
Lyapunov-based approach to the analysis of
iterative optimization algorithms

Bryan Van Scoy
Miami University

Laurent Lessard
Northeastern University

IEEE Conference on Decision and Control December 13–15, 2023



Algorithm analysis

G

∇f

yu

Represents a gradient-based iterative optimization algorithm. e.g.,

xk+1 = xk + ∇f(xk) + β(xk − xk−1)

has the following equations:[
xk+1
xk

]
=

[
1 + β −β

1 0

] [
xk

xk−1

]
+

[
−α
0

]
uk

yk =
[
1 0

] [
xk

xk−1

]
uk = ∇f(yk)
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Algorithm analysis

G

∇f

yu

Represents a gradient-based iterative optimization algorithm. e.g.,

xk+1 = xk + ∇f(xk) + β(xk − xk−1)

in state-space notation:

y =

 1 + β −β −α
1 0 0
1 0 0

 u

u = ∇f(y)
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Algorithm analysis

G

∇f

yu

Algorithm analysis:

Find conditions on the system G that guarantees certain
algorithm performance for all initial conditions x0 and all

functions f in a given class.

This is a Lur’e problem!
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Algorithm analysis

G

∇f

yu

In this tutorial:

• directly construct a Lyapunov function to certify robust performance

• simple dissipation proof that naturally generalizes to other settings
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Simple example
Iterative algorithm:

xk+1 = Axk + Buk[
yk

uk

]
= Cxk + Duk

 and uk = ϕ(yk)

Sector-bounded nonlinearity:

myk ≤ uk ≤ Lyk

(uk − myk)(Lyk − uk) ≥ 0[
yk

uk

]T [
−2mL m + L
m + L −2

]
︸ ︷︷ ︸

Π

[
yk

uk

]
≥ 0

u

y

Find a P ≻ 0 so that for all {xk, uk, yk} satisfying the dynamics,
the following dissipation inequality holds:

xT
k+1Pxk+1 − ρ2xT

k Pxk +
[

yk

uk

]T
Π

[
yk

uk

]
≤ 0
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Simple example
Find a P ≻ 0 so that for all {xk, uk, yk} satisfying the dynamics,
the following dissipation inequality holds:

xT
k+1Pxk+1 − ρ2xT

k Pxk︸ ︷︷ ︸
must be ≤ 0

+
[

yk

uk

]T
Π

[
yk

uk

]
︸ ︷︷ ︸

≥ 0 because uk=ϕ(yk)

≤ 0

Therefore: xT
k+1Pxk+1 ≤ ρ2xT

k Pxk and xT
k Pxk ≥ 0.

So V (x) = xTPx is a Lyapunov function that certifies exponential stability.

Substitute xk+1 = Axk + Buk and
[

yk

uk

]
= Cxk + Duk and obtain:

[
xk

uk

]T ([
ATP A − ρ2P ATP B

BTP A BTP B

]
+

[
C D

]T Π
[
C D

]) [
xk

uk

]
≤ 0

[
ATP A − ρ2P ATP B

BTP A BTP B

]
+

[
C D

]T Π
[
C D

]
⪯ 0
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Simple example
[
ATPA − ρ2P ATPB

BTPA BTPB

]
+

[
C D

]T Π
[
C D

]
⪯ 0

Alternative form:A B
I 0
C D

T P 0 0
0 −ρ2P 0
0 0 Π

 A B
I 0
C D

 ⪯ 0

This is a linear matrix inequality (LMI) in P ≻ 0.

We can use a bisection search to find the smallest feasible ρ.

Note: This is also known as the S-procedure, or the
time-domain version of the circle criterion

8



Simple example
[
ATPA − ρ2P ATPB

BTPA BTPB

]
+

[
C D

]T Π
[
C D

]
⪯ 0

Alternative form:A B
I 0
C D

T P 0 0
0 −ρ2P 0
0 0 Π

 A B
I 0
C D

 ⪯ 0

This is a linear matrix inequality (LMI) in P ≻ 0.

We can use a bisection search to find the smallest feasible ρ.

