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Unconstrained optimization:

minimize  f(x)
subject to x € R?

® Need methods which are fast and simple
® Use first-order methods

® In this talk, we will design a first-order method for the case when
f is smooth and strongly convex

Main result

Design and analyze a novel method which is both globally convergent
and faster than Nesterov's method

Analysis Simple convergence proof (time domain)
Design Intuition using IQCs (frequency domain)




Smooth strongly convex
A differentiable function f : R — R is called L-smooth if

IVf(2) = Vi)l < Lllz —yl| forall 2,y € R?

and m-strongly convex if

T) 2 (@) + VF@)T(y @) + 5 o —y|* forall o,y € R,



Smooth strongly convex
A differentiable function f : R — R is called L-smooth if

IVf(2) = Vi)l < Lllz —yl| forall 2,y € R?

and m-strongly convex if

T) 2 (@) + VF@)T(y @) + 5 o —y|* forall o,y € R,

f(x) Vf(z)

xz

L-smooth m-strongly convex slope restricted on [m, L]




Method

gradient method
Tpe1 = T — a Vf(xg)
heavy ball method
Trpr = (L + B)ay, — By — aVf(zy)
fast gradient method
Try1 = (14 By, — Brp—1 — a V(14 B)zy — By_1)



Method

gradient method
Tpe1 = o — a Vf(zg)
heavy ball method
o1 = (14 Bz — Prg—1 — a Vf(zyg)
fast gradient method
Try1 = (14 By, — Brp—r — a VI (14 Bz — Bi_1)
triple momentum method
Thir = (1+ By — Bre—r — a V(L4 7)xp — y23-1)

Method Parameters

GM (@,0,0)
HBM (Polyak, 1964) (e, 8,0)
FGM (Nesterov, 2004) (e, B, B)
TMM (Van Scoy, Freeman, Lynch, 2017) | («, 3,7)




Triple momentum method

Tpp1 = (L4 By — Brp—1 — aVf (1 + 7)ap — yr—1)

Parameters:
1

p=1- NG

o= e . .
L Condition ratio x := L/m
2

_p
B=H

o

7= T



Triple momentum method

Tpp1 = (L4 By — Brp—1 — aVf (1 + 7)ap — yr—1)

Parameters:
p=1- 1
o= 1te . .
L Condition ratio x := L/m
2
6 = 2p_p
(1+p)(2—p)

Theorem (Van Scoy, Freeman, Lynch, 2017)

Suppose f is L-smooth and m-strongly convex with minimizer z, € R%. Then for
any initial conditions xg,z_; € R, there exists a constant ¢ > 0 such that

|2k — .|| < e¢p®  forall k> 1.
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f smooth strongly convex

Convergence rate p
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® For FGM, Nesterov proved the rate /1 — y/m/L which is loose!

® TMM converges faster than Nesterov's method!




Simulations

Objective function:

p

— T _bz @ 2 Rd
F£) =D glafz =) + Gl v
where
I (T
0, y<0

with A =[a1,...,a,] € R*P b e RP, and | Al = VL —m

fis
® m-smooth
e [-strongly convex
e infinitely differentiable (of class C'™)



Simulations
Parameters: m =1, L =10 d =100, p=5, r =107
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Robustness to m
Parameters: m =1, L =10% d =100, p=5, r =107°
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To prove the bound for TMM, use interpolation.
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To prove the bound for TMM, use interpolation.

Interpolation: The set {y,u, v} is F-interpolable if and only if
ur = Vf(yx) and vy, = f(yx) for some f € F and all k.

u Vf Yy

v f
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To prove the bound for TMM, use interpolation.

