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Distributed optimization

• multiple interacting agents

• agents compute local quan-
tities

• agents communicate with
local neighbors through a
network

Goal is to optimize a global
performance metric

vehicle platoons drone networks

smart grid wind farms

load balancing routing and congestion
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Problem setup

minimize
x∈Rd

1
n

n∑
i=1

fi(x)

• fi : Rd → R is the local objective function associated with agent i
• n is the number of agents
• d is the dimension of the problem

f1, x1
f2, x2

f3, x3
f4, x4

f5, x5

Goal: Each agent must compute the global optimizer by communicating
with local neighbors and performing local computations
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Communication network
• A matrix W = {wij} ∈ Rn×n is a gossip matrix if wij = 0
whenever agent i does not receive information from agent j

• The spectral gap is σ := ‖W − 1
n11

T‖

• W is stochastic if W1 = 1 and 1TW = 1T
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[Wx]i =
n∑
j=1

wij xj

σ ≈ 0.7853
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A first approach
Centralized gradient descent:

xk+1
i = xki − αk avg

(
{∇fj(xj)}nj=1

)
x0
i = x0 ∈ Rd

• Requires computing an exact average at each iteration (costly)
• Linear convergence to optimal solution with constant stepsize
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A first approach
Centralized gradient descent:

xk+1
i = xki − αk avg

(
{∇fj(xj)}nj=1

)
x0
i = x0 ∈ Rd

• Requires computing an exact average at each iteration (costly)
• Linear convergence to optimal solution with constant stepsize

Distributed gradient descent:

xk+1
i =

n∑
j=1

wij x
k
j − αk∇fi(xki ) x0

i ∈ Rd

• Uses only local communication at each iteration (cheap)
• Linear convergence to suboptimal solution with constant stepsize
• Sublinear convergence to optimal solution with decaying stepsize
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Other distributed algorithms

• Many other distributed algorithms have been proposed recently
• Achieve linear convergence to the optimal solution using two states

xk+1 = Wxk − α∇f(xk) (DGD)

xk+1 = 2Wxk −W 2xk−1 − α∇f(xk) + α∇f(xk−1) (DIGing)

xk+1 = (I +W )xk − I+W
2 xk−1 − α∇f(xk) + α∇f(xk−1) (EXTRA)

xk+1 = (I +W )xk − I+W
2
(
xk−1 + α∇f(xk)− α∇f(xk−1)

)
(NIDS)
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Main result

We construct a novel distributed algorithm with the following properties:

• Worst-case guarantees for nonconvex functions
• convergence rate is the same as centralized gradient descent in
terms of number of gradient evaluations, provided we use
“enough” communication at each iteration

• Modular approach: communication network can be either
• directed and time-varying
• undirected and constant

• Simple convergence proof using a Lyapunov function
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Assumptions

(1) There exists a stationary point x? ∈ Rd such that
n∑
i=1
∇fi(x?) = 0

(2) There exists ρ ∈ (0, 1), called the contraction factor, such that

‖(x− x?)− α
(
∇fi(x)−∇fi(x?)

)
‖ ≤ ρ ‖x− x?‖

for all x ∈ Rd and all i ∈ {1, . . . , n} where α > 0 is the stepsize

(3) Each agent i ∈ {1, . . . , n} has access to the ith row of a stochastic
gossip matrix with spectral gap σ ∈ [0, 1)
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Nominal algorithm
Parameters: convergence factor ρ ∈ (0, 1), stepsize α > 0
Initialization: Set y0

i = 0 ∈ Rd and x0
i ∈ Rd arbitrary for i ∈ {1, . . . , n}

for iteration k = 0, 1, 2, . . . do
for agent i ∈ {1, . . . , n} do

vki =
n∑
j=1

wkij x
k
j

yk+1
i = yki + xki − vki
xk+1
i = vki − α∇fi(vki )−

√
1− ρ2 yk+1

i

end for
end for
return xki ∈ Rd is the estimate of x? on agent i at iteration k
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i = 0 ∈ Rd and x0
i ∈ Rd arbitrary for i ∈ {1, . . . , n}
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i = vki − α∇fi(vki )−