Note: This is also known as the S-procedure, or the
time-domain version of the circle criterion

8



Simple example

xT
k+1Pxk+1 − ρ2xT

k Pxk +
[

yk

uk

]T
Π

[
yk

uk

]
≤ 0

with dynamics xk+1 = Axk + Buk and
[

yk

uk

]
= Cxk + Duk.

Implementation trick: use row vectors to define basis elements.
Then, express all other elements in terms of the basis.

% define basis (independent rows)
n = size(A,1);
x = [eye(n) zeros(n,1)];
u = [zeros(1,n) 1];

% algorithm dynamics
x1 = A*x + B*u;
yu = C*x + D*u;

% Lyapunov equation (generates LMI)
Pi = [−2*m*L m+L; m+L −2];
x1'*P*x1 − rho^2*x'*P*x + yu'*Pi*yu <= 0

9



What’s next?

• Using lifting to represent a more complicated function class

• Using different dissipation inequalities to change performance measure

• Numerical examples
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Smooth strongly convex functions

Consider functions f : Rn → R that

• are m-strongly convex:

f(x) − m
2 ∥x∥2 is convex

• have L-Lipschitz gradients:

∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥ for all x, y ∈ Rn

11



Interpolation conditions

From [Taylor, Hendrickx, Glineur, 2017]:

Consider {(yk, uk, fk)} for k = 1, . . . , m. The following are equivalent.

a) There exists a smooth strongly convex f satisfying

f(yk) = fk and ∇f(yk) = uk for k = 1, . . . , m.

b) The following inequality holds for i, j ∈ {1, . . . , m}.

2(L − m)(fi − fj) − mL∥yi − yj∥2

+ 2(yi − yj)T(mui − Luj) − ∥ui − uj∥2 ≥ 0.

12



Interpolation conditions

From [Taylor, Hendrickx, Glineur, 2017]:

Consider {(yk, uk, fk)} for k = 1, . . . , m. The following are equivalent.

a) There exists a smooth strongly convex f satisfying

f(yk) = fk and ∇f(yk) = uk for k = 1, . . . , m.

b) The following inequality holds for i, j ∈ {1, . . . , m}.yi

yj

ui

uj


T −mL mL m −L

mL −mL −m L
m −m −1 1

−L L 1 −1


yi

yj

ui

uj

 + 2(L − m)
[

1
−1

]T [
fi

fj

]
≥ 0

Involves pairs of points, and includes function values.

13



Interpolation conditions
Lifted iterates:

yk =

 yk

...
yk−ℓ

 uk =

 uk

...
uk−ℓ

 fk =

 fk

...
fk−ℓ


Interpolation conditionsyi

yj

ui

uj


T −mL mL m −L

mL −mL −m L
m −m −1 1

−L L 1 −1


yi

yj

ui

uj

 + 2(L − m)
[

1
−1

]T [
fi

fj

]
≥ 0

Linear combination with Λij ≥ 0 of each interpolation condition:[
yk

uk

]T
Π(Λ)

[
yk

uk

]
+ π(Λ)Tfk︸ ︷︷ ︸

σ(yk,uk,fk,Λ)

≥ 0

14



Lifting approach

Lyapunov
function
certifying

performance
measure

Original system

Lifted system

Conservative search
in original coordinates

Lifting

Less conservative
search via interpolation

Lifting increases the number of variables but allows use
of a simpler Lyapunov function.
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Original system:

Algorithm

∇f

ykuk

state: xk

Lifted system:

Lifted
algorithm

∇f
. . .

∇f

 yk

...
yk−ℓ

 uk

...
uk−ℓ

 state: xk =



xk

yk−1
...

yk−ℓ

uk−1
...

uk−ℓ
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Lifted dynamics

Lifted
algorithm

∇f
. . .

