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Distributed optimization

n
minimize Z fi(y:)
i=1

subject to Y1 =Y =...=Yn

Want each agent to compute the global optimizer by communicating
with local neighbors and performing local computations.



Application: Distributed machine learning
O—@—0C
e each agent has a set of I I I
data and a local model
O——0O
e agents collaboratively

construct a global model I I I

minimize Z Z Uy —my,(x))

1) ‘
e =1 (z,y)€E€data;

subject to 01 =0, =...=0,

MNIST dataset: http://yann.lecun.com/exdb/mnist/


http://yann.lecun.com/exdb/mnist/

Objectives

a) Provide an overview of distributed optimization.
b) Describe the structure of distributed algorithms.

c) Use simulations to illustrate some algorithmic properties.

Context

e This talk: qualitative approach to algorithm analysis using control

e Alternative approach: quantitative



Model the communication network as a weighted directed graph.

Graph  Meaning

node  agent
edge flow of information between two agents

weight amount by which information is weighted

als

Multiplication by the Laplacian
o matrix L diffuses information.
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Gradient tracking

One well-known algorithm for consensus optimization is gradient tracking.

n
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e agents communicate local information and compute local gradients
e y; estimates the average gradient

e 1, applies gradient descent to the estimated average gradient



General algorithm form

Each agent ¢ can. ..

e evaluate its local gradient
u; =V fi(yi)

e communicate information with neighbors
n
vi =) aij (2 — z)
Jj=1

¢ choose the points at which to evaluate the gradient and communicate

u)-n]



Compact form

Bold signals are concatenated over all agents, e.g., y = (y1,.-.,Yn)

Combined gradient is Vf = diag(V f1,...,Vfa)

Combined Laplacian is L = L ® I,,, where m is the dimension of z;

In ® Hll In ® H12
In Q H21 In ® H22

Combined system is H =




Dynamic average consensus

Each agent 7 has a (potentially time-varying) signal w.
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Proportional estimator

W—»O > Yy

L yr = wi —af

1 ] n
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General form
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pth-order estimator asymptotically tracks polynomials of degree p — 1.

e A first-order estimator tracks constant signals

¢ A second-order estimator tracks ramp signals

One way to construct higher-order estimators: combine in series

Y ~— W
G1’con Gcon
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Optimization methods

Consider the unconstrained optimization problem minimize f(y).

Gopt

Yi = Gopt U;

Yi 7

S, u; =V fi(ys)

Gradient method: "™ = y* — a Vf(y*) has Gopi(2) = =%

z

The transfer function must have a pole at z =1
so that all fixed points are stationary points.
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Decomposition

Gcon - GOPt

y

e Gopt is an optimization method
e (Gcon is a second-order consensus estimator

Every algorithm decomposes in this form, and any optimization
method and consensus estimator combine to form a valid algorithm.

Proof (idea): Can always factor H as Geon {Gom 0 ]

0 Iy
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Simulation: Distributed least squares

e n =5 agents
e objective function on agent 7 is the quadratic
fily) = 3y  Aiy = bly
parameterized by symmetric matrix A; € R3*3 and vector b; € R3
e sample A; such that its eigenvalues are evenly spaced in [%, 1]

e sample each element of b; from a standard normal distribution

Use simulations to illustrate algorithm properties of
internal stability, acceleration, and robustness.

13



Optimility conditions

n
minimize Z filys)
i=1

subject to Y1 =Yz =...=yn

Condition

Error

Optimality

Consensus

> Viily) =0
i=1

Yi=¥Y%=-.-=Un

> Vi)
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Each thin trace is a trial (1000 total)
The thick trace is the average over all trials

The total error is the maximum of optimization and consensus errors
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Internal stability

G’con Gopt <

e At steady state, the average gradient is zero, but u; # 0 in general
e This nonzero value is integrated by the optimization method

e The input w; to the consensus estimator grows without bound

The algorithm is not internally stable.
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Geon1 < GOpt Geon2 <

e Can avoid this issue if the consensus estimator factors
e Gon1 and Ggona are both first-order estimators

e The input to the optimization method is zero at steady state



10° ~——— Standard form in Figure 1] |
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Acceleration

Accelerate convergence using extra (appropriately chosen) dynamics.

Accelerated consensus

w —)

LLIJ

(z=Q(z-1)

Accelerated optimization

—a(z+n(z-1))
(z=p8)(z-1)

Gopt(2) =
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Robustness

e Suppose agent 1 leaves the network at iteration £ = 200

e The other agents update their weights accordingly

How does an algorithm respond to changes in the network?
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The P estimator requires the state to be initialized such that ), z; = 0.

w —)
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The PI estimator has no such requirement.
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An estimator with no initialization requirement is called robust.
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Summary

G’con Gopt <

a) Provided an overview of distributed optimization.
b) Described the structure of distributed algorithms.
c) Used simulations to illustrate some algorithmic properties.

e internal stability
e acceleration
e robustness
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