The speed–robustness trade-off for first-order methods with additive gradient noise

Bryan Van Scoy Miami University Laurent Lessard Northeastern University

SIAM Conference on Optimization

May 31 – June 3, 2023

In this talk:

- Iterative algorithms can be viewed as robust controllers.
- Algorithms can be designed, in much the same way that controllers can be designed.
- Controls and optimization!

$$x^{\star} \in \arg\min_{x \in \mathbb{R}^d} f(x)$$

Noisy oracle: $g(x) = \nabla f(x) + w$

- w is zero-mean and independent across queries
- $\mathbb{E}(ww^{\mathsf{T}}) \leq \sigma^2 I_d$ for some known σ

Use cases:

- perturb gradient for privacy
- gradient only available through noisy measurements
- risk minimization; minimize expected loss over population distribution

Gradient Descent (GD)

$$x_{k+1} = x_k - \alpha \, g(x_k)$$

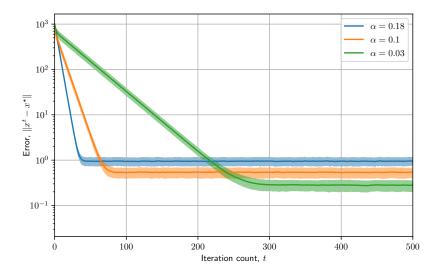
Geometric phase

- Noise is small compared to gradient
- x_k makes rapid progress toward x^{\star}

Stationary phase

- Noise is comparable to gradient
- x_k moves randomly in a ball about x^*

Random quadratic function: $f(x) = \frac{1}{2}x^{\mathsf{T}}Qx$, d = 10, $\sigma = 1$ Eigenvalues satisfy $1 \le \lambda(Q) \le 10$



Acceleration

Polyak acceleration (Heavy Ball)

$$x_{k+1} = x_k - \alpha g(x_k) + \beta (x_k - x_{k-1})$$

Nesterov acceleration (Fast Gradient)

$$y_k = x_k + \beta(x_k - x_{k-1})$$
$$x_{k+1} = y_k - \alpha g(y_k)$$

- Similar geometric & stationary phases
- More parameters to tune
- Potentially better performance!

Performance metrics

Rate of convergence (ρ)

$$\|x_k - x^\star\| \leq (\mathsf{const}) \cdot \rho^k$$

Smaller ρ means faster convergence (no noise regime).

Sensitivity to noise (γ)

$$\gamma = \limsup_{N \to \infty} \sqrt{\frac{1}{N} \sum_{k=0}^{N-1} \mathbb{E} \, \|x_k - x^\star\|^2}$$

Smaller γ means more noise robustness (smaller ball).

Questions

How can we compute the rate of convergence and sensitivity to noise for a given algorithm?

Can we design algorithms that are Pareto-optimal for different function classes? What will they look like?

Outline

- Algorithms as dynamical systems
- Quadratic functions
- Smooth strongly convex functions
- Polyak-Łojasiewicz and smooth functions

3-parameter family (α, β, η)

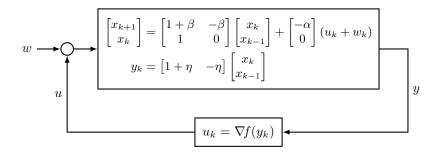
$$x_{k+1} = x_k - \alpha g (x_k + \eta (x_k - x_{k-1})) + \beta (x_k - x_{k-1})$$

Special cases:

- recovers Gradient descent when $\beta = 0$ and $\eta = 0$
- recovers Polyak acceleration when $\eta = 0$
- recovers Nesterov acceleration when $\beta = \eta$

Dynamical system interpretation

$$x_{k+1} = x_k - \alpha g (x_k + \eta (x_k - x_{k-1})) + \beta (x_k - x_{k-1})$$



Dynamical system interpretation

$$x_{k+1} = x_k - \alpha g \big(x_k + \eta (x_k - x_{k-1}) \big) + \beta (x_k - x_{k-1})$$

$$w \longrightarrow \left[\begin{array}{c} \xi_{k+1} = A\xi_k + B(u_k + w_k) \\ y_k = C\xi_k \\ u \\ u \\ u \\ u_k = \nabla f(y_k) \end{array}\right] y$$

- Analysis applies to general algorithms (A, B, C)
- Design 3-parameter algorithms (α, β, η)

Quadratic functions

- functions of the form $f(x) = \frac{1}{2}(x x^{\star})^{\mathsf{T}}Q(x x^{\star})$
- each eigenvalue of Q is in the closed interval $\left[m,L\right]$

Heavy Ball (HB) achieves fastest possible rate when used with tuning

$$\alpha = \frac{4}{(\sqrt{L} + \sqrt{m})^2} \qquad \beta = \left(\frac{\sqrt{L} - \sqrt{m}}{\sqrt{L} + \sqrt{m}}\right)^2 \qquad \eta = 0$$

$$\begin{aligned} \xi_{k+1} &= A\xi_k + B(u_k + w_k) \\ y_k &= C\xi_k \\ u_k &= \nabla f(y_k) \end{aligned}$$