∇f

 yk

...
yk−ℓ

 uk

...
uk−ℓ



xk+1
yk

uk

 =
[
A B
C D

] [
xk

uk

]
and Ffk+1 = F+fk

17



Lyapunov function

V (x, f) = xTP x + pTf

• Dissipation inequality

V (xk+1, fk+1) − ρ2V (xk, fk) + σ(yk, uk, fk, Λ1) ≤ 0

• Positivity

∥xk∥2 − V (xk, fk) + σ(yk, uk, fk, Λ2) ≤ 0

• Interpolation conditions

σ(yk, uk, fk, Λ) =
[

yk

uk

]T
Π(Λ)

[
yk

uk

]
+ π(Λ)Tfk

Proof: ∥xk∥2 ≤ V (xk, fk) ≤ ρ2V (xk−1, fk−1) ≤ · · · ≤ ρ2kV (x0, f0)

18



Linear matrix inequality

A B
I 0
C D

T P 0 0
0 −ρ2P 0
0 0 Π(Λ1)

 A B
I 0
C D

 ⪯ 0

(F+ − ρ2F)Tp + π(Λ1) ≤ 0[
I 0
C D

]T [
−P 0
0 Π(Λ2)

] [
I 0
C D

]
⪯ 0

−FTp + Π(Λ2) ≤ 0

Decision variables:

• symmetric matrix P

• vector p

• nonnegative coefficients Λ1 and Λ2.

Feasibility of the LMI implies that V (x, f) is a Lyapunov function.

19



Beyond convergence rate
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Certifying convergence rate

G

∇f

yu

Dissipation inequality and positivity requirement:

V (xk+1, fk+1) − ρ2V (xk, fk) + σ(yk, uk, fk, Λ1) ≤ 0
∥xk∥2 − V (xk, fk) + σ(yk, uk, fk, Λ2) ≤ 0

V (xk+1, fk+1) ≤ ρ2V (xk, fk)

21



Robust quadratic performance

G

ϕ

x

uy

wz

For all exogenous input signals w,

V (xk+1, fk+1) − V (xk, fk) + σ(yk, uk, fk, Λ1) ≤ σp(wk, zk)
∥xk∥2 − V (xk, fk) + σ(yk, uk, fk, Λ2) ≤ 0

T∑
t=0

σp(wk, zk) ≥ 0

22For example, if σp := γ2∥wk∥2 − ∥zk∥2, then G has a robust ℓ2 gain from w → z of γ.



Robust stochastic performance

G

ϕ

x

uy

wz

Suppose wk is i.i.d. zero-mean random noise with covariance Σ.

V (xk+1, fk+1) − V (xk, fk) + σ(yk, uk, fk, Λ1) + ∥zk∥2 ≤ 0
−V (xk, fk) + σ(yk, uk, fk, Λ2) ≤ 0

tr
(
PBwΣBT

w

)
≤ γ2

lim sup
T →∞

E
[

1
T

T −1∑
t=0

∥zk∥2

]
≤ γ2

23



Simulation examples
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Condition number L=m
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GD

FG*

FG

TM

• Heavy Ball, Gradient Descent, Fast Gradient, Triple Momentum

• Identical to result obtained via IQCs [Lessard, Packard, Recht 2016],
[Michalowsky, Scherer, Ebenbauer, 2021]

• Only requires ℓ = 1.
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0.4 0.5 0.6 0.7 0.8 0.9 1

RATE(G)2

0

0.1

0.2

0.3

0.4

1
<
p

d
S
E
N

S
(G

;<
2
)2

HB
GD
FG
TM
RAM
GD*

• Robustness with respect to additive gradient noise

• Lifting approach [Van Scoy, Lessard, 2021] obtains same trade-off
curve as IQCs [Michalowsky, Scherer, Ebenbauer, 2021]

• Requires ℓ = 6.
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Comparison with IQC approach

V (x, f) = xTP x + pTf

• Function values are necessary for tightest bounds

• Lyapunov and IQC approach both involve solving LMI of comparable
size (lifting vs. IQC dynamics)

• Lyapunov approach is possibly less conservative (more degrees of free-
dom), but empirically achieves same results as IQC approach

• Lyapunov certificate is more complicated (more degrees of freedom)
than IQC certificate

27
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Approach

• lift the iterates to a higher-dimensional space

• use interpolation to find all valid inequalities

• search for “quadratic + linear” Lyapunov function in the lifted space

G

∇f

yu

Benefits

• directly construct a Lyapunov function

• simple dissipation proof that naturally generalizes to other settings

• idea also extends beyond smooth strongly convex functions

28
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Thank you
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