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Unconstrained optimization:

minimize f(x)
subject to x ∈ Rd

• Need methods which are fast and simple

• Use first-order methods

• In this talk, we will design a first-order method for the case when
f is smooth and strongly convex

Main result
Design and analyze a novel method which is both globally convergent
and faster than Nesterov’s method

Analysis Simple convergence proof (time domain)
Design Intuition using IQCs (frequency domain)
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Smooth strongly convex
A differentiable function f : Rd → R is called L-smooth if

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ for all x, y ∈ Rd

and m-strongly convex if

f(y) ≥ f(x) +∇f(x)T(y − x) + m

2
‖x− y‖2 for all x, y ∈ Rd.

x

f(x)

L-smooth m-strongly convex

⇐⇒ x

∇f(x)

slope restricted on [m,L]
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Method
gradient method
xk+1 = xk − α∇f(xk)

heavy ball method
xk+1 = (1 + β)xk − βxk−1 − α∇f(xk)

fast gradient method
xk+1 = (1 + β)xk − βxk−1 − α∇f

(
(1 + β)xk − βxk−1

)

triple momentum method
xk+1 = (1 + β)xk − βxk−1 − α∇f

(
(1 + γ)xk − γxk−1

)
Method Parameters

GM (α, 0, 0)
HBM (Polyak, 1964) (α, β, 0)
FGM (Nesterov, 2004) (α, β, β)

TMM (Van Scoy, Freeman, Lynch, 2017) (α, β, γ)
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Triple momentum method

xk+1 = (1 + β)xk − βxk−1 − α∇f
(
(1 + γ)xk − γxk−1

)
Parameters:

ρ = 1− 1√
κ

α = 1+ρ
L

β = ρ2

2−ρ

γ = ρ2

(1+ρ)(2−ρ)

Condition ratio κ := L/m

Theorem (Van Scoy, Freeman, Lynch, 2017)

Suppose f is L-smooth and m-strongly convex with minimizer x? ∈ Rd. Then for
any initial conditions x0, x−1 ∈ Rd, there exists a constant c > 0 such that

‖xk − x?‖ ≤ c ρk for all k ≥ 1.
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f quadratic
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Convergence rate: ‖xk − x?‖ ≤ c ρk

Iterations to converge ∝ − 1

log ρ
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f smooth strongly convex
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• HBM does not converge if L/m ≥ (2 +
√
5)2 ≈ 17.94

• For FGM, Nesterov proved the rate
√

1−
√
m/L which is loose!

• TMM converges faster than Nesterov’s method!
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Simulations
Objective function:

f(x) =

p∑
i=1

g(aTi x− bi) +
m

2
‖x‖2, x ∈ Rd

where

g(y) =

{
1
2
y2 e−r/y, y > 0

0, y ≤ 0

with A = [a1, . . . , ap] ∈ Rd×p, b ∈ Rp, and ‖A‖ =
√
L−m

f is
• m-smooth
• L-strongly convex
• infinitely differentiable (of class C∞)
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Simulations
Parameters: m = 1, L = 104, d = 100, p = 5, r = 10−6
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Robustness to m
Parameters: m = 1, L = 104, d = 100, p = 5, r = 10−6
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To prove the bound for TMM, use interpolation.

Interpolation: The set {y, u, v} is F -interpolable if and only if
uk = ∇f(yk) and vk = f(yk) for some f ∈ F and all k.

∇f

f

u y

v

Theorem (Taylor, Hendrickx, Glineur, 2016)

The set {y, u, v} is interpolable by an L-smooth m-strongly convex
function if and only if qij ≥ 0 for all i, j where

qij := (L−m)(vi − vj)−
1

2
‖ui − uj‖2

+ (mui − Luj)T(yi − yj)−
mL

2
‖yi − yj‖2.
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Sketch of proof for TMM

1. Suppose f is L-smooth and m-strongly convex. Then the
interpolation conditions are satisfied; specifically, qij ≥ 0 for all i, j.

2. Define the Lyapunov function

Vk := mL ‖zk − x?‖2 + qk−1,?

where zk := (1 + δ)xk − δxk−1 and δ := ρ2

1−ρ2 .

3. Using the definition of TMM, it is straighforward to verify that

Vk+1 − ρ2 Vk = −
[
(1− ρ2)q?,k + ρ2qk−1,k

]
≤ 0

for all k ≥ 1.

4. Iterating gives the bound Vk ≤ ρ2(k−1)V1 for k ≥ 1.
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Integral Quadratic Constraints (IQCs)

G

∇f
yu

G :
xk+1 = (1 + β)xk − βxk−1 − αuk
yk = (1 + γ)xk − γxk−1

Theorem (Boczar, Lessard, Recht, 2015)

Suppose f satisfies the IQC defined by (Π,M). If there exists ε > 0 with[
G(z)
I

]∗
Ψ(z)∗MΨ(z)

[
G(z)
I

]
� −εI for all z ∈ ρT

then the state of G converges linearly with rate ρ.

The TMM parameters are the unique solution to[
G(z)
I

]∗
Ψ(z)∗MΨ(z)

[
G(z)
I

]
= 0 for all z ∈ ρT
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Summary
Triple momentum method: globally convergent with rate
1−

√
m/L when f is L-smooth and m-strongly convex

Analysis Simple convergence proof (time domain)

Design Intuition using IQCs (frequency domain)

Extension: gradient noise

xk+1 = (1 + β)xk − βxk−1 − αuk
yk = (1 + γ)xk − γxk−1

No noise: u = ∇f(y)

Relative gradient noise: ‖u−∇f(y)‖2 ≤ δ ‖∇f(y)‖2
S. Cyrus, B. Hu, B. Van Scoy, L. Lessard. “A Robust Accelerated Optimization Algorithm for Strongly Convex

Functions”. In ArXiv e-prints (Oct. 2017). arXiv: 170.04753 [math.OC].

14



Summary
Triple momentum method: globally convergent with rate
1−

√
m/L when f is L-smooth and m-strongly convex

Analysis Simple convergence proof (time domain)

Design Intuition using IQCs (frequency domain)

Extension: gradient noise

xk+1 = (1 + β)xk − βxk−1 − αuk
yk = (1 + γ)xk − γxk−1

No noise: u = ∇f(y)

Relative gradient noise: ‖u−∇f(y)‖2 ≤ δ ‖∇f(y)‖2
S. Cyrus, B. Hu, B. Van Scoy, L. Lessard. “A Robust Accelerated Optimization Algorithm for Strongly Convex

Functions”. In ArXiv e-prints (Oct. 2017). arXiv: 170.04753 [math.OC].

14


