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Distributed optimization

® multiple interacting agents

P e

® agents compute local quan- vehicle platoons drone networks
tities

® agents communicate with
local neighbors through a
network

smart grid wind farms

Goal is to optimize a global
performance metric

load balancing routing and congestion



Problem setup
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e f,:R? - R is the local objective function associated with agent i

® 1 is the number of agents

® d is the dimension of the problem

Goal: Each agent must compute the global optimizer by communicating
with local neighbors and performing local computations



Communication network

® A matrix W = {w;;} € R"*™ is a gossip matrix if w;; =0
whenever agent i does not receive information from agent j

® The spectral gap is 0 := |[W — 1117|
® W is stochastic if W1 =1 and 1TW =17
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A first approach
Centralized gradient descent:
w = a2 — of avg ({Vf;(a5)}7=1) o) =2’ €R?

® Requires computing an exact average at each iteration (costly)

® Linear convergence to optimal solution with constant stepsize



A first approach
Centralized gradient descent:
ot = af — oFavg ({Vfj(2))}-1) o) =1 €R

® Requires computing an exact average at each iteration (costly)

® Linear convergence to optimal solution with constant stepsize

Distributed gradient descent:
n

ah = Zwii xf — o Vf;(z¥) 79 € RY
j=1

® Uses only local communication at each iteration (cheap)
® Linear convergence to suboptimal solution with constant stepsize

® Sublinear convergence to optimal solution with decaying stepsize



Other distributed algorithms

® Many other distributed algorithms have been proposed recently

® Achieve linear convergence to the optimal solution using two states

P = Wwxk — aVf(x") (DGD)
xF = 2wk — W2xE! — aVF(x*) + aVf(xF ) (DIGing)
XFHL = (I + W)xF — W xk=1 _ 0 Vf(x*) + aVf(x*~!) (EXTRA)

XM= (I W) — B (x* 4 aVf (x*) — aVf (x*71))  (NIDS)



Main result

We construct a novel distributed algorithm with the following properties:

® Worst-case guarantees for nonconvex functions

® convergence rate is the same as centralized gradient descent in
terms of number of gradient evaluations, provided we use
“enough” communication at each iteration

® Modular approach: communication network can be either

® directed and time-varying
® undirected and constant

® Simple convergence proof using a Lyapunov function



Assumptions

(1) There exists a stationary point 2* € R? such that

Z Vfi(z*) =0
=1

(2) There exists p € (0, 1), called the contraction factor, such that
I — %) — a (Vfi(z) = Vfi(a")[| < pllz — ]|

for all z € R and all i € {1,...,n} where a > 0 is the stepsize

(3) Each agent i € {1,...,n} has access to the i*" row of a stochastic
gossip matrix with spectral gap o € [0,1)



Nominal algorithm

Parameters: convergence factor p € (0, 1), stepsize a > 0
Initialization: Set y? =0 € R? and 20 € R? arbitrary for i € {1,...,n}
for iteration £k =0,1,2,... do

for agent i € {1,...,n} do

n
k _ k _k
Jj=1

vt =yl al o
ai T =i —aVfi(f) = /1 - p2yi T
end for
end for

return ¥ € R? is the estimate of z* on agent i at iteration k



Nominal algorithm

Parameters: convergence factor p € (0, 1), stepsize a > 0

Initialization: Set y? =0 € R? and 20 € R? arbitrary for i € {1,...,

for iteration £k =0,1,2,... do
for agent i € {1,...,n} do
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end for

end for

return ¥ € R? is the estimate of z* on agent i at iteration k

At steady-state,

lim zF = z* and klim yF o Vfi(z*)
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Nominal algorithm

Parameters: convergence factor p € (0, 1), stepsize a > 0
Initialization: Set y? =0 € R? and 20 € R? arbitrary for i € {1,...,n}
for iteration £k =0,1,2,... do

for agent i € {1,...,n} do

n
k _ k _k
Jj=1

k41 k k k
Yi =Y+ T -

ai T =i —aVfi(f) = /1 - p2yi T

end for

end for

return ¥ € R? is the estimate of 2* on agent ¢ at iteration k

Theorem (Linear convergence)

If o < YAEL_VI=P then the iterate sequence {z} }x>0 of each agent i
converges to the optimal solution z* linearly with rate p. In other words,

|zf —a*|| = O(p*) foralliec{1,...,n}.



