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Black-box optimization

minimize f(x)
subject to x ∈ X

Can only obtain information by sampling oracles.

Ofx

Oracles: function value, gradient, Hessian, coordinate derivative, proximal
operator, projection, noisy (stochastic or adversarial)
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Algorithm analysis

Iteration complexity: number of iterations such that

performance measure ≤ tolerance

Performance measures

• distance from optimizer: ‖xk − x?‖ where x? is an optimizer

• optimality gap: f(xk)− f? where f? is the optimal value

• distance from stationary point: ‖∇f(xk)‖
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Worst-case algorithm analysis

Bound the worst-case iteration complexity
over all problem instances in some class.

• Function classes: linear, quadratic, smooth, (strongly) convex,
quadratically upper bounded, Lipschitz continuous, convex indicator,
convex support functions, restricted secant inequality, error bound

• Constraint classes: convex, cone, polytope, half-plane, affine space
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Example: Smooth strongly convex functions

At each point, the function is bounded by quadratics of curvature µ and L.

µ
2
x2

L
2
x2

x

f(x)

The condition ratio κ = L/µ characterizes the variation in curvature.
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Example: Algorithm analysis

minimize f(x)

Problem specification

• Function class: f is L-smooth and µ-strongly convex

• Oracle: gradient ∇f(x)

• Algorithm: fast gradient method

yk = xk +
√
L−√µ√
L+√µ (xk − xk−1)

xk+1 = yk − 1
L∇f(yk)

• Performance measure: f(xk)− f?

5



Performance bound
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f(xk)− f? ≤ c
(

1−
√

µ
L

)k

6Condition ratio: κ = L
µ
, contraction factor: ρ2 = 1 −

√
µ
L
, iteration complexity: − 1

log ρ



Traditional algorithm analysis

• requires expert knowledge and insights

• performed on a case-by-case basis

• bounds may not be tight
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Systematic algorithm analysis

Automated
analysis

Worst-case
performance

bound

Problem specifications

• function class

• oracle

• algorithm

• performance measure

Main ideas

• interpret optimization algorithms as dynamical systems

• use tools from robust control to study convergence properties
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Literature

Optimization

• performance estimation problem (PEP)

• searching for worst-case problem instance is an optimization problem

• originally formulated in (Drori and Teboulle, 2014)

• tight bounds using interpolation in (Taylor, Hendrickx, Glineur, 2017)

Controls

• integral quadratic constraints (IQCs)

• tools for robust control (Megretski and Rantzer, 1997)

• algorithms are dynamical systems (Lessard, Packard, Recht, 2016)

• worst-case analysis using robust control
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Outline

Preliminaries

• iterative algorithms as dynamical systems

• interpolation

• worst-case performance analysis via Lyapunov functions

Case studies

• consensus optimization

• sensitivity to gradient noise
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Iterative algorithms as dynamical systems

ξk+1 = ξk − α∇f
(
ξk + η(ξk − ξk−1)

)
+ β(ξk − ξk−1)

uk = ∇f(yk)

xk+1 = Axk +Buk

yk = Cxk

uy fixed points
l

optimizers

xk =
[
ξk
ξk−1

]
A =

[
1 + β −β

1 0

]
B =

[
−α
0

]
C =

[
1 + η −η

]

Special cases: gradient descent, Nesterov or Polyak acceleration

11(Lessard, Packard, Recht, 2016)



Worst-case performance analysis

Σ

Of

uy

Ψ z

• Σ = (A,B,C) is the system

• Of is the oracle applied to a function f in a function class F

Bound the worst-case performance over the function class F .

Main ideas

• Replace the oracle with constraints on its (filtered) input and output.

• Use the constraints to search for a Lyapunov function.
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Filter

Of

Ψ z

uy

• Choose Ψ as the linear time-invariant system with transfer function

Ψ(z) =
[
ψ(z) 0

0 ψ(z)

]
where ψ(z) = (1, z−1, . . . , z−`)

• ` trades off tightness and computational efficiency of the analysis

zk = (yk, yk−1, . . . , yk−`︸ ︷︷ ︸
past ` inputs

, uk, uk−1, . . . , uk−`︸ ︷︷ ︸
past ` outputs

)

13(Van Scoy and Lessard, 2022)



Interpolation

When does there exist f ∈ F such that uk = Of (yk) for all k?

(y1, u1)

(y2, u2)

(y3, u3)

y

u = Of (y)

First-order oracle:

uk = Of (yk) = (fk, gk) with fk = f(yk) and gk = ∇f(yk)

14Interpolation is also known as function extension.



Convex interpolation

f(y) ≥ f(x) +∇f(x)T(y − x) for all x, y ∈ Rd

The conditions for interpolation are the discretization

fi ≥ fj + gT
j (yi − yj) for all i, j

If these conditions hold, then an interpolating convex function is

f(y) = max
k

{
fk + gT

k (y − yk)
}

15(Taylor, Hendrickx, Glineur, 2017)



Smooth convex interpolation

• Convex: f(y) ≥ f(x) +∇f(x)T(y − x)

• Lipschitz gradient: ‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖

Naive discretization does not yield interpolation conditions.

