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Black-box optimization

minimize  f(x)

subject to x € X

Can only obtain information by sampling oracles.

Oracles: function value, gradient, Hessian, coordinate derivative, proximal
operator, projection, noisy (stochastic or adversarial)



Algorithm analysis

Iteration complexity: number of iterations such that

performance measure <  tolerance

Performance measures
o distance from optimizer: ||z} — z.| where xz, is an optimizer
e optimality gap: f(xr) — fx where f, is the optimal value

e distance from stationary point: ||Vf(zx)||



Worst-case algorithm analysis

Bound the worst-case iteration complexity
over all problem instances in some class.

e Function classes: linear, quadratic, smooth, (strongly) convex,
quadratically upper bounded, Lipschitz continuous, convex indicator,
convex support functions, restricted secant inequality, error bound

e Constraint classes: convex, cone, polytope, half-plane, affine space



Example: Smooth strongly convex functions

At each point, the function is bounded by quadratics of curvature p and L.
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The condition ratio k = L/u characterizes the variation in curvature.



Example: Algorithm analysis

minimize  f(z)

Problem specification
e Function class: f is L-smooth and pu-strongly convex
e Oracle: gradient Vf(x)

e Algorithm: fast gradient method
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Yk = Tk + (rr — TK—1)

o Performance measure: f(z) — f



Performance bound

Contraction factor

——— (Nesterov, 2004)
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Traditional algorithm analysis
e requires expert knowledge and insights
e performed on a case-by-case basis

e bounds may not be tight



Systematic algorithm analysis

Problem specifications

e function class Worst-case
Automated
e oracle — , — performance
) analysis
e algorithm bound

L] performance measure

Main ideas
e interpret optimization algorithms as dynamical systems

e use tools from robust control to study convergence properties



Literature

Optimization
o performance estimation problem (PEP)
e searching for worst-case problem instance is an optimization problem
e originally formulated in (Drori and Teboulle, 2014)
e tight bounds using interpolation in (Taylor, Hendrickx, Glineur, 2017)

Controls
e integral quadratic constraints (IQCs)
e tools for robust control (Megretski and Rantzer, 1997)
e algorithms are dynamical systems (Lessard, Packard, Recht, 2016)

e worst-case analysis using robust control



Outline

Preliminaries
e iterative algorithms as dynamical systems
e interpolation

e worst-case performance analysis via Lyapunov functions

Case studies
e consensus optimization

e sensitivity to gradient noise
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Iterative algorithms as dynamical systems

i1 =&k — a Vf (& + n(Ek — Ee—1)) + B(&k — Er—1)

uy, = Vf (yx)
y u fixed points
Tpt1 = Axy, + Buy, i
i = Cx optimizers
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Special cases: gradient descent, Nesterov or Polyak acceleration

(Lessard, Packard, Recht, 2016) 11



Worst-case performance analysis
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e ¥ =(A,B,C) is the system

e Oy is the oracle applied to a function f in a function class F

Bound the worst-case performance over the function class F.

Main ideas
e Replace the oracle with constraints on its (filtered) input and output.

e Use the constraints to search for a Lyapunov function.
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Filter
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e Choose ¥ as the linear time-invariant system with transfer function

_ ¢z 0 P _
U(z) = { 0 w(z)} where Y(z)= (1,271,279

e ( trades off tightness and computational efficiency of the analysis

2k = (ykvyk—17"'7yk—€7 ukvuk—la---auk—e)

v

past £ inputs past ¢ outputs

(Van Scoy and Lessard, 2022)
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Interpolation
When does there exist f € F such that u; = Oy (yg) for all k7

u = Of(y)
(y2,u2)

(yl,m) (y37u3)

First-order oracle:

up = Op(yr) = (fr,gr) with  fo = f(yx) and  gr = Vf(yx)

Interpolation is also known as function extension. 14



Convex interpolation

fy) > f(x) +Vf(2)"(y—x) forall z,y € R?

The conditions for interpolation are the discretization

fi= fi+g](yi—y;) forallij

If these conditions hold, then an interpolating convex function is

fly) = mgx{fk +only— yk)}

(Taylor, Hendrickx, Glineur, 2017)
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Smooth convex interpolation

o Convex: f(y) > f(z) + Vf(2)"(y — )
e Lipschitz gradient: ||Vf(y) — Vf(z)|| < L|ly — z||

Naive discretization does not yield interpolation conditions.