√
1− ρ2 yk+1

i

end for
end for
return xki ∈ Rd is the estimate of x? on agent i at iteration k

At steady-state,

lim
k→∞

xki = x? and lim
k→∞

yki ∝ ∇fi(x?)
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Initialization: Set y0
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i ∈ Rd arbitrary for i ∈ {1, . . . , n}

for iteration k = 0, 1, 2, . . . do
for agent i ∈ {1, . . . , n} do

vki =
n∑
j=1

wkij x
k
j

yk+1
i = yki + xki − vki
xk+1
i = vki − α∇fi(vki )−

√
1− ρ2 yk+1

i

end for
end for
return xki ∈ Rd is the estimate of x? on agent i at iteration k

Theorem (Linear convergence)
If σ ≤

√
1+ρ−

√
1−ρ

2 , then the iterate sequence {xki }k≥0 of each agent i
converges to the optimal solution x? linearly with rate ρ. In other words,

‖xki − x?‖ = O(ρk) for all i ∈ {1, . . . , n}.
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Sketch of proof
(1) Write the algorithm in vectorized form

vk = (W ⊗ Id) xk

uk = ∇f(vk)
yk+1 = yk + xk − vk

xk+1 = vk − αuk − λyk+1

where x =

x1
...
xn

, ∇f(x) =

∇f1(x1)
...

∇fn(xn)

, and λ :=
√

1− ρ2

(2) Define the fixed point
(v?,u?,y?,x?) =

(
1⊗ x?, ∇f(1⊗ x?), −αλ ∇f(1⊗ x?), 1⊗ x?

)
(3) Define the error vectors

(v̄k, ūk, ȳk, x̄k) =
(
vk − v?, uk − u?, yk − y?, xk − x?

)
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Sketch of proof

(4) Define the Lyapunov function

V (x,y) := ‖avg(x̄)‖2 +
[
dis(x̄)
dis(ȳ)

]T([1 λ
λ λ

]
⊗ Ind

)[
dis(x̄)
dis(ȳ)

]
where avg(x) = 1⊗ 1

n

∑n
i=1 xi and dis(x) = x− avg(x)

(5) The Lyapunov function is decreasing since
V (xk+1,yk+1) = ρ2 V (xk,yk)−

(
ρ2 ‖v̄k‖2 − ‖v̄k − α ūk‖2)

− 2ρ2 (σ2
0 ‖dis(x̄k)‖2 − ‖dis(v̄k)‖2)

− 2σ2
0
∥∥dis

(
v̄k + λ (x̄k + ȳk)

)∥∥2

where σ0 :=
√

1+ρ−
√

1−ρ
2

(6) Then we have the bound
‖xki − x?‖2 ≤ c V (xk,yk) ≤ c ρ2k V (x0,y0)

where c := cond
([ 1 λ
λ λ

])

11



Sketch of proof

(4) Define the Lyapunov function

V (x,y) := ‖avg(x̄)‖2 +
[
dis(x̄)
dis(ȳ)
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Algorithm design (the complicated part)

• Given the algorithm and corresponding Lyapunov function, the
convergence proof is quite simple

• The difficult part is finding the algorithm and Lyapunov function

• How we did it:
• Constructed a small semidefinite program that computes the
worst-case convergence rate for a given algorithm1

• Constructed a canonical form characterizing a large class of
distributed algorithms2

• Found the canonical form parameters which optimize the
worst-case convergence rate

1 A. Sundararajan, B. Hu, and L. Lessard. Robust convergence analysis of distributed optimization
algorithms. Allerton Conference on Communication, Control, and Computing, 2017.
2 A. Sundararajan, B. Van Scoy, and L. Lessard. A canonical form for first-order distributed
optimization algorithms. American Control Conference, 2019 (to appear).
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Nominal algorithm
Parameters: convergence factor ρ ∈ (0, 1), stepsize α > 0
Initialization: Set y0

i = 0 ∈ Rd and x0
i ∈ Rd arbitrary for i ∈ {1, . . . , n}

for iteration k = 0, 1, 2, . . . do
for agent i ∈ {1, . . . , n} do

vki =
n∑
j=1

wkij x
k
j

yk+1
i = yki + xki − vki
xk+1
i = vki − α∇fi(vki )−

√
1− ρ2 yk+1

i

end for
end for
return xki ∈ Rd is the estimate of x? on agent i at iteration k

Theorem (Linear convergence)
If σ ≤

√
1+ρ−

√
1−ρ

2 , then the iterate sequence {xki }k≥0 of each agent i
converges to the optimal solution x? linearly with rate ρ. In other words,

‖xki − x?‖ = O(ρk) for all i ∈ {1, . . . , n}.
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Multi-step gossip
Need graph to be connected enough so that σ ≤

