higher-dimensional space

yt =

 yt

...
yt−`

 ut =

 ut

...
ut−`

 ft =

 ft

...
ft−`


• use interpolation to find all quadratic-plus-linear inequalities

yT
t M ut +mTft ≥ 0

• use the inequalities to search for a common quadratic Lyapunov
function in the lifted space

V (xt,ft) = xT
t P xt + pTft

This approach constructs a Lyapunov function
and recovers the best known results.

9The iterates satisfy ft = f(yt) and ut = ∇f(yt), where the nonlinearity is φ = ∇f .



Lifted system

G

Ψ

ut

x

ζ

yt
[
yt

ut

]

Lifted dynamics

x

xt+1
yt

ut

 =
[
A B
C D

] [
xt

ut

]
and F ft+1 = F+ft

where [
A B

C D

]
= Ψ(z)

[
G(z)

1

]
and

F =
[
0`×1 I`

]
F+ =

[
I` 0`×1

]
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Convex interpolation

When does there exist a convex function f : R → R with f(0) = 0 and
∇f(0) = 0 such that ui = ∇f(yi) and fi = f(yi)?

Necessary and sufficient conditions from (Taylor, Hendrickx, Glineur, 2017)

fi ≥ fj + uT
j (yi − yj), uT

i yi ≥ fi, fi ≥ 0 for all i, j

This is equivalent to (yuT,f) ∈ K, where K is the convex cone

K = {(G,f) | fi ≥ fj +Gij −Gjj , Gii ≥ fi,

and fi ≥ 0 for all i, j and rank(G) = 1}

The interpolation cone K characterizes the set of Gramians G
and function values f that are interpolable.
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Quadratic-plus-linear inequalities

yT
tMut +mTft ≥ 0

This holds for all multipliers (M,m) in the dual of the interpolation cone.

K∗ =
{

(M,m)
∣∣ tr(MTG) +mTf ≥ 0 for all (G,f) ∈ K

}

For convex functions,

K∗ = {(M,m) |MT1 ≥ 0, M1 +m ≥ 0, and Mij ≤ 0 for all i 6= j}

The set of all multipliers is the dual of the interpolation cone.
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Lyapunov function

V (x,f) = xTP x + pTf

• Dissipation inequality

V (xt+1,ft+1)− V (xt,ft) + σ1(yt,ut,ft) ≤ 0

• Positivity
‖xt‖2 − V (xt,ft) + σ2(yt,ut,ft) ≤ 0

• Multipliers

σi(yt,ut,ft) = yT
t Miut +mT

i ft (Mi,mi) ∈ K∗

Proof: ‖xt‖2 ≤ V (xt,ft) ≤ V (xt−1,ft−1) ≤ . . . ≤ V (x0,f0)
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Main result

[
ATPA− P ATPB

BTPA BTPB

]
+ 1

2
[
C D

]T [ 0 MT
1

M1 0

] [
C D

]
� 0

(F+ − F )Tp+m1 ≤ 0[
I − P 0

0 0

]
+ 1

2
[
C D

]T [ 0 MT
2

M2 0

] [
C D

]
� 0

−F Tp+m2 ≤ 0

• symmetric matrix P
• vector p
• multipliers (M1,m1) and (M2,m2) in the dual cone K∗

Feasibility of the LMI implies that V (x,f) is a Lyapunov function.
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Numerical examples

• G(z) in negative feedback with slope-restricted nonlinearity in (0, α)
• find the largest α for which the system is absolutely stable

Ex. Plant G(z) α (nb, nf ) `

1 0.1z
z2−1.8z+0.81 12.9960 (1, 0) 1

2 z3−1.95z2+0.9z+0.05
z4−2.8z3+3.5z2−2.412z+0.7209 0.8027 (1, 4) 4

3 − z3−1.95z2+0.9z+0.05
z4−2.8z3+3.5z2−2.412z+0.7209 0.3054 (0, 1) 1

4 z4−1.5z3+0.5z2−0.5z+0.5
4.4z5−8.957z4+9.893z3−5.671z2+2.207z−0.5 3.8240 (0, 4) 4

5 −0.5z+0.1
z3−0.9z2+0.79z+0.089 2.4475 (0, 1) 1

6 2z+0.92
z2−0.5z

0.9114 (1, 2) 2
7 1.341z4−1.221z3+0.6285z2−0.5618z+0.1993

z5−0.935z4+0.7697z3−1.118z2+0.6917z−0.1352 0.4347 (3, 3) 3

15Equivalent to −(1 + αG) in positive feedback with the gradient of a convex function.



Lyapunov function for Example 6

V (xt,ft) =

xt−2
ut−2
ut−1

T

P

xt−2
ut−2
ut−1

+ pT
[
ft−1
ft−2

]

P =

 1.4483 −0.2173 −2.4073 −2.4262
−0.2173 0.8523 −2.6369 0.1214
−2.4073 −2.6369 2.4142 −1.5938
−2.4262 0.1214 −1.5938 0.4756

 p =
[

−6.1534
−3.2837

]

M1 =

[ 8.6813 −8.6813 −0.0000
−0.0000 5.8115 −5.8115
−2.5025 −0.0000 2.5278

]
m1 =

[−6.1788
2.8698
3.2837

]

M2 =

[11.2412 −3.3521 −1.6564
−1.6595 10.6892 −2.7451
−1.3351 −1.5047 5.9290

]
m2 =

[−8.2467
−5.8325
−0.0000

]
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Extensions

• continuous time

0 ≥ d
dtV (x(t)) + σ(y(t),u(t),f(t))

• exponential stability

0 ≥ V (xt+1,ft+1)− ρ2 V (xt,ft) + σ(yt,ut,ft)
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Robust quadratic performance
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For all exogenous input signals w,

V (xt+1,ft+1)− V (xt,ft) + σ1(yt,ut,ft) ≤ σp(wt, zt)
‖xt‖2 − V (xt,ft) + σ2(yt,ut,ft) ≤ 0

T∑
t=0

σp(wt, zt) ≥ 0

18For example, if σp := γ2‖wt‖2 −‖zt‖2, then G has a robust `2 gain from w → z of γ.



Robust stochastic performance
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Suppose wt is i.i.d. zero-mean random noise with covariance Σ.

V (xt+1,ft+1)− V (xt,ft) + σ1(yt,ut,ft) + ‖zt‖2 ≤ 0
−V (xt,ft) + σ2(yt,ut,ft) ≤ 0

tr
(
PBwΣBT

w

)
≤ γ2

lim sup
T→∞

E

[
1
T

T−1∑
t=0
‖zt‖2

]
≤ γ2
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Approach

• lift the iterates to a higher-dimensional space
• use interpolation to find all quadratic-plus-linear inequalities
• search for a common quadratic Lyapunov function in the lifted space
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Benefits

• directly construct a Lyapunov function
• simple dissipation proof that naturally generalizes to other settings
• relate the set of all valid multipliers to interpolation
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