Sketch of proof

(1) Write the algorithm in vectorized form
Vk = (W ® Id) xF

ut = V()
YR — gk ok gk
XL Z vk g uk = Ayhtl
r Vfi(z1)
wherex = | |, Vf(x) = : ,and A= /1 — p?
Ty A\
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Sketch of proof

(1) Write the algorithm in vectorized form
Vk = (W ® Id) xF

ut = V()
YR — gk ok gk
I N
r Vfi(z1)
wherex = | |, Vf(x) = : ,and A= /1 — p?
Ty A\

(2) Define the fixed point
vty x) = (Lo, Vil o), 3 Viled), 1or)

(3) Define the error vectors

(Vk,ﬁk,yk,f(k) _ (Vk _ V*, uk _ ll*, yk _ y*, Xk _ X*)
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Sketch of proof

(4) Define the Lyapunov function

Vixy) = lave®)I + [jgﬂ(ﬁ N o) |

where avg(x) =1 ® L 3" | #; and dis(x) = x — avg(x)

dis(x)
dis(3)

|
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Sketch of proof

(4) Define the Lyapunov function

Veey) = vl + [S9)([1 3 o) [G260)
where avg(x) =1 ® L 3" | #; and dis(x) = x — avg(x)

(5) The Lyapunov function is decreasing since
VML Y = 02 VxR, yP) = (07 IVF])? = 9" — ad®|?)
—2p” (o7 [|dis(x*)[|* — [|dis(¥*)]|?)
— 202 ||dis(v" + A (% +30) ||

where o 1= 7”“; Vi—p
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Sketch of proof

(4) Define the Lyapunov function

Veey) = vl + [S9)([1 3 o) [G260)
where avg(x) =1 ® L 3" | #; and dis(x) = x — avg(x)

(5) The Lyapunov function is decreasing since
VML Y = 02 VxR, yP) = (07 IVF])? = 9" — ad®|?)
—2p” (o7 [|dis(x*)[|* — [|dis(¥*)]|?)
— 202 ||dis(v" + A (% +30) ||

where o 1= 7”“; Vi—p

(6) Then we have the bound
ok — 2| < eVxEyh) < ep VR, )

where ¢ := cond ([} }])
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Algorithm design (the complicated part)

® Given the algorithm and corresponding Lyapunov function, the
convergence proof is quite simple

® The difficult part is finding the algorithm and Lyapunov function

® How we did it:
® Constructed a small semidefinite program that computes the
worst-case convergence rate for a given algorithm1

® Constructed a canonical form characterizing a large class of
distributed algorithms?

® Found the canonical form parameters which optimize the
worst-case convergence rate

LA, Sundararajan, B. Hu, and L. Lessard. Robust convergence analysis of distributed optimization
algorithms. Allerton Conference on Communication, Control, and Computing, 2017.

2 A. Sundararajan, B. Van Scoy, and L. Lessard. A canonical form for first-order distributed
optimization algorithms. American Control Conference, 2019 (to appear).



Nominal algorithm

Parameters: convergence factor p € (0, 1), stepsize a > 0

Initialization: Set y? =0 € R? and 20 € R? arbitrary for i € {1,...

for iteration £k =0,1,2,... do
for agent i € {1,...,n} do

n
ok — k. F
V; = lL,,'j L}
j=1

k1 k k&
Yi =Y +x —v

LR k i+
z; T =v; —aVfi( vl —v1-p?

end for

end for

return ¥ € R? is the estimate of 2* on agent ¢ at iteration k

Theorem (Linear convergence)
If o < V1+p—+v/1—p
= 2

, then the iterate sequence {z¥}x>¢ of each agent i

converges to the optimal solution z* linearly with rate p. In other words,

|zf —a*|| = O(p*) foralliec{1,...,n}.
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Multi-step gossip

Need graph to be connected enough so that o < —VH"E v1—p

If o is too large, use multiple gossip steps per iteration

contraction factor (p)