√
1+ρ−

√
1−ρ

2

If σ is too large, use multiple gossip steps per iteration
• standard consensus if graph is time-varying and/or directed
• accelerated consensus if graph is constant and undirected
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#communications
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Algorithm
Params: convergence factor ρ ∈ (0, 1), spectral gap σ ∈ [0, 1), stepsize α > 0
Initialization: Set y0

i = 0 ∈ Rd and x0
i ∈ Rd arbitrary for i ∈ {1, . . . , n}

for iteration k = 0, 1, 2, . . . do
for agent i ∈ {1, . . . , n} do

vki = gossip({xki }, {wkij}, ρ, σ)

yk+1
i = yki + xki − vki
xk+1
i = vki − α∇fi(vki )−

√
1− ρ2 yk+1

i

end for
end for
return xki ∈ Rd is the estimate of x? on agent i at iteration k

gossip function can be:
• standard consensus if graph is time-varying and/or directed
• accelerated consensus if graph is constant and undirected
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Consensus as polynomial filtering

v = p(W ) x

• Apply a polynomial p of degree m to the gossip matrix W
• m is the number of communication steps required to implement
• Choose p such that p(1) = 1 and |p(w)| is small for w ∈ [−σ, σ]
• Choose m to be the smallest integer such that the spectral gap of
p(W ) is less than or equal to

√
1+ρ−

√
1−ρ

2

p(W ) =


Wm standard consensus

Tm(σ−1W )
Tm(σ−1) accelerated consensus

Tm is the mth Chebyshev polynomial of the first kind
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Standard consensus

Function: gossip({xi}, {wij}, ρ, σ)

Initialization: Set v0
i = xi for i ∈ {1, . . . , n}, and define the number of rounds

of communication

m :=

⌈
log
(√1+ρ−

√
1−ρ

2

)
log σ

⌉
for communication round ` = 1, . . . ,m− 1 do
for agent i ∈ {1, . . . , n} do

v`+1
i =

n∑
j=1

w`ijv
`
i

end for
end for
return vmi is the estimate of the average of {xi} on agent i
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Accelerated consensus

Function: gossip({xi}, {wij}, ρ, σ)

Initialization: Set γ0 = 1, γ1 = σ−1, v0
i = xi, and v1

i =
∑n

j=1 wijxj for
i ∈ {1, . . . , n}, and define the number of rounds of communication

m :=

⌈
cosh−1(√1+ρ+

√
1−ρ

ρ

)
cosh−1( 1

σ

) ⌉
for communication round ` = 1, . . . ,m− 1 do
for agent i ∈ {1, . . . , n} do

γ`+1 = 2
σ
γ` − γ`−1 (γ` = T`(σ−1))

v`+1
i = 2

σ
γ`

γ`+1

n∑
j=1

wijv
`
j − γ`−1

γ`+1 v
`−1
i

end for
end for
return vmi is the estimate of the average of {xi} on agent i
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Complexity
At each iteration, agents must:
• perform m steps of communication with local neighbors
• compute their local gradient

Suppose it takes τ time for communication and unit time for computation

Corollary (Time complexity)
The time to obtain a solution with precision ε > 0 is

O
(
κ
(
1 + τ

1−σ

)
ln
(

1
ε

))
(standard consensus)

O
(
κ
(
1 + τ√

1−σ

)
ln
(

1
ε

))
(accelerated consensus)

as κ→∞ and σ → 1 where ρ = κ−1
κ+1 .

If each fi is smooth strongly convex with condition ratio κ, then a
lower bound using accelerated consensus is

O
(√
κ
(
1 + τ√

1−σ
)

ln
( 1
ε

))
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K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié. Optimal algorithms for smooth and
strongly convex distributed optimization in networks. ICML, 2017.

19



Target localization
• The position of the target is x? = (p?, q?) ∈ R2

• Agent i knows its position (pi, qi) ∈ R2 and distance to the target

ri =
√

(pi − p?)2 + (qi − q?)2

• The objective function fi : R2 → R associated to agent i is

fi(p, q) = 1
2
(√

(pi − p)2 + (qi − q)2 − ri
)2

• To locate the target, agents solve

minimize
p,q∈R

1
n

n∑
i=1

fi(p, q)

• The optimal stepsize is α = 2

0 1 2 3
p

0

1

2

3

q
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Target localization
• Plot of the error ‖xki − x?‖ for each of the n = 5 agents

• Our algorithm does one computation and m = 6 communications per
iteration
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Summary

• Worst-case guarantees for nonconvex functions
• convergence rate is the same as centralized gradient descent in
terms of number of gradient evaluations, provided we use
“enough” communication at each iteration

• Modular approach: communication network can be either
• directed and time-varying
• undirected and constant

• Simple convergence proof using a Lyapunov function

• Particularly useful when gradient evaluations are expensive

Paper available at: https://arxiv.org/abs/1905.11982
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