Closed-loop map:

$$\xi_{k+1} = (A + BQC)\xi_k + Bw_k$$

- the rate of convergence is the spectral radius of A + BQC
- the sensitivity to noise is the \mathcal{H}_2 -norm of the system

Quadratic performance

• Rate:

$$\rho = \sup_{q \in [m,L]} \rho(A + qBC)$$

• Sensitivity: if $\rho < 1$, then

$$\gamma \ = \ \sigma \sqrt{d} \sup_{q \in [m,L]} \sqrt{B^{\mathsf{T}} P_q B}$$

where P_q is the solution to the matrix equation

$$(A+qBC)^{\mathsf{T}}P_q(A+qBC) - P_q + C^{\mathsf{T}}C = 0$$

Both $\rho(A + qBC)$ and P_q are nonconvex functions of q in general.

Quadratic performance of 3-parameter algorithms

• Rate:

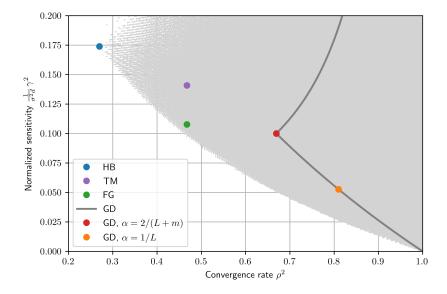
$$\begin{split} \rho &= \max_{q \in \{m,L\}} \begin{cases} \sqrt{\beta - \alpha \eta q} & \text{if } \Delta < 0\\ \frac{1}{2} \left(|\beta + 1 - \alpha q - \alpha \eta q| + \sqrt{\Delta} \right) & \text{if } \Delta \ge 0\\ & \text{where } \Delta := (\beta + 1 - \alpha q - \alpha \eta q)^2 - 4(\beta - \alpha \eta q) \end{split}$$

• Sensitivity: if $\rho < 1$, then

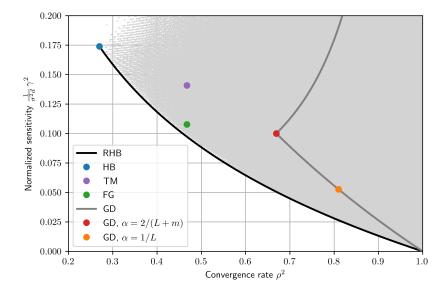
$$\gamma = \sigma \sqrt{d} \max_{q \in \{m,L\}} \sqrt{\frac{\alpha(1+\beta+(1+2\eta)\alpha\eta q)}{q(1-\beta+\alpha\eta q)(2+2\beta-(1+2\eta)\alpha q)}}$$

Both are easy to evaluate and analyze!

 (ρ, γ) tradeoff for quadratics with m = 1 and L = 10



 (ρ, γ) tradeoff for quadratics with m = 1 and L = 10



Robust Heavy Ball (RHB)

RHB is the 3-parameter algorithm parameterized by $r \in \left[\frac{\sqrt{L}-\sqrt{m}}{\sqrt{L}+\sqrt{m}},1\right)$

$$\alpha = \frac{1}{m}(1-r)^2 \qquad \beta = r^2 \qquad \eta = 0$$

Setting
$$r = \frac{\sqrt{L} - \sqrt{m}}{\sqrt{L} + \sqrt{m}}$$
 recovers ordinary Heavy Ball.

The parameter \boldsymbol{r} is the convergence rate on quadratics and the sensitivity is

$$\gamma \ = \ \frac{\sigma\sqrt{d}}{m}\sqrt{\frac{1-r^4}{(1+r)^4}}$$

RHB appears to be Pareto-optimal (no formal proof).

Smooth and strongly convex functions

Differentiable functions for which: **a)** $f(y) - \frac{m}{2} ||y||^2$ is a convex function of y**b)** $||\nabla f(x) - \nabla f(y)|| \le L ||x - y||$ for all $x, y \in \mathbb{R}^d$

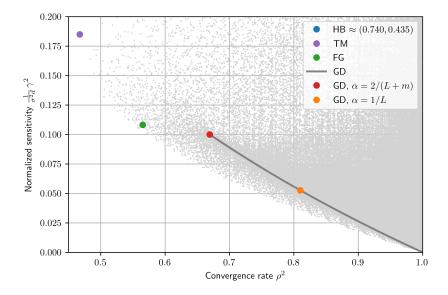
• Triple Momentum (TM) achieves fastest possible rate

$$\alpha = \frac{\sqrt{L} - \sqrt{m}}{L^{3/2}} \qquad \beta = \frac{(\sqrt{L} - \sqrt{m})^2}{L + \sqrt{mL}} \qquad \eta = \frac{(\sqrt{L} - \sqrt{m})^2}{2L - m + \sqrt{mL}}$$

