Tutorial on the structure of distributed optimization algorithms

Bryan Van Scoy Miami University

Laurent Lessard Northeastern University

IEEE Conference on Decision and Control December 13-15, 2023

Distributed optimization

subject to $y_1 = y_2 = ... = y_n$

Want each agent to compute the global optimizer by communicating with local neighbors and performing local computations.

Application: Distributed machine learning

- each agent has a set of data and a local model
- agents collaboratively construct a global model

minimize
\n
$$
\theta_1, ..., \theta_n
$$

\nsubject to
\n $\theta_1 = \theta_2 = ... = \theta_n$
\n θ_n

MNIST dataset: <http://yann.lecun.com/exdb/mnist/> 2

Objectives

- **a)** Provide an overview of distributed optimization.
- **b)** Describe the structure of distributed algorithms.
- **c)** Use simulations to illustrate some algorithmic properties.

Context

- This talk: qualitative approach to algorithm analysis using control
- Alternative approach: quantitative

Model the communication network as a weighted directed graph.

Multiplication by the Laplacian matrix *L* diffuses information.

$$
(Lx)_i = \sum_{j=1}^n a_{ij}(x_i - x_j)
$$

Gradient tracking

One well-known algorithm for consensus optimization is gradient tracking.

$$
x_i^{k+1} = \sum_{j=1}^n a_{ij} x_j^k - \alpha y_i^k
$$

$$
y_i^{k+1} = \sum_{j=1}^n a_{ij} y_j^k + \nabla f_i(x_i^{k+1}) - \nabla f_i(x_i^k)
$$

- agents communicate local information and compute local gradients
- *yⁱ* estimates the average gradient
- *xⁱ* applies gradient descent to the estimated average gradient

General algorithm form

Each agent *i* can. . .

• evaluate its local gradient

$$
u_i = \nabla f_i(y_i)
$$

• communicate information with neighbors

$$
v_i = \sum_{j=1}^{n} a_{ij} (z_i - z_j)
$$

• choose the points at which to evaluate the gradient and communicate

$$
\begin{bmatrix} y_i \\ z_i \end{bmatrix} = H \begin{bmatrix} u_i \\ v_i \end{bmatrix}
$$

Compact form

- Bold signals are concatenated over all agents, e.g., $\boldsymbol{y} = (y_1, \dots, y_n)$
- Combined gradient is $\nabla f = \text{diag}(\nabla f_1, \dots, \nabla f_n)$
- Combined Laplacian is $L = L \otimes I_m$ where m is the dimension of z_i

• Combined system is
$$
\boldsymbol{H} = \begin{bmatrix} I_n \otimes H^{11} & I_n \otimes H^{12} \\ I_n \otimes H^{21} & I_n \otimes H^{22} \end{bmatrix}
$$

Dynamic average consensus

Each agent i has a (potentially time-varying) signal w_i^k .

Want each agent to estimate the average signal
$$
w_{\text{avg}}^k = \frac{1}{n} \sum_{i=1}^n w_i^k
$$
.

Proportional estimator

General form

$$
\begin{bmatrix} y_i \\ z_i \end{bmatrix} = G_{\text{con}} \begin{bmatrix} w_i \\ v_i \end{bmatrix}
$$

$$
v_i = \sum_{j=1}^n a_{ij} (z_i - z_j)
$$

p th-order estimator asymptotically tracks polynomials of degree *p* − 1.

- A first-order estimator tracks constant signals
- A second-order estimator tracks ramp signals

One way to construct higher-order estimators: combine in series

Optimization methods

Consider the unconstrained optimization problem minimize *f*(*y*).

Gradient method: $y^{k+1} = y^k - \alpha \nabla f(y^k)$ has $G_{\text{opt}}(z) = \frac{-\alpha}{z-1}$

The transfer function must have a pole at $z = 1$ so that all fixed points are stationary points.

Decomposition

- G_{opt} is an optimization method
- G_{con} is a second-order consensus estimator

Every algorithm decomposes in this form, and any optimization method and consensus estimator combine to form a valid algorithm.

Proof (idea): Can always factor *H* as
$$
G_{con} \begin{bmatrix} G_{opt} & 0 \\ 0 & I_m \end{bmatrix}
$$

Simulation: Distributed least squares

• $n=5$ agents

• objective function on agent *i* is the quadratic

$$
f_i(y) = \frac{1}{2}y^{\mathsf{T}} A_i y - b_i^{\mathsf{T}} y
$$

parameterized by symmetric matrix $A_i \in \mathbb{R}^{3 \times 3}$ and vector $b_i \in \mathbb{R}^3$

- sample A_i such that its eigenvalues are evenly spaced in $\left[\frac{1}{10}, 1\right]$
- sample each element of *bⁱ* from a standard normal distribution

Use simulations to illustrate algorithm properties of internal stability, acceleration, and robustness.

Optimility conditions

minimize
$$
\sum_{i=1}^{n} f_i(y_i)
$$

subject to $y_1 = y_2 = \ldots = y_n$

- Each thin trace is a trial (1000 total)
- The thick trace is the average over all trials
- The total error is the maximum of optimization and consensus errors

Internal stability

- At steady state, the average gradient is zero, but $u_i \neq 0$ in general
- This nonzero value is integrated by the optimization method
- The input *wⁱ* to the consensus estimator grows without bound

The algorithm is not internally stable.

- Can avoid this issue if the consensus estimator factors
- G_{con1} and G_{con2} are both first-order estimators
- The input to the optimization method is zero at steady state

The factored form has better numerical conditioning.

Acceleration

Accelerate convergence using extra (appropriately chosen) dynamics.

Accelerated consensus

Accelerated optimization

$$
G_{\text{opt}}(z) = \frac{-\alpha (z + \eta (z - 1))}{(z - \beta)(z - 1)}
$$

Using additional dynamics can accelerate convergence.

Parameters: $(\alpha, \beta, \eta) = (0.1, 0.8, 0)$ and $(\zeta, k_I) = (0.1, 1.1)$ 20

Robustness

- Suppose agent 1 leaves the network at iteration $k = 200$
- The other agents update their weights accordingly

How does an algorithm respond to changes in the network?

The P estimator requires the state to be initialized such that $\sum_i x_i = 0$.

The PI estimator has no such requirement.

An estimator with no initialization requirement is called *robust*.

The algorithm with a robust estimator recovers from the change in network (after a transient).

Summary

- **a)** Provided an overview of distributed optimization.
- **b)** Described the structure of distributed algorithms.
- **c)** Used simulations to illustrate some algorithmic properties.
	- internal stability
	- acceleration
	- robustness