
The speed–robustness trade-off for first-order
methods with additive gradient noise

Bryan Van Scoy
Miami University

Laurent Lessard
Northeastern University

SIAM Conference on Optimization May 31 – June 3, 2023



minimize
x∈Rd

f(x)

In this talk:

• Iterative algorithms can be viewed as robust controllers.

• Algorithms can be designed, in much the same way that controllers
can be designed.

• Controls and optimization!

1



x? ∈ arg min
x∈Rd

f(x)

Noisy oracle: g(x) = ∇f(x) + w

• w is zero-mean and independent across queries

• E(wwT) ≤ σ2Id for some known σ

Use cases:

• perturb gradient for privacy

• gradient only available through noisy measurements

• risk minimization; minimize expected loss over population distribution

2



Gradient Descent (GD)

xk+1 = xk − α g(xk)

Geometric phase

• Noise is small compared to gradient

• xk makes rapid progress toward x?

Stationary phase

• Noise is comparable to gradient

• xk moves randomly in a ball about x?

3



Random quadratic function: f(x) = 1
2x

TQx, d = 10, σ = 1
Eigenvalues satisfy 1 ≤ λ(Q) ≤ 10

0 100 200 300 400 500

Iteration count, t

10−1

100

101

102

103

E
rr

or
,
‖x

t
−
x
?
‖

α = 0.18

α = 0.1

α = 0.03

100 101 102 103 104 105

Iteration count, t

α = 0.1

α = 0.01

α = 0.001

4



Acceleration
Polyak acceleration (Heavy Ball)

xk+1 = xk − α g(xk) + β(xk − xk−1)

Nesterov acceleration (Fast Gradient)

yk = xk + β(xk − xk−1)
xk+1 = yk − α g(yk)

• Similar geometric & stationary phases

• More parameters to tune

• Potentially better performance!

5



Performance metrics

Rate of convergence (ρ)

‖xk − x?‖ ≤ (const) · ρk

Smaller ρ means faster convergence (no noise regime).

Sensitivity to noise (γ)

γ = lim sup
N→∞

√√√√ 1
N

N−1∑
k=0

E ‖xk − x?‖2

Smaller γ means more noise robustness (smaller ball).

6



Questions

How can we compute the rate of convergence and sensitivity to
noise for a given algorithm?

Can we design algorithms that are Pareto-optimal for different
function classes? What will they look like?

7



Outline

• Algorithms as dynamical systems

• Quadratic functions

• Smooth strongly convex functions

• Polyak–Łojasiewicz and smooth functions

8



3-parameter family (α, β, η)

xk+1 = xk − α g
(
xk + η(xk − xk−1)

)
+ β(xk − xk−1)

Special cases:

• recovers Gradient descent when β = 0 and η = 0

• recovers Polyak acceleration when η = 0

• recovers Nesterov acceleration when β = η

9



Dynamical system interpretation

xk+1 = xk − α g
(
xk + η(xk − xk−1)

)
+ β(xk − xk−1)

[
xk+1

xk

]
=

[
1 + β −β
1 0

] [
xk

xk−1

]
+

[
−α
0

]
(uk + wk)

yk =
[
1 + η −η

] [ xk

xk−1

]

uk = ∇f(yk)

yu

w

10



Dynamical system interpretation

xk+1 = xk − α g
(
xk + η(xk − xk−1)

)
+ β(xk − xk−1)

ξk+1 = Aξk +B(uk + wk)

yk = Cξk

uk = ∇f(yk)

yu

w

• Analysis applies to general algorithms (A,B,C)

• Design 3-parameter algorithms (α, β, η)

11



Quadratic functions

• functions of the form f(x) = 1
2 (x− x?)TQ(x− x?)

• each eigenvalue of Q is in the closed interval [m,L]

Heavy Ball (HB) achieves fastest possible rate when used with tuning

α = 4
(
√

L+
√

m)2 β =
(√

L−
√

m√
L+
√

m

)2
η = 0

12



ξk+1 = Aξk +B(uk + wk)
yk = Cξk

uk = ∇f(yk)

Closed-loop map:

ξk+1 = (A+BQC)ξk +Bwk

• the rate of convergence is the spectral radius of A+BQC

• the sensitivity to noise is the H2-norm of the system

13



Quadratic performance

• Rate:

ρ = sup
q∈[m,L]

ρ(A+ qBC)

• Sensitivity: if ρ < 1, then

γ = σ
√
d sup

q∈[m,L]

√
BTPqB

where Pq is the solution to the matrix equation

(A+ qBC)TPq(A+ qBC)− Pq + CTC = 0

14Both ρ(A+ qBC) and Pq are nonconvex functions of q in general.



Quadratic performance of 3-parameter algorithms

• Rate:

ρ = max
q∈{m,L}

{√
β − αηq if ∆ < 0

1
2
(
|β + 1− αq − αηq|+

√
∆
)

if ∆ ≥ 0

where ∆ := (β + 1− αq − αηq)2 − 4(β − αηq)

• Sensitivity: if ρ < 1, then

γ = σ
√
d max

q∈{m,L}

√
α(1 + β + (1 + 2η)αηq)

q(1− β + αηq)(2 + 2β − (1 + 2η)αq)

Both are easy to evaluate and analyze!

