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Optimization

minimize f(x)
subject to x ∈ X

• Black-box setting: can only obtain information by sampling oracles
that return information about the objective/constraint at a point

• Performance measure: a measure of distance from the optimal so-
lution (e.g., f(x) − f⋆ or ∥∇f(x)∥2)

• Iteration complexity: number of iterations to compute a solution
such that the performance measure is less than some tolerance

• Worst-case analysis: bound the worst-case iteration complexity over
a class of problems
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Systematic algorithm analysis

Automated
analysis

Worst-case
performance

bound

Problem specifications

• function class

• oracle

• algorithm

• performance measure

2(Drori and Teboulle, 2014), (Lessard et al., 2016), (Taylor et al., 2017), . . .



Function classes

A function f : Rd → R is convex if f(y) ≥ f(x) + ∇f(x)T(y − x).

x

f(x)

Convex functions have no local minimizers.

3At each point, the function is supported by its tangent line.



• A function is m-strongly convex if f(x) − m
2 ∥x∥2 is convex.

• A function is L-smooth if L
2 ∥x∥2 − f(x) is convex.

x

f(x)

The condition ratio L/m characterizes the variation in curvature.

4At each point, the function is bounded by quadratics of curvature m and L.



Linearly constrained convex optimization

minimize f(x)
subject to Ax = b

Assumptions

• f is L-smooth and m-strongly convex, denoted f ∈ F(m,L)

• A has full row rank and singular values in [σ, σ], denoted A ∈ A(σ, σ)

Condition ratios κ(f) = L
m and κ(A) = σ

σ characterize problem difficulty.
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Algorithms

• Projected gradient descent

xk+1 = projX(xk − αk∇f(xk))

• Dual ascent

xk+1 ∈ arg min
x

f(x) + λT
k (Ax− b)

λk+1 = λk + αk(Axk+1 − b)

• Method of multipliers

xk+1 ∈ arg min
x

f(x) + λT
k (Ax− b) + µ

2 ∥Ax− b∥2

λk+1 = λk + µ(Axk+1 − b)

Projection and minimization oracles are computationally expensive.

6(Boyd et al., 2010)



Primal-dual algorithms

A pair (x⋆, λ⋆) is optimal if and only if it is a saddle point of the Lagrangian

L(x, λ) = f(x) + λT(Ax− b)

Primal descent

x+ = x− αx ∇xL(x, λ)

= x− αx(∇f(x) +ATλ)

Dual ascent

λ+ = λ+ αλ ∇λL(x, λ)
= λ+ αλ(Ax− b)

Only requires computing ∇f and multiplication by A and AT.
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Generalizations

• Apply the primal-dual algorithm to the augmented problem

minimize f(x) + µ
2 ∥Ax− b∥2

subject to Ax = b

• Apply dual ascent to an extrapolated point

λ+ = λ+ αλ ∇λL
(
x+ γ (x+ − x), λ

)

x+ = x− αx [∇f(x) +ATλ+ µAT(Ax− b)]
λ+ = λ+ αλ [A (x+ γ (x+ − x)) − b]

More parameters so (potentially) better convergence.
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Literature review

With no Lagrangian augmentation (µ = 0) and no extrapolation (γ = 0),
the Lyapunov function

V (x, λ) = ∥x− ∇f∗(−ATλ)∥ + c ∥λ− λ⋆∥

where f∗ is the convex conjugate of f converges with rate

V (xk, λk) = O
((

1 − 1
12κ(f)3 κ(A)4

)k
)

9(Du and Hu, 2019)



Literature review

With extrapolation γ = 1 and no Lagrangian augmentation (for simplicity),
the Lyapunov function

V (x, λ) =
√

(1 − αxαλσ
2)∥x− x⋆∥2 + ∥λ− λ⋆∥2

converges with rate

V (xk, λk) = O(ρk) where ρ2 = max{1−αxm (1−αxL), 1−αxαλσ
2}

Choosing the stepsizes to optimize this bound yields

ρ2 =
{

1 − 1
4 κ(f) if κ(A) ≤

√
2

1 − 1
κ(f)

( 1
κ(A)2 − 1

κ(A)4

)
otherwise

10(Alghunaim and Sayed, 2020)



Systematic analysis of primal-dual algorithms

Automated
analysis

Worst-case
performance

bound

Problem specifications

• function class

• oracle

• algorithm

• performance measure

x+ = x− αx [∇f(x) +ATλ+ µAT(Ax− b)]
λ+ = λ+ αλ [A (x+ γ (x+ − x)) − b]

11



A
−αx

z − 1
I AT

αλ(1 + γ(z − 1))

z − 1
I

µI

∇f

b

−

x

λ

The algorithm is an LTI system in feedback with ∇f , A, and AT.

Main idea

• Replace these components with constraints on their inputs/outputs

• Use these constraints to search for a Lyapunov function
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Interpolation

When does there exist f ∈ F(m,L) such that ui = ∇f(yi) for all i?

