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Distributed optimization

minimize
n∑
i=1

fi(yi)

subject to y1 = y2 = . . . = yn
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Want each agent to compute the global optimizer by communicating
with local neighbors and performing local computations.
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Application: Distributed machine learning

• each agent has a set of
data and a local model

• agents collaboratively
construct a global model

minimize
θ1,...,θn

n∑
i=1

∑
(x,y)∈datai

`(y −mθi(x))

subject to θ1 = θ2 = . . . = θn

2MNIST dataset: http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/


Objectives

a) Provide an overview of distributed optimization.

b) Describe the structure of distributed algorithms.

c) Use simulations to illustrate some algorithmic properties.

Context

• This talk: qualitative approach to algorithm analysis using control

• Alternative approach: quantitative
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Model the communication network as a weighted directed graph.

Graph Meaning
node agent
edge flow of information between two agents
weight amount by which information is weighted
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Multiplication by the Laplacian
matrix L diffuses information.

(Lx)i =
n∑
j=1

aij(xi − xj)



Gradient tracking

One well-known algorithm for consensus optimization is gradient tracking.

xk+1
i =

n∑
j=1

aij x
k
j − αyki

yk+1
i =

n∑
j=1

aij y
k
j +∇fi(xk+1

i )−∇fi(xki )

• agents communicate local information and compute local gradients

• yi estimates the average gradient

• xi applies gradient descent to the estimated average gradient
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General algorithm form

Each agent i can. . .

• evaluate its local gradient

ui = ∇fi(yi)

• communicate information with neighbors

vi =
n∑
j=1

aij (zi − zj)

• choose the points at which to evaluate the gradient and communicate[
yi
zi

]
= H

[
ui
vi

]
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Compact form

• Bold signals are concatenated over all agents, e.g., y = (y1, . . . , yn)

• Combined gradient is ∇f = diag(∇f1, . . . ,∇fn)

• Combined Laplacian is L = L⊗ Im where m is the dimension of zi

• Combined system is H =
[
In ⊗H11 In ⊗H12

In ⊗H21 In ⊗H22

]

H

L

∇f

vz uy
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Dynamic average consensus

Each agent i has a (potentially time-varying) signal wki .
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Want each agent to estimate the average signal wkavg = 1
n

n∑
i=1

wki .
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Proportional estimator

1

z − 1
I L

w

x

−
y

yki = wki − xki

xk+1
i = xki +

n∑
j=1

aij
(
yki − ykj

)

General form

Gcon

L

z v

y w
[
yi
zi

]
= Gcon

[
wi
vi

]

vi =
n∑
j=1

aij (zi − zj)
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pth-order estimator asymptotically tracks polynomials of degree p− 1.

• A first-order estimator tracks constant signals

• A second-order estimator tracks ramp signals

One way to construct higher-order estimators: combine in series

Gcon

L

wGcon

L

y
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Optimization methods

Consider the unconstrained optimization problem minimize f(y).

Gopt

∇fi

yi ui
yi = Gopt ui

ui = ∇fi(yi)

Gradient method: yk+1 = yk − α∇f(yk) has Gopt(z) = −α
z−1

The transfer function must have a pole at z = 1
so that all fixed points are stationary points.
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Decomposition

GoptGcon
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• Gopt is an optimization method

• Gcon is a second-order consensus estimator

Every algorithm decomposes in this form, and any optimization
method and consensus estimator combine to form a valid algorithm.

Proof (idea): Can always factor H as Gcon

[
Gopt 0

0 Im

]
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Simulation: Distributed least squares

• n = 5 agents

• objective function on agent i is the quadratic

fi(y) = 1
2y

TAiy − bT
i y

parameterized by symmetric matrix Ai ∈ R3×3 and vector bi ∈ R3

• sample Ai such that its eigenvalues are evenly spaced in [ 1
10 , 1]

• sample each element of bi from a standard normal distribution

Use simulations to illustrate algorithm properties of
internal stability, acceleration, and robustness.
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Optimility conditions

minimize
n∑
i=1

fi(yi)

subject to y1 = y2 = . . . = yn

Condition Error

Optimality
n∑
i=1
∇fi(yi) = 0

∥∥∥∥ n∑
i=1
∇f(yi)

∥∥∥∥
Consensus y1 = y2 = . . . = yn

n∑
i=1

∥∥∥∥yi − 1
n

n∑
j=1

yj

∥∥∥∥
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• Each thin trace is a trial (1000 total)

• The thick trace is the average over all trials

• The total error is the maximum of optimization and consensus errors

15



Internal stability

GoptGcon
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• At steady state, the average gradient is zero, but ui 6= 0 in general

• This nonzero value is integrated by the optimization method

• The input wi to the consensus estimator grows without bound

The algorithm is not internally stable.
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GoptGcon1 Gcon2

L L

∇f

• Can avoid this issue if the consensus estimator factors

• Gcon1 and Gcon2 are both first-order estimators

• The input to the optimization method is zero at steady state
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The factored form has better numerical conditioning.
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Acceleration

Accelerate convergence using extra (appropriately chosen) dynamics.

Accelerated consensus

kI z

(z − ζ)(z − 1)
I L

w

−
y

Accelerated optimization

Gopt(z) = −α (z + η (z − 1))
(z − β)(z − 1)
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Using additional dynamics can accelerate convergence.

20Parameters: (α, β, η) = (0.1, 0.8, 0) and (ζ, kI) = (0.1, 1.1)



Robustness

• Suppose agent 1 leaves the network at iteration k = 200

• The other agents update their weights accordingly
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How does an algorithm respond to changes in the network?
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The P estimator requires the state to be initialized such that
∑
i xi = 0.

1

z − 1
I L

w

x

−
y

The PI estimator has no such requirement.

kp
z − ζ

I L

kI
z − 1

I L

w

−
y

22An estimator with no initialization requirement is called robust.



The algorithm with a robust estimator recovers
from the change in network (after a transient).
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Summary

GoptGcon
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a) Provided an overview of distributed optimization.

b) Described the structure of distributed algorithms.

c) Used simulations to illustrate some algorithmic properties.

• internal stability
• acceleration
• robustness
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