Counterexample

y1 y2

f2

f1

g1

g2
(y1, f1, g1) = (1, 2,−2)
(y2, f2, g2) = (2, 1,−1)

16Unavoidable non-differentiability (Taylor, Hendrickx, Glineur, 2017)



Smooth strongly convex interpolation

A function is L-smooth and µ-strongly convex iff, for all x, y ∈ Rd,

0 ≤ f(y)−f(x)−∇f(x)T(y−x)− 1
2(1− µ

L
)

(
1
L
‖∇f(y)−∇f(x)‖2 +µ‖y−x‖2

− 2 µ
L

(∇f(x)−∇f(y))T(x− y)
)

Discretizing this inequality yields interpolation conditions.

Special cases

• convex: µ = 0 and L = +∞
• smooth and convex: µ = 0 and L finite

17(Taylor, Hendrickx, Glineur, 2017)



Algorithm analysis

Σ

Of

uy

Ψ z

• the output of the filter is the past ` inputs and outputs of the oracle

• the constraints on zk are the interpolation conditions for the oracle

• for first-order oracles, these are typically linear–quadratic constraints〈[
yk
gk

]
,Mi

[
yk
gk

]〉
+ 〈mi,fk〉 ≥ 0

• search for a Lyapunov function of the same form

V (x,f) = 〈x, Px〉+ 〈p,f〉

18Bold quantities consist of the past ` iterates.



V (x,f) is a Lyapunov function iff there exist λi ≥ 0 and µi ≥ 0 such that

• Decrease condition

V (xk+1,fk+1)− ρ2 V (xk,fk) +
∑
i

λi (constrainti) ≤ 0

• Positivity condition

(performance measure)− V (xk,fk) +
∑
i

µi (constrainti) ≤ 0

Searching for a linear–quadratic Lyapunov
function is a semidefinite program.

19(Van Scoy, Taylor, Lessard, 2018)



Automated
analysis

SDP

Worst-case
performance

bound

ρ

Problem specifications

• function class (interpolation)

• oracle (first-order)

• algorithm (A,B,C)

• performance ∥xk − x⋆∥

‖xk − x?‖ = O(ρk)
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Efficiency

• Size of the SDP does not depend on dimension of the domain of f .

• Size scales with `, but ` > 2 does not appear to improve the bound.

• To obtain the best bound, perform bisection over ρ.

The automated analysis involves solving a semidefinite
program that can be done in fractions of a second.
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Function class: L-smooth and µ-strongly convex

Algorithm: fast gradient method
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Algorithm design

minimize ρ

subject to SDP(ρ,A,B,C)

Challenges

• The problem is not jointly convex in ρ.

• In principle, solution is a semialgebraic set.

- matrix inequalities are equivalent to sets of polynomial
inequalities (principle minors)

- optimal solution is characterized by the active constraints

• This polynomial system is not always solvable analytically.
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Find algorithms with simple algebraic expressions
(avoid numeric solutions) that are close to optimal.

General strategy

• Fix function class parameters (e.g., µ and L).

• Numerically find locally optimal algorithm parameters.

• Write SDP as polynomial optimization problem.

• Use numerical solution to find active constraints.

• Look for analytic solution to system of active constraints.
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Function class: L-smooth and µ-strongly convex

Algorithm: triple momentum (TM) with ρ = 1−
√
µ/L

xk+1 = xk + ρ2

2−ρ (xk − xk−1)− 1+ρ
L ∇f

(
xk + ρ2

(1+ρ)(2−ρ) (xk − xk−1)
)
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The designed algorithm has the optimal rate for this function class.

25(Van Scoy, Freeman, Lynch, 2017) and (Drori and Taylor, 2022)



Case study
Consensus optimization
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Consensus optimization

minimize
n∑
i=1

fi(xi)

subject to x1 = x2 = . . . = xn

1
2

3

45

w41

w51

w12

w32

w43

w24 w34

w54

w15

w45

Want each agent to compute the global optimizer by communicating
with local neighbors and performing local computations.
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28(Sundararjan, Van Scoy, Lessard 2020)



Case study
Sensitivity to gradient noise
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Sensitivity to gradient noise

minimize f(x)

Noisy oracle: Of (x) = ∇f(x) + w

• w is zero-mean and independent across queries

• EwwT � σ2Id for some known σ

Use cases

• perturb gradient for privacy

• gradient only available through noisy measurements

• risk minimization; minimize expected loss over population distribution
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Robust Accelerated Method (RAM)

31(Van Scoy and Lessard, 2021)



Summary

Automated
analysis

Worst-case
performance

bound

Problem specifications

• function class

• oracle

• algorithm

• performance measure

vanscoy.github.io
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