(y1, u1)

(y2, u2)

(y3, u3)

y

u = ∇f(y)

0 ≤ f(yi) − f(yj) − ∇f(yj)T(yi − yj) − 1
2(1− m

L
)

(
1
L

∥∇f(yi) − ∇f(yj)∥2

+ m∥yi − yj∥2 − 2 m
L

(∇f(yi) − ∇f(yj))T(yi − yj)
)

13(Taylor et al., 2017)



Quadratic constraints

For what matrices M does the quadratic inequality

0 ≤ tr
(
M

[
Y
U

]T [
Y
U

])
with

Y =
[
y1 . . . yn

]
U =

[
u1 . . . un

]
hold for iterates such that ui = ∇f(yi) for some f ∈ F(m,L)?

Result:
M =

[
−2mL L+m
L+m −2

]
⊗R+

[
0 1

−1 0

]
⊗ S

where R is diagonally dominant with zero excess and S is skew symmetric

Proof (idea): take nonnegative sum of interpolation conditions such that
function values cancel

14R is symmetric, R1 = 0, Rii ≥ 0 for all i, and Rij ≤ 0 for all i ̸= j



Issue: no (convex) interpolation conditions for A ∈ A(σ, σ)

• interpolation for linear operators in (Bousselmi et al., 2023)

• can bound maximum singular value, but not minimum

Fix: transform the uncertainty to a form for
which we have interpolation conditions
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A
−αx

z − 1
I AT

αλ(1 + γ(z − 1))

z − 1
I

µI

∇f

b

−

x

λ

First, let’s simplify the block diagram. Define

gprimal(z) = −αx

z − 1 gdual(z) = −µ− αλ(1 + γ(z − 1))
z − 1
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A gprimal(z) I AT

gdual(z) I

∇f

b

−
x

Compact SVD (A is full row rank by assumption)

A = U
[
Σ 0

] [
V T

1

V T
2

]

17Can move AT around top loop to form ATA (singular), but not AAT (nonsingular).



Σ
[
I 0

]
gprimal(z) I

[
I
0

]
Σ

gdual(z) I

∇f

UTb

−
x

The objective function f(x) transforms to f(V x).
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Σ2
[
I 0

]
gprimal(z) I

[
I
0

]

gdual(z) I

∇f

ΣUTb

−
x

The algorithm is an LTI system in feedback with ∇f and Σ2.

Main idea

• Replace these components with constraints on their inputs/outputs

• Use these constraints to search for a Lyapunov function

19



Linear interpolation

Interpolation: There exists A ∈ A(σ, σ) such that ui = Σ2yi for all i iff

UTY = Y TU and (U − σ2Y )T(σ2Y − U) ⪰ 0

Quadratic constraints: The quadratic inequality

0 ≤ tr
(
M

[
Y
U

]T [
Y
U

])
holds for iterates such that ui = Σ2yi for some A ∈ A(σ, σ) iff

M =
[
−2σ2σ2 σ2 + σ2

σ2 + σ2 −2

]
⊗R+

[
0 1

−1 0

]
⊗ S

where R is symmetric positive semidefinite and S is skew symmetric.

20(Bousselmi et al., 2023)



Analysis via Lyapunov functions

xk+1 = ϕ(xk)

A function V (x) is a Lypapunov function if the following holds for all x:

V (x) ≥ ∥x∥2 (positivity condition)
V (ϕ(x)) ≤ ρ2V (x) (decrease condition)

If there exists a Lyapunov function, then ∥xk∥ = O(ρk).

Proof: ∥xk∥2 ≤ V (xk) ≤ ρ2V (xk−1) ≤ · · · ≤ ρ2kV (x0)

21Lyapunov functions are also known as potential or energy functions.



xk+1 = Axk +Buk subject to
[
xk
uk

]T
Mi

[
xk
uk

]
≥ 0

If there exist symmetric matrix P and scalars λi ≥ 0 and µi ≥ 0 such that[
A B
I 0

]T [
P 0
0 −ρ2P

] [
A B
I 0

]
+

∑
i

λi Mi ⪯ 0 (decrease)

[
I 0

]T(I − P )
[
I 0

]
+

∑
i

µi Mi ⪯ 0 (positivity)

then V (x) = xTPx is a Lyapunov function.

For LTI systems subject to quadratic constraints, searching
for a quadratic Lyapunov function is a semidefinite program.
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Σ2
[
I 0

]
gprimal(z) I

[
I
0

]

gdual(z) I

∇f

ΣUTb

−
x

To apply more constraints, filter the inputs and outputs of ∇f and Σ2 by

ψ(z) =


1
z−1

...
z−ℓ


The Lyapunov function then depends on the state and ℓ previous inputs
and outputs of both ∇f and Σ2.
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Comparison with known bounds

Parameters: κ(f) = 2, µ = 0, γ = 0

1 2 3 4 5 6 7 8

matrix condition ratio κ(A)

0.97
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0.99

1.00
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n
v
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g
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r
ρ

primal-dual analysis

bound in [31]

4 5
0.9998

0.9999

1.0000

24(Du and Hu, 2019)



Comparison with known bounds

Parameters: κ(f) = 2, µ = 0, γ = 1
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25(Alghunaim and Sayed, 2020)



Summary

minimize f(x)
subject to Ax = b

Automated
analysis

Worst-case
performance

bound

Problem specifications

• function class

• oracle

• algorithm

• performance measure

x+ = x− αx [∇f(x) +ATλ+ µAT(Ax− b)]
λ+ = λ+ αλ [A (x+ γ (x+ − x)) − b]
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