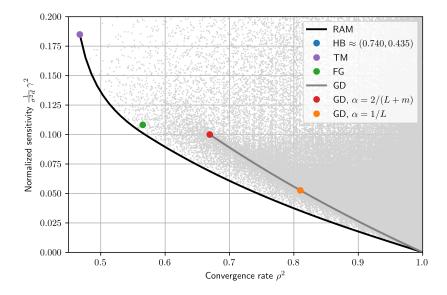
• Fast Gradient (FG) is a popular choice

$$\alpha = \frac{1}{L} \qquad \beta = \frac{\sqrt{L} - \sqrt{m}}{\sqrt{L} + \sqrt{m}} \qquad \eta = \frac{\sqrt{L} - \sqrt{m}}{\sqrt{L} + \sqrt{m}}$$

 (ρ, γ) tradeoff for strongly convex functions with m = 1 and L = 10



 (ρ, γ) tradeoff for strongly convex functions with m = 1 and L = 10



Robust Accelerated Method (RAM)

RAM is the 3-parameter algorithm parameterized by $r \in \left[1 - \sqrt{\frac{m}{L}}, 1\right)$

$$\alpha = \frac{(1+r)(1-r)^2}{m} \qquad \beta = r \frac{L(1-r+2r^2)-m(1+r)}{(L-m)(3-r)}$$
$$\eta = r \frac{L(1-r^2)-m(1+2r-r^2)}{(L-m)(3-r)(1-r^2)}$$

Setting $r = 1 - \sqrt{m/L}$ recovers Triple Momentum.

The parameter r is the rate of convergence on strongly convex functions.

RAM appears to be *nearly* Pareto-optimal (no expression for γ).

Polyak-Łojasiewicz (PL) functions

Differentiable functions for which:

a)
$$\frac{1}{2} \|\nabla f(x)\|^2 \ge m \left(f(x) - f^\star\right)$$
 for all $x \in \mathbb{R}^d$

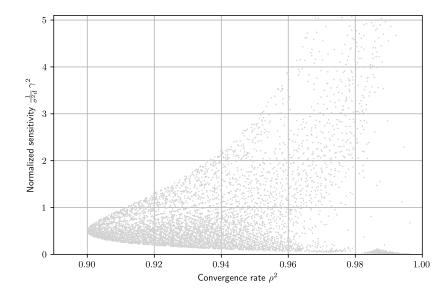
b)
$$f(y) \leq f(x) + \nabla f(x)^{\mathsf{T}}(y-x) + \frac{L}{2} \|y-x\|^2$$
 for all $x, y \in \mathbb{R}^d$

Gradient Descent (GD) converges when there is no noise.

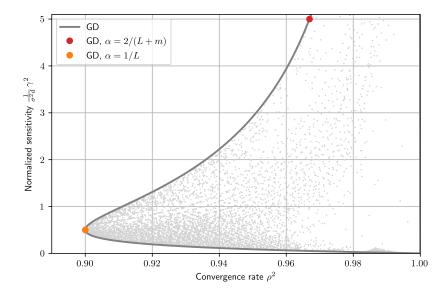
$$\alpha = \frac{1}{L} \qquad \rho = \sqrt{1 - \frac{m}{L}}$$

(Karimi, Nutini, Schmidt. 2016)

(ρ, γ) tradeoff for PL functions with m = 1 and L = 10

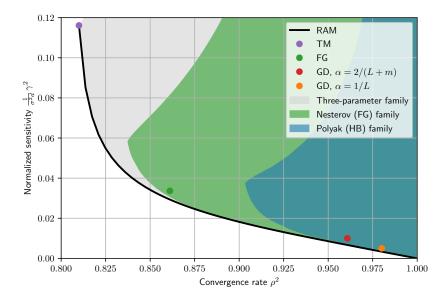


 (ρ, γ) tradeoff for PL functions with m = 1 and L = 10



Our algorithms use all three parameters (α, β, η) . What if we use only Polyak or only Nesterov acceleration?

Nesterov and Polyak coverage for strongly convex with m = 1 and L = 100



Analysis techniques

How do we analyze other function classes?

Issue: cannot parameterize other function classes (e.g., strongly convex)

Lyapunov approach

- search for functions whose existence provides upper bounds on ρ and γ
- · use interpolation conditions to list valid inequalities
- use S-lemma to formulate as a semidefinite program
- use lifting technique to tighten bounds

Design challenges

- Not as straightforward as quadratic case because we do not have an explicit function $(\alpha, \beta, \eta) \mapsto (\rho, \gamma)$.
- In principle, solution is a *semialgebraic set*.
- Optimality conditions yield polynomials of degree > 200 that are not solvable analytically.

Challenge is to find algorithms that:

- Have relatively simple algebraic expressions. Avoid numerical solutions if possible.
- Are as close to being optimal as possible.

General strategy

- a) Use numerical solver (e.g. Nelder–Mead) to find locally optimal (α, β, η) , e.g. fix ρ and minimize γ .
- **b)** Write LMI as polynomial optimization problem: convert semidefinite constraints into determinant inequalities.
- c) Substitute numerical solution to find active constraints and dual variables. At optimality, matrices in LMI will drop rank.
- **d)** Look for analytic solution to system of active constraints. Might require trying different elimination orderings.

Thank you!

- Preprint available: https://arxiv.org/abs/2109.05059
- Slides available: https://vanscoy.github.io
- Funding acknowledgement: NSF 1750162, 1936648