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Algorithm analysis

Represents a gradient-based iterative optimization algorithm. e.g.,

Tpy1 = ) + Vf(ag) + B(wr — 2p-1)

in state-space notation:

1+8 —f| —«
y = 1 0 0 U
1 0] 0
u=Vf(y)



Algorithm analysis

Algorithm analysis:

Find conditions on the system G that guarantees certain
algorithm performance for all initial conditions zy and all
functions f in a given class.
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Algorithm analysis:

Find conditions on the system G that guarantees certain
algorithm performance for all initial conditions zy and all
functions f in a given class.

This is a Lur'e problem!



Algorithm analysis

In this tutorial:

e directly construct a Lyapunov function to certify robust performance

e simple dissipation proof that naturally generalizes to other settings
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Iterative algorithm:

Tpy1 = Axy + Buy

and
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Up

ur, = o(yr)
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Simple example

Iterative algorithm:

i1 = Az + Bug
and
|:yk:| = Cuxp + Duy,

uy,

Sector-bounded nonlinearity:

myr < ur < Lyg
(up — myr)(Lyx —ux) >0
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Simple example

Iterative algorithm:
Tht1 = Axy, + Buy,

and U =
[zk] — Cay + Duy b= o)
k

Sector-bounded nonlinearity:

myr < up < Ly
(up —myg)(Lyr — ug) >0

Yk T [—2mL m+L| |yk >0
U m+ L -2 ug| —

II

Find a P > 0 so that for all {zx, ux, yx} satisfying the dynamics,
the following dissipation inequality holds:

.
oy Py — pPa) Py, + Bﬂ II [Z];j <0
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Find a P > 0 so that for all {xx, ux, yx} satisfying the dynamics,
the following dissipation inequality holds:

T
k k
:EZHkaH - p%clka + B } II BJ <0
be <0 —
must be = > 0 because ur=0¢(yx)

Therefore: :z:ZHka_H < prZka and xZka > 0.

So V(z) = 2" Pz is a Lyapunov function that certifies exponential stability.
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Simple example

Find a P > 0 so that for all {xx, ux, yx} satisfying the dynamics,
the following dissipation inequality holds:

T
k
:cL_lkaH - p2szxk + {z } II Bﬂ <0
be <0 —
must be = > 0 because ur=0¢(yx)

Therefore:  af,  Prpy1 < p*xfPxy and  x] Pz > 0.

So V(z) = 2" Pz is a Lyapunov function that certifies exponential stability.

Substitute z;4+1 = Azxy, + Buy, and {Zk} = Czy, + Duy and obtain:
k

.
T ATPA—p*P A'PB T Tk
[uk] ({ 5'pA  prpp|t1C Dl O[C DT <0

[ATPA —p*P A"PB

BTPA BTPB] +[c p]'ufc D=0



Simple example
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Simple example

ATPA - p*’P A"PB
BipA mrpp|tlC DI'm[C D] =<0

Alternative form:

A Bl'[P 0o 0][4 B

I 0| [0 —p2P 0| |I 0] =0
¢ p|l o o ul|lc p

This is a linear matrix inequality (LMI) in P > 0.

We can use a bisection search to find the smallest feasible p.

Note: This is also known as the S-procedure, or the
time-domain version of the circle criterion



Simple example

T
$Z+1P$k+1 — p*a Pxy + [Zﬂ IT [z;j <0

with dynamics xy11 = Axy + Bug and [Zk} = Cxy + Dug.
k

Implementation trick: use row vectors to define basis elements.
Then, express all other elements in terms of the basis.

o\°

define basis (independent rows)
= size(A,1);

= [eye(n) zeros(n,1l)];
[zeros(l,n) 1];

[=I ]
I

% algorithm dynamics
x1 = Axx + Bxu;
yu = Cxx + Dxu;

% Lyapunov equation (generates LMI)
Pi = [-2*m*L m+L; m+L -2];
x1"%Pxx1 — rho”2+x'xPxx + yu'xPixyu <= 0



What's next?

e Using lifting to represent a more complicated function class

e Using different dissipation inequalities to change performance measure

e Numerical examples
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Smooth strongly convex functions

Consider functions f : R™ — R that

e are m-strongly convex:

f(z) — Z||z||* is convex

e have L-Lipschitz gradients:

IVf(z) = Vi)l < Lllz =yl forall z,y € R”
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Interpolation conditions

From [Taylor, Hendrickx, Glineur, 2017]:

Consider {(yk, ug, fr)} for k=1,...,m. The following are equivalent.

a) There exists a smooth strongly convex f satisfying

flyr) = fr and Vf(yg)=ur fork=1,...,m.
b) The following inequality holds for ¢, € {1,...,m}.

2(L —m)(f; — f;) — mLlly; — y;|°

+2(yi — ;) (ma; — Luy) — Ju; — ug]|* > 0.
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Interpolation conditions

From [Taylor, Hendrickx, Glineur, 2017]:

Consider {(yk, ug, fr)} for k=1,...,m. The following are equivalent.

a) There exists a smooth strongly convex f satisfying

flyr) = fr and Vf(yg)=ur fork=1,...,m.

b) The following inequality holds for 4,5 € {1,...,m}.

T

Yi —mL mL m —L Yi .

