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Optimization

minimize  f(x)
subject to z € X

¢ Black-box setting: can only obtain information by sampling oracles
that return information about the objective/constraint at a point

¢ Performance measure: a measure of distance from the optimal so-

lution (e.g., f(z) — fu or [Vf(2)]?)

e lteration complexity: number of iterations to compute a solution
such that the performance measure is less than some tolerance

e Worst-case analysis: bound the worst-case iteration complexity over
a class of problems
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(Drori and Teboulle, 2014), (Lessard et al., 2016), (Taylor et al., 2017), ...



Function classes

A function f : R? — R is convex if f(y) > f(x) + Vf(z)"(y — ).

f(=)

Convex functions have no local minimizers.

At each point, the function is supported by its tangent line.



e A function is m-strongly convex if f(x) — Z2|z[|* is convex.

* A function is L-smooth if £||z|? — f(z) is convex.

f(@)

The condition ratio L/m characterizes the variation in curvature.

At each point, the function is bounded by quadratics of curvature m and L.



Linearly constrained convex optimization

minimize  f(z)

subject to Ax =b

Assumptions

e fis L-smooth and m-strongly convex, denoted f € F(m, L)

e A has full row rank and singular values in [0, 7], denoted A € A(c,7)

Condition ratios £ (f) = £ and k(A) =

[SRE]]

characterize problem difficulty.



Algorithms
¢ Projected gradient descent
Thy1 = Projx (zx — ax Vf (z1))

e Dual ascent
Tp € argmin f(z) + A\ (Az — b)
Aot1 = Ap + ap(Azg1 — b)

e Method of multipliers
Tpyr € argmin f(z) + A\ (Az —b) + LAz — b|?
xr
Aet1 = A + p(Azp41 — b)
Projection and minimization oracles are computationally expensive.

(Boyd et al., 2010)



Primal-dual algorithms

A pair (x4, \.) is optimal if and only if it is a saddle point of the Lagrangian

L(z,\) = f(z) + A\T(Az — b)

Primal descent
o7 =2 —a, V. L(z,\)
=2 — a,(Vf(z)+ ATN)
Dual ascent

AT =X+ ay VaL(z, \)
= A+ ay(Az - )

Only requires computing Vf and multiplication by A and AT.



Generalizations
e Apply the primal-dual algorithm to the augmented problem

minimize  f(z) + 4[| Az — b||?
subject to Ax =1b

e Apply dual ascent to an extrapolated point

A=A+ axVaL(z+ 7y (at —x),A)

xt =2 — o, [Vf(z) + ATA + pAT (Az — b))
M =A+ar[A(z+vy(z" —x)) — b

More parameters so (potentially) better convergence.



Literature review

With no Lagrangian augmentation (x = 0) and no extrapolation (v = 0),
the Lyapunov function

V(z,A) = llz = VF* (=ATA)[ + ¢ [IA = Al

where f* is the convex conjugate of f converges with rate

Vi =0 (1~ ) )

(Du and Hu, 2019)



Literature review

With extrapolation 4 = 1 and no Lagrangian augmentation (for simplicity),
the Lyapunov function

V(@A) = /(1 - ez — 2.2 + ] = A,
converges with rate
V(xk, M) = O(p*)  where  p? = max{l—a,m (1—a,L), 1—azarc®}
Choosing the stepsizes to optimize this bound yields

1-— #f)(ﬁ — ﬁ) otherwise

(Alghunaim and Sayed, 2020) 10
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st =z — 0, [Vf(z) + ATA + pAT (Az — b)]
M =A+ar[A(z+vy(z" —x)) — b
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The algorithm is an LTI system in feedback with V£, A, and AT.

Main idea
¢ Replace these components with constraints on their inputs/outputs

e Use these constraints to search for a Lyapunov function
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Interpolation
When does there exist f € F(m, L) such that u; = Vf(y;) for all ¢?

u = Vf(y)
(y2,u2)

(y1,u1) (vs, ua)

0 < f(yi) = f(ws) = VF () (Wi = 95) = sy (%IIVf(yz') — Vi w)I®

o mllgs = usll* = 2 (V) = V) (05— w2)

(Taylor et al., 2017)
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Quadratic constraints

For what matrices M does the quadratic inequality

ogtr(MmT[YD with ;’[m S

hold for iterates such that u; = Vf(y;) for some f € F(m,L)?

Result:
0 1

-1 0

—2mL L+m

M_{L—I—m -2

Jor+ |y gles

where R is diagonally dominant with zero excess and S is skew symmetric

Proof (idea): take nonnegative sum of interpolation conditions such that
function values cancel

R is symmetric, R1 = 0, R;; > 0 for all ¢, and R;; <0 for all i # j



Issue: no (convex) interpolation conditions for A € A(c,7)

e interpolation for linear operators in (Bousselmi et al., 2023)

e can bound maximum singular value, but not minimum

Fix: transform the uncertainty to a form for
which we have interpolation conditions
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First, let's simplify the block diagram. Define

—a
z—1

Gprimal (Z) =

AT

a1 +7(z-1))

gdual(z) = —

z—1
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O > Gdual(2)

@‘ gprimal(z) 1 <—C)

) 1
)

Compact SVD (A is full row rank by assumption)

‘/1T

A=U o |k

Can move AT around top loop to form AT A (singular), but not AAT (nonsingular).
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The objective function f(z) transforms to f(Vx).

e
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The algorithm is an LTI system in feedback with Vf and 32.
Main idea

e Replace these components with constraints on their inputs/outputs

e Use these constraints to search for a Lyapunov function
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Linear interpolation

Interpolation: There exists A € A(c,7) such that u; = X2y, for all i iff

U'Y=Y"U and (U-2¢*V)"@Y -U)>0

Quadratic constraints: The quadratic inequality

T
Y Y
o<ufar i) o))
holds for iterates such that u; = %2y, for some A € A(g,7) iff

_2Q252 62 +Q2
72 4+ o2 -2

0 1

M{ -1 0

Jors |l gles

where R is symmetric positive semidefinite and S is skew symmetric.

(Bousselmi et al., 2023)
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Analysis via Lyapunov functions

Trr1 = P(xp)

A function V() is a Lypapunov function if the following holds for all z:

V(z) > ||z|? (positivity condition)
V(p(x)) < p?V(x) (decrease condition)

If there exists a Lyapunov function, then ||z = O(p").

Proof: [lz4]|? < V() < p*V(241) < -+ < p*V (o)

Lyapunov functions are also known as potential or energy functions.

21



-
ZTk+1 = Az + Buy  subject to [5:] M; [xk} >0

If there exist symmetric matrix P and scalars A\; > 0 and p; > 0 such that

-
[1;1 g} {Ig ;)QP] [j} l(ﬂ +zi:/\i M; <0 (decrease)
[T 0] (I—P)[I 0]+ wiM; <0 (positivity)

then V(x) = 2T Pz is a Lyapunov function.

For LTI systems subject to quadratic constraints, searching
for a quadratic Lyapunov function is a semidefinite program.
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To apply more constraints, filter the inputs and outputs of Vf and X2 by

The Lyapunov function then depends on the state and ¢ previous inputs
and outputs of both Vf and ¥2.
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Comparison with known bounds

Parameters: «(f) =2, u
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(Du and Hu, 2019)

matrix condition ratio x(A)
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Comparison with known bounds

Parameters: «(f) =2, u=0,v=1
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(Alghunaim and Sayed, 2020)
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Summary

minimize  f(x)
subject to Az =b
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zt =1 — a, [Vf(z) + AT\ + pAT (Az — b))
M =A+a[A@+y (@t —1z)) -8
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