Counterexample

s TN -l (y17f1,g1) = (1’2’
N ‘ (y2, f2,92) = (2,1,

vi Y2

Unavoidable non-differentiability (Taylor, Hendrickx, Glineur, 2017)
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Smooth strongly convex interpolation

A function is L-smooth and p-strongly convex iff, for all z,y € R?,

0.< J(y) = 1@) = V@) (v=2) 755 (FIV/ () - @I+ lly =]

~24(V/(@) - V) (e )

Discretizing this inequality yields interpolation conditions.

Special cases

e convex: y=0and L =+4o0
e smooth and convex: © =0 and L finite

(Taylor, Hendrickx, Glineur, 2017)
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Algorithm analysis

‘E]_'Z

e the output of the filter is the past ¢ inputs and outputs of the oracle
e the constraints on zj are the interpolation conditions for the oracle

e for first-order oracles, these are typically linear-quadratic constraints

([ 20 ] + 0

e search for a Lyapunov function of the same form
V(z, f) = (z, Px) + (p, f)

Bold quantities consist of the past /¢ iterates.
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V(, f) is a Lyapunov function iff there exist A; > 0 and p; > 0 such that

¢ Decrease condition

V(Try1, forr) — 02 V(ew, fo) + Z A; (constraint;) <0
¢ Positivity condition

(performance measure) — V(xg, i) + Z w; (constraint;) < 0

K2

Searching for a linear—quadratic Lyapunov
function is a semidefinite program.

(Van Scoy, Taylor, Lessard, 2018)
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Problem specifications
e function class (interpolation) Automated
e oracle (first-order) —»| analysis
e algorithm (A4, B, C) SDP
e performance ||z — .||

Iz = 2.l = O(p")

—_—

Worst-case
performance
bound

p
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Efficiency

e Size of the SDP does not depend on dimension of the domain of f.
o Size scales with ¢, but £ > 2 does not appear to improve the bound.

e To obtain the best bound, perform bisection over p.

The automated analysis involves solving a semidefinite
program that can be done in fractions of a second.
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Function class: L-smooth and p-strongly convex

Algorithm: fast gradient method

Contraction factor

—— (Nesterov, 2004)
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Algorithm design

minimize p
subject to SDP(p, 4, B, C)

Challenges
e The problem is not jointly convex in p.

¢ In principle, solution is a semialgebraic set.
- matrix inequalities are equivalent to sets of polynomial
inequalities (principle minors)

- optimal solution is characterized by the active constraints

e This polynomial system is not always solvable analytically.
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Find algorithms with simple algebraic expressions

(avoid numeric solutions) that are close to optimal.

General strategy

Fix function class parameters (e.g., p and L).
Numerically find locally optimal algorithm parameters.
Write SDP as polynomial optimization problem.

Use numerical solution to find active constraints.

Look for analytic solution to system of active constraints.
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Function class: L-smooth and p-strongly convex

Algorithm: triple momentum (TM) with p =1 —+/p/L

2 2
Tt = 2k + o (@ — 2e1) = 22 VS (2k 4 gy (e — 2re1)

Contraction factor

designed algorithm
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The designed algorithm has the optimal rate for this function class.

(Van Scoy, Freeman, Lynch, 2017) and (Drori and Taylor, 2022)
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Case study

Consensus optimization
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Consensus optimization

n
minimize Z filzs)
i=1

subject to 1=z =...=2x,

Want each agent to compute the global optimizer by communicating
with local neighbors and performing local computations.
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Case study

Sensitivity to gradient noise
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Sensitivity to gradient noise

minimize f(z)

Noisy oracle: Of(x) = Vf(z) +w
e w is zero-mean and independent across queries

e Eww' < 2], for some known &

Use cases
e perturb gradient for privacy
e gradient only available through noisy measurements

¢ risk minimization; minimize expected loss over population distribution
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Robust Accelerated Method (RAM)
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Summary

Problem specifications

function class

Automated
oracle —> .
) analysis
algorithm
performance measure

vanscoy.github.io

Worst-case
— performance
bound
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