Yj mL —mL —m L Yj B 1 fi >
Uu; m -m -1 1 U; +2(L—m) =1 |f =0
Uj —L L 1 -1 u]'

Involves pairs of points, and includes function values.
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Interpolation conditions

Lifted iterates:

Yk Uk fr
Y= | ug = | - fo=1 :
Yk—t Uk—¢ fr—e

Interpolation conditions

Yi T —mL mL m —L Yi

T
Yj mL —-mL —-m L Yj _ 1 fi N
Wi m —m —1 1 Ui +2(L m) —1 fi 20
Uj —L L 1 -1 Uj

Linear combination with A;; > 0 of each interpolation condition:

U

5] e [ a2 0

o(Yr ke, fr,\)
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Lifting approach

Less conservative

- search via interpolation
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Lifting approach

Less conservative

- search via interpolation
[ Lifted system } ———————————————————— >
T Lyapu.nov
i function
afee 1 . .
Lifting 1 certifying
' performance
— 3 measure
[ Original system >
J Conservative search

in original coordinates

Lifting increases the number of variables but allows use
of a simpler Lyapunov function.
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Original system:

Uk

Algorithm

Yk

state: xj
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Original system:

Algorithm state: oy
U
Lifted system:
Lifted
algorithm
* yk state: xp =
Uk—y Yk—¢

Tk
Yk—1

Yk—t
Uk —1

LUp—¢d
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Lifted dynamics

Lifted
algorithm

- [‘é ]]:3)] ["B"} and Ffr 1 =F fx

Th+1
Yk up
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Lyapunov function
Ve, f)=x"Px+p'f
e Dissipation inequality
V(@ki1, Fri1) — 07V ( @k, i) + o (yr, wr, fie, Ar) <0

e Positivity

lzkl® = V(xk, fi) + o (Yr, wh, Fro A2) <0

e Interpolation conditions

o (Y, wk, fu, A) = {yk]TH(A) {yk} +7(A)T f

U Ug

Proof:  ||ai|? < V(xk, fir) < p?V(xr-1, fr-1) < -+ < p**V(x0, fo)

18



Linear matrix inequality

A Bl'[P o0 0 A B]
I 0 0 —p?P 0 I 0|=<0
c D] |0 0 1) |C D
(Fy —p’F)Tp+7(A1) <0
I 0]'[-P 0 1 0]_,
C D| |0 TI(Ay)||C D|=

Decision variables:

e symmetric matrix P
e vector p
¢ nonnegative coefficients A; and As.

Feasibility of the LMI implies that V(x, f) is a Lyapunov function.



Beyond convergence rate
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Certifying convergence rate

Dissipation inequality and positivity requirement:

V(zki1, fir1) — P2V(xk, fx) + o (Yn, wk, fio, A1) <
lzkl® = V(xk, fi) + 0 (Yr, ks Fro A2) <

V(@i fei1) < p°V (@, fr)
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Robust quadratic performance

¢
[

2 <— G:m<—w

For all exogenous input signals w,

V(@rt1, For1) = Ve, fi) + o(yn, wr, fi, A1) < op(wy, 21)
lzkll® = V(zk, fr) + o (Y, wr, Fre, A2) <0

T
Z op(wy, 2z) > 0
t=0

For example, if o := v2||w||? — |21 |?, then G has a robust £2 gain from w — z of 7.



Robust stochastic performance

¢
yE U

Suppose wy, is i.i.d. zero-mean random noise with covariance X.

V(@ht1, Fes1) = V@, Fi) + 0(Ye, i, Fro A1) + [|2]]° <0
Vg, fii) + 0 (Y, Wk, i, A2) <0
tr (PB,YB])) <7

T—

1
vaﬂ

t:O

._.

limsup E

T—0
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Simulation examples
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Condition number L/m

e Heavy Ball, Gradient Descent, Fast Gradient, Triple Momentum

e Identical to result obtained via IQCs [Lessard, Packard, Recht 2016],
[Michalowsky, Scherer, Ebenbauer, 2021]

e Only requires £ = 1.



0.4 T T T

. —
¢ [ HB
® GD
=~ 03 FG | A
© e TM
55/ o P RAM
w0 s GD* |
Z 0.2 L) %
€a) -
wn e
S .:\
—4‘ bOl L \_\ -
0 | | | e

0.4 0.5 0.6 0.7 0.8 0.9
RATE(G)?

Robustness with respect to additive gradient noise

Lifting approach [Van Scoy, Lessard, 2021] obtains same
curve as IQCs [Michalowsky, Scherer, Ebenbauer, 2021]

Requires ¢ = 6.

trade-off
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Comparison with IQC approach

Viz,f)=a Pz +p'f

e Function values are necessary for tightest bounds
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Comparison with IQC approach
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Comparison with IQC approach

Viz,f)=a Pz +p'f

e Function values are necessary for tightest bounds

e Lyapunov and IQC approach both involve solving LMI of comparable
size (lifting vs. IQC dynamics)

e Lyapunov approach is possibly less conservative (more degrees of free-
dom), but empirically achieves same results as IQC approach

e Lyapunov certificate is more complicated (more degrees of freedom)
than IQC certificate

27



Approach

e lift the iterates to a higher-dimensional space
e use interpolation to find all valid inequalities

e search for “quadratic + linear” Lyapunov function in the lifted space
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Approach

e lift the iterates to a higher-dimensional space
e use interpolation to find all valid inequalities

e search for “quadratic + linear” Lyapunov function in the lifted space

Benefits

e directly construct a Lyapunov function
e simple dissipation proof that naturally generalizes to other settings

e idea also extends beyond smooth strongly convex functions
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Thank you
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