Lyapunov Functions for First-Order Methods Tight Automated Convergence Guarantees

Adrien Taylor Bryan Van Scoy Laurent Lessard

35th International Conference on Machine Learning Stockholm, Sweden July 11, 2018

We consider *first-order* methods to solve the following problem:

$$\begin{array}{ll} \mbox{minimize} & f(x) \\ \mbox{subject to} & x \in \mathbb{R}^d \end{array}$$

This work

Automatic analysis of optimization methods by solving a small-sized semidefinite program. Convergence rate is provably tight when

- f is L-smooth and μ -strongly convex (denoted $f \in \mathcal{F}_{\mu,L}(\mathbb{R}^d)$), and
- the method is *iterative* with *fixed stepsizes*.

Combines:

- performance estimation problems (Drori & Teboulle, 2014)
- integral quadratic constraints (Lessard, Recht, Packard, 2016)

Uses smooth strongly convex interpolation (Taylor, Hendrickx, Glineur, 2017)

First-order iterative fixed-step method

$$y_k = \sum_{j=0}^N \gamma_j x_{k-j}$$
$$x_{k+1} = \sum_{j=0}^N \beta_j x_{k-j} - \alpha \nabla f(y_k)$$

degree N

stepsizes α , β_j , γ_j

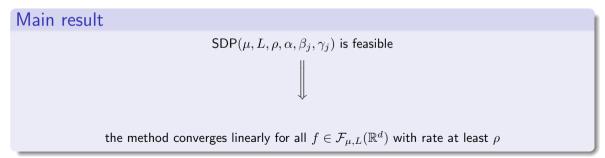
initial conditions $x_j \in \mathbb{R}^d$ for $j = -N, \ldots, 0$

Extensions:

- linesearch (or subspace search)
- restart (fixed/adaptive)

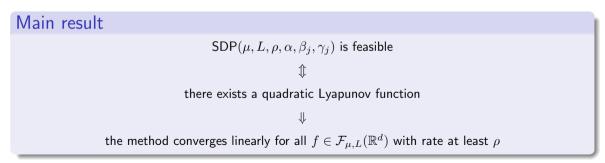
First-order iterative fixed-step method

$$y_k = \sum_{j=0}^N \gamma_j x_{k-j}$$
$$x_{k+1} = \sum_{j=0}^N \beta_j x_{k-j} - \alpha \nabla f(y_k)$$



First-order iterative fixed-step method

$$y_k = \sum_{j=0}^N \gamma_j x_{k-j}$$
$$x_{k+1} = \sum_{j=0}^N \beta_j x_{k-j} - \alpha \nabla f(y_k)$$

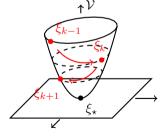


Lyapunov function

Fundamental tool from control theory that can be used to verify stability of a dynamical system (Kalman & Bertram, 1960).

Notation	Control	Optimization
ξ	state	iterate, function, & gradient values
ξ_{\star}	fixed-point	optimal solution
$\mathcal{V}(\xi)$	energy in system	distance from optimality

nonnegative $\mathcal{V}(\xi) \ge 0$ for all ξ zero at fixed-point $\mathcal{V}(\xi) = 0$ if and only if $\xi = \xi_{\star}$ radially unbounded $\mathcal{V}(\xi) \to \infty$ as $\|\xi\| \to \infty$ decreasing $\mathcal{V}(\xi_{k+1}) \le \rho^2 \mathcal{V}(\xi_k)$ for all k



Existence of a Lyapunov function provides a certificate of convergence.

Lyapunov function

Fundamental tool from control theory that can be used to verify stability of a dynamical system (Kalman & Bertram, 1960).

Notation	Control	Optimization
ξ	state	iterate, function, & gradient values
ξ_{\star}	fixed-point	optimal solution
$\mathcal{V}(\xi)$	energy in system	distance from optimality

Suppose we choose the state as $\xi_k = \{(x_i, f(y_i), \nabla f(y_i)\}_{i=k-N}^N$ where x_k are the iterates. We then use the quadratic Lyapunov function candidate:

$$\mathcal{V}(\xi_k) = \begin{bmatrix} x_k - x_\star \\ \vdots \\ x_{k-N} - x_\star \\ \nabla f(y_k) \\ \vdots \\ \nabla f(y_{k-N}) \end{bmatrix}^{\mathsf{T}} (P \otimes I_d) \begin{bmatrix} x_k - x_\star \\ \vdots \\ x_{k-N} - x_\star \\ \nabla f(y_k) \\ \vdots \\ \nabla f(y_k) \end{bmatrix} + p^{\mathsf{T}} \begin{bmatrix} f(y_k) - f(x_\star) \\ \vdots \\ f(y_{k-N}) - f(x_\star) \end{bmatrix}$$

Numerical results

 10^3

 10^2

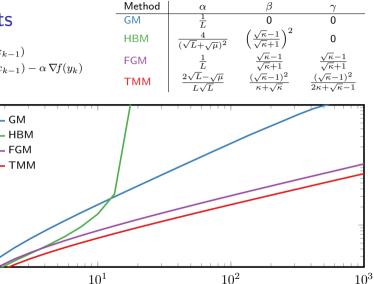
 10^1

 10^{0}

Evaluations to converge

$$y_k = x_k + \gamma (x_k - x_{k-1})$$
$$x_{k+1} = x_k + \beta (x_k - x_{k-1}) - \alpha \nabla f(y_k)$$

– GM

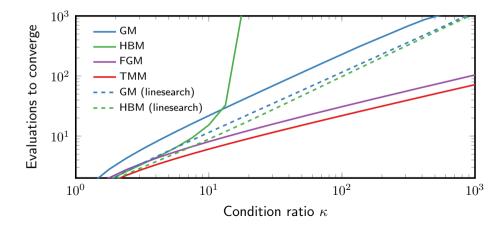


Condition ratio κ

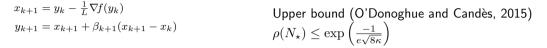
GM with linesearch

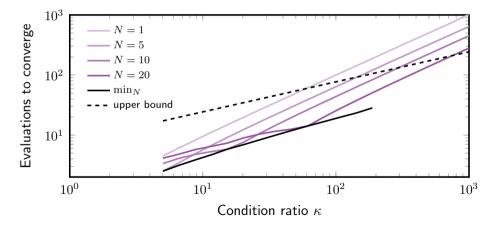
HBM with linesearch

$$\begin{aligned} \alpha &= \mathop{\arg\min}_{\alpha} f(x_k - \alpha \,\nabla f(x_k)) \\ x_{k+1} &= x_k - \alpha \,\nabla f(x_k) \end{aligned} \qquad (\alpha, \beta) &= \mathop{\arg\min}_{\alpha, \beta} f(x_k + \beta \,(x_k - x_{k-1}) - \alpha \,\nabla f(x_k)) \\ x_{k+1} &= x_k + \beta \,(x_k - x_{k-1}) - \alpha \,\nabla f(x_k) \end{aligned}$$



FGM (Nesterov, 1983) with restarts every N iterations





Summary

Automatic analysis of optimization methods by solving a small-sized semidefinite program. Convergence rate is provably tight when

- f is $L\mbox{-smooth}$ and $\mu\mbox{-strongly}$ convex, and
- the method is *iterative* with *fixed stepsizes*.

Same methodology may be used (possibly without tightness) to analyze:

- line/subspace search
- restart (fixed/adaptive)
- other function classes (besides smooth strongly convex)

Code

https://github.com/QCGroup/quad-lyap-first-order