Interpolation: The set {y,u, v} is F-interpolable if and only if
ur = Vf(yx) and vy, = f(yx) for some f € F and all k.

u Vf Yy

v f

Theorem (Taylor, Hendrickx, Glineur, 2016)

The set {y,u,v} is interpolable by an L-smooth m-strongly convex
function if and only if g;; > 0 for all 4, j where

1
@i = (L — m)(v; — v;) — 5““2’ — ug]?

mlL
+ (mu; — Luj) " (yi — yj) — 7”3/2‘ -yl
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Sketch of proof for TMM

1. Suppose f is L-smooth and m-strongly convex. Then the
interpolation conditions are satisfied; specifically, g;; > 0 for all 4, 5.
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Sketch of proof for TMM

1. Suppose f is L-smooth and m-strongly convex. Then the
interpolation conditions are satisfied; specifically, g;; > 0 for all 4, 5.

2. Define the Lyapunov function

Vi i=mL ||z — z||* + Q-1

2

where z; := (1 + §)xg — dzp_1 and 6 := £

1—p2-
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Sketch of proof for TMM

1. Suppose f is L-smooth and m-strongly convex. Then the
interpolation conditions are satisfied; specifically, g;; > 0 for all 4, 5.

2. Define the Lyapunov function

Vi i=mL ||z — z||* + Q-1

2

1—p

where 2z := (1 + 0)xy — dz—1 and 0 1= L.

3. Using the definition of TMM, it is straighforward to verify that
Vi1 — p° Vi = = [(1 = pP) s + P° 18] <0

for all k > 1.
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Sketch of proof for TMM

1. Suppose f is L-smooth and m-strongly convex. Then the

interpolation conditions are satisfied; specifically, g;; > 0 for all 4, 5.

2. Define the Lyapunov function

Vi i=mL ||z — z||* + Q-1

where zj, := (1 + 0)xy — dzk—1 and 0 := 152;;2'

3. Using the definition of TMM, it is straighforward to verify that
Vi1 — p° Vi = = [(1 = pP) s + P° 18] <0
for all k > 1.

4. lterating gives the bound V;, < p2*=DV; for k > 1.
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Integral Quadratic Constraints (1QCs)

G

Vf

G:

Tpr1 = (14 Bz — Brr—1 — auy
yr = (L +7)xp — yop—1
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Integral Quadratic Constraints (1QCs)

G

Vf

(¥, M) are chosen such that w satisfies

0< Zp_QJ w,) "M (wj — w,)

when f i |s L smooth and m-strongly convex.
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Integral Quadratic Constraints (1QCs)

G (¥, M) are chosen such that w satisfies
u Y
—2j 7
vf B 0<ZP 7 (wj = w) T M (wj = wy)
7 b w when f i |s L smooth and m-strongly convex.

Theorem (Boczar, Lessard, Recht, 2015)

Suppose f satisfies the IQC defined by (IT, M). If there exists € > 0 with
[ng)} U(2)*M [ ] < —el forall z € pT
then the state of G converges linearly with rate p.
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Integral Quadratic Constraints (1QCs)

G

U Y O<Zp_2] w) M (w; — w,)
Vf

L

Theorem (Boczar, Lessard, Recht, 2015)

(¥, M) are chosen such that w satisfies

7 b w when f i |s L smooth and m-strongly convex.

Suppose f satisfies the IQC defined by (IT, M). If there exists € > 0 with
[ng)} U(2)*M [ ] < —el forall z € pT
then the state of G converges linearly with rate p.

The TMM parameters are the unique solution to

G(2)| Wiy M) [CF] 20 forall 2 e pr
N s
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Summary

Triple momentum method: globally convergent with rate
1 —/m/L when f is L-smooth and m-strongly convex

Analysis Simple convergence proof (time domain)
Design Intuition using IQCs (frequency domain)
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Analysis Simple convergence proof (time domain)
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Extension: gradient noise

Trr1 = (1 + B)ar — Brr—1 — ouy

Yo = (1 +79)x) — yTp—1
No noise: u = Vf(y)

Relative gradient noise: ||u — Vf(y)|l2 < 0 ||Vf(y)||2

S. Cyrus, B. Hu, B. Van Scoy, L. Lessard. “A Robust Accelerated Optimization Algorithm for Strongly Convex
Functions”. In ArXiv e-prints (Oct. 2017). arXiv: 170.04753 [math.OC].
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