15



(ρ, γ) tradeoff for quadratics with m = 1 and L = 10

16



(ρ, γ) tradeoff for quadratics with m = 1 and L = 10

17



Robust Heavy Ball (RHB)

RHB is the 3-parameter algorithm parameterized by r ∈
[√

L−
√

m√
L+
√

m
, 1
)

α = 1
m (1− r)2 β = r2 η = 0

Setting r =
√

L−
√

m√
L+
√

m
recovers ordinary Heavy Ball.

The parameter r is the convergence rate on quadratics and the sensitivity is

γ = σ
√
d

m

√
1− r4

(1 + r)4

RHB appears to be Pareto-optimal (no formal proof).

18



Smooth and strongly convex functions

Differentiable functions for which:
a) f(y)− m

2 ‖y‖
2 is a convex function of y

b) ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rd

• Triple Momentum (TM) achieves fastest possible rate

α =
√

L−
√

m
L3/2 β = (

√
L−
√

m)2

L+
√

mL
η = (

√
L−
√

m)2

2L−m+
√

mL

• Fast Gradient (FG) is a popular choice

α = 1
L β =

√
L−
√

m√
L+
√

m
η =

√
L−
√

m√
L+
√

m

19



(ρ, γ) tradeoff for strongly convex functions with m = 1 and L = 10

20



(ρ, γ) tradeoff for strongly convex functions with m = 1 and L = 10

21



Robust Accelerated Method (RAM)

RAM is the 3-parameter algorithm parameterized by r ∈
[
1−

√
m
L , 1

)
α = (1+r)(1−r)2

m β = r L (1−r+2r2)−m (1+r)
(L−m)(3−r)

η = r L (1−r2)−m (1+2r−r2)
(L−m)(3−r)(1−r2)

Setting r = 1−
√
m/L recovers Triple Momentum.

The parameter r is the rate of convergence on strongly convex functions.

RAM appears to be nearly Pareto-optimal (no expression for γ).

22



Polyak–Łojasiewicz (PL) functions

Differentiable functions for which:
a) 1

2‖∇f(x)‖2 ≥ m (f(x)− f?) for all x ∈ Rd

b) f(y) ≤ f(x) +∇f(x)T(y − x) + L
2 ‖y − x‖

2 for all x, y ∈ Rd

Gradient Descent (GD) converges when there is no noise.

α = 1
L

ρ =
√

1− m

L

23(Karimi, Nutini, Schmidt. 2016)



(ρ, γ) tradeoff for PL functions with m = 1 and L = 10

24



(ρ, γ) tradeoff for PL functions with m = 1 and L = 10

25



Our algorithms use all three parameters (α, β, η). What
if we use only Polyak or only Nesterov acceleration?

26



Nesterov and Polyak coverage for strongly convex with m = 1 and L = 100

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000

Convergence rate ρ2

0.00

0.02

0.04

0.06

0.08

0.10

0.12
N

or
m

al
iz

ed
se

n
si

ti
vi

ty
1
σ

2
d
γ

2

RAM

TM

FG

GD, α = 2/(L+m)

GD, α = 1/L

Three-parameter family

Nesterov (FG) family

Polyak (HB) family

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

Convergence rate ρ

10−2

10−1

N
or

m
al

iz
ed

se
n

si
ti

vi
ty

1
σ
√
d
γ

BMI synthesis: n = 2

BMI synthesis: n = 6

Convex synthesis: n = 2

RAM

TM

FG

GD, α = 2/(L+m)

GD, α = 1/L

27



Analysis techniques

How do we analyze other function classes?

Issue: cannot parameterize other function classes (e.g., strongly convex)

Lyapunov approach

• search for functions whose existence provides upper bounds on ρ and γ

• use interpolation conditions to list valid inequalities

• use S-lemma to formulate as a semidefinite program

• use lifting technique to tighten bounds

28



Design challenges

• Not as straightforward as quadratic case because we do not have an
explicit function (α, β, η) 7→ (ρ, γ).

• In principle, solution is a semialgebraic set.

• Optimality conditions yield polynomials of degree > 200 that are not
solvable analytically.

Challenge is to find algorithms that:

• Have relatively simple algebraic expressions. Avoid numerical solutions
if possible.

• Are as close to being optimal as possible.

29



General strategy

a) Use numerical solver (e.g. Nelder–Mead) to find locally optimal
(α, β, η), e.g. fix ρ and minimize γ.

b) Write LMI as polynomial optimization problem: convert semidefinite
constraints into determinant inequalities.

c) Substitute numerical solution to find active constraints and dual vari-
ables. At optimality, matrices in LMI will drop rank.

d) Look for analytic solution to system of active constraints. Might
require trying different elimination orderings.

30



Thank you!

• Preprint available: https://arxiv.org/abs/2109.05059

• Slides available: https://vanscoy.github.io

• Funding acknowledgement: NSF 1750162, 1936648

31

https://arxiv.org/abs/2109.05059
https://vanscoy.github.io