¢ standard consensus if graph is time-varying and/or directed

® accelerated consensus if graph is constant and undirected

ill-conditioned =

©  well-conditioned

Standard

#communications _ |
Fcomputations

0 full

spectral gap (o)

contraction factor (p)

ill-conditioned =

©  well-conditioned

Accelerated

#communications _ |
Fcomputations

)

spectral gap (o)
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Algorithm

Params: convergence factor p € (0,1), spectral gap o € [0,1), stepsize o > 0
Initialization: Set y? =0 € R? and 20 € R? arbitrary for i € {1,...,n}
for iteration £k =0,1,2,... do

for agent i € {1,...,n} do

k . k k
Vi = gOSSIP({xi }7 {U)'ij}'/ P U)

yitt =yl el -
wi Tt =i —a Vi) = /1 - p2yi T
end for
end for

return z¥ € R? is the estimate of z* on agent ¢ at iteration k
gossip function can be:

¢ standard consensus if graph is time-varying and/or directed
® accelerated consensus if graph is constant and undirected
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Consensus as polynomial filtering

v =p(W)x

Apply a polynomial p of degree m to the gossip matrix W

® m is the number of communication steps required to implement

Choose p such that p(1) =1 and |p(w)]| is small for w € [—0, 0]

® Choose m to be the smallest integer such that the spectral gap of
p(W) is less than or equal to 7% vi-p

wm standard consensus
PW) =1 1,0~ w)

———— accelerated consensus
Tn(o™1)

T, is the mt" Chebyshev polynomial of the first kind

16



Standard consensus

Function: gossip({z:}, {wi;}, p,0)

Initialization: Set v) = x; for i € {1,...,n}, and define the number of rounds
of communication
1og(\/m;\/E)
m=|———=7
logo
for communication round £ =1,...,m — 1 do

for agent ¢ € {1,...,n} do

n
041 I
UiJr = g Wi;5V;
j=1

end for
end for

return v;" is the estimate of the average of {x;} on agent i
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Accelerated consensus

Function: gossip({z:}, {wi;}, p,0)

1

Initialization: Set v° =1, 4! = o7, v? = x4, and v} = Z;:I w;jx; for

1 € {1,...,n}, and define the number of rounds of communication
. {coshl(mtm)“
e coshfl(i)
for communication round £ =1,...,m — 1 do

for agent i € {1,...,n} do

041
v

n
41 2 A N A A A
Vi = it Wijvj — ST Vs
Jj=1

end for
end for

return v}" is the estimate of the average of {z;} on agent i

=2y -4 (v =Tu(o™Y))
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Complexity

At each iteration, agents must:

® perform m steps of communication with local neighbors
® compute their local gradient

Suppose it takes 7 time for communication and unit time for computation
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The time to obtain a solution with precision € > 0 is
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Complexity

At each iteration, agents must:
® perform m steps of communication with local neighbors
® compute their local gradient

Suppose it takes 7 time for communication and unit time for computation

Corollary (Time complexity)

The time to obtain a solution with precision € > 0 is

(9(/4 (1 + ﬁ) ln(%)) (standard consensus)
(9(/4 (1 + \/17770) ln(%)) (accelerated consensus)
as k — oo and 0 — 1 where p = :—I_}

If each f; is smooth strongly convex with condition ratio , then a
lower bound using accelerated consensus is

O(Ve (1+ =) (7))

K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié. Optimal algorithms for smooth and
strongly convex distributed optimization in networks. ICML, 2017.
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Target localization
® The position of the target is 2* = (p*, ¢*) € R?

® Agent i knows its position (p;,q;) € R? and distance to the target

ri = (pi — p*)2 + (@ — ¢*)?

The objective function f; : R> — R associated to agent i is

fipd) =5 (Vi — 2+ (@ — a2 —mi)°

To locate the target, agents solve

I
m e — (p,
inimiz n;fz(p q)

The optimal stepsize is v = 2

20



Target localization

® Plot of the error ||z¥ — 2*|| for each of the n = 5 agents

® Qur algorithm does one computation and m = 6 communications per

iteration
100 .
10
—
£ 10% 4
g —— proposed
NIDS
102 4 EXTRA
— centralized
—_— pk'
10716 T T
0 50 100 150

iteration (k)



Summary

® Worst-case guarantees for nonconvex functions

® convergence rate is the same as centralized gradient descent in
terms of number of gradient evaluations, provided we use
“enough” communication at each iteration

® Modular approach: communication network can be either

® directed and time-varying
® undirected and constant

Simple convergence proof using a Lyapunov function

Particularly useful when gradient evaluations are expensive

Paper available at:  https://arxiv.org/abs/1905.11982
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