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Overview

algorithm - a process or set of rules to be followed in calculations
or other problem-solving operations, especially by a computer.
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Centralized Distributed

Analysis prove properties of the algorithm

Design develop new algorithms to meet specific criteria
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Problem setup

Consider the optimization problem

min
x∈Rn

f (x)

where f ∈ Sm,L.

Definition (function class)

Let Sm,L be the set of functions f : Rn → R that are

continuously differentiable,

strongly convex with parameter m, and

have Lipschitz gradients with parameter L.

Furthermore, κ := L/m is called the condition number of f ∈ Sm,L.
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Gradient-based methods

ξk+1 = (1 + β)ξk − βξk−1 − α∇f (yk), ξ0, ξ−1 ∈ Rn

yk = (1 + γ)ξk − γξk−1

xk = (1 + δ)ξk − δξk−1

Method
Parameters
(α, β, γ, δ)

Gradient descent (α, 0, 0, 0)
Heavy-ball method (Polyak, 1964) (α, β, 0, 0)
Nesterov’s accelerated gradient descent (Nesterov, 2004) (α, β, β, 0)
Algorithm in (Lessard, Recht, and Packard, 2016) (α, β, γ, 0)

Definition (Triple momentum method)

(α, β, γ, δ) =

(
1 + ρ

L
,

ρ2

2− ρ,
ρ2

(1 + ρ)(2− ρ)
,

ρ2

1− ρ2

)

where ρ = 1− 1/
√
κ
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Results

Theorem (Triple momentum method)

Let f ∈ Sm,L with 0 = ∇f (x?). For any initial condition
ξ0, ξ−1 ∈ Rn, the TM method produces iterates which satisfy

‖xk − x?‖ ≤
(

1− 1√
κ

)k−1

‖x1 − x?‖, ∀k ≥ 1.

Theorem (Gradient descent)

Let fk ∈ Sm,L with 0 = ∇fk(x?). For any initial condition ξ0 ∈ Rn,
the gradient descent method with α = 2/(L + m) produces iterates
which satisfy

‖xk − x?‖ ≤
(
κ− 1

κ+ 1

)k

‖x0 − x?‖, ∀k ≥ 0.
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Iterations to converge
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Piecewise quadratic objective function

-1 x? = 0 1 2 3 4

f (x?) = 0

1
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3
Quadratic Linear Quadratic

x

f (x)
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Piecewise quadratic objective function

-1 x? = 0 1 2 3 4

f (x?) = 0

1

2

3
Quadratic Linear Quadratic

x

f (x)

Multidimensional piecewise quadratic:

f (x) =

p∑

i=1

g(aT
i x − bi ) +

m

2
‖x‖2, x ∈ Rn

where

g(y) =

{
1
2y

2, y ≥ 0

0, y < 0
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Simulations
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Proof method

We can use integral quadratic constraints (IQCs) from robust
control theory. The gradient is characterized by constraints
which its input and output must satisfy.

G

∇f

x

We also have a simple convergence proof which does not rely
on control theory.
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Dynamic Average Consensus (DAC)
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Error of agent i at time k =

y ik︸︷︷︸
Local output

− 1

n

n∑

i=1

uik

︸ ︷︷ ︸
Global average



Applications of dynamic average consensus

distributed multi-agent coordination

- (Yang, Freeman, and Lynch, 2008)

distributed environmental monitoring

- (Lynch, Schwartz, Yang, and Freeman, 2008)

distributed Kalman filtering

- (Bai, Freeman, and Lynch, 2011)

distributed Kriged Kalman filtering

- (Cortés, 2009)

distributed dynamic merging of feature-based maps

- (Aragüés, Cortés, and Sagüés, 2012)

distributed optimization

- (Qu and Li, 2016)
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Communication graph

To diffuse information among the agents, we use the graph
Laplacian

[Lx ]i =
∑

j∈Nin(i)

aij (xi − xj)

where Nin(i) are the agents from which agent i receives
information and aij are the edge weights.

Graph properties:

connected ⇐⇒ directed link between any two nodes

undirected ⇐⇒ aij = aji

balanced ⇐⇒
∑

j∈Nin(i)

aij =
∑

j∈Nout(i)

aij
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Problem

Problem (Distributed algorithm design)

Given:

1 assumptions on the communication among agents

2 assumptions on the input signals

3 desired properties of the algorithm

=⇒ distributed algorithm (estimator)
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Assumptions on the communication graph

constant or time-varying

balanced, undirected, or directed

randomly generated from a given distribution

drops packets independently with given probability

known upper bound on the number of agents

eigenvalues of the Laplacian matrix are in a known region

[ ]
λmin λmax Re(λ)

Im(λ) λ ∈ eig(L)

e ik = y ik −
1

n

n∑

i=1

uik
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Assumptions on the signals

We consider two class of inputs signals depending on the support
of the frequency spectrum.

0 π/3 2π/3 π

∣∣ui (e jθ)
∣∣

Discrete support (e.g., sinusoids, polynomials, etc.)

e ik = y ik −
1

n

n∑

i=1

uik

0 π/3 2π/3 π

Frequency (θ)

∣∣ui (e jθ)
∣∣

Continuous support (e.g., bandlimited signals)

e ik = y ik −
1

n

n∑

i=1

uik
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Estimator properties

Scalable: The number of variables and computations on each
agent does not scale with the number of agents.

Exact: The error converges to zero.

Internally stable: The internal states are bounded.

Time invariant: The dynamics do not change with time.

Robust to initial conditions: The steady-state output does
not depend on the initial condition.
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Asymptotic mean ergodicity

Ergodic: The time average of the output process converges
to its statistical average (if the graph is connected and
balanced on average and Lk is i.i.d.).
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Bryan Van Scoy, Randy A. Freeman, and Kevin M. Lynch (June 2014). “Asymptotic mean ergodicity of
average consensus estimators”. In: Proc. of the 2014 Amer. Control Conf. Pp. 4696–4701
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Robust to changes in the graph

Robust to changes in the graph: The steady-state error
using a time-varying sequence of graphs is no worse than
when using the “worst-case” constant graph.
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Problem

Assumption (Graph)

Assume the graph is constant, connected, undirected, and has
nonzero Laplacian matrix eigenvalues in [λmin, λmax].

Assumption (Signals)

Assume the input signals have a known model, i.e., d(z) is known
where ui (z) = ni (z)/d(z).

Desired properties:

1 one-hop communication

2 scalable

3 exact

4 internally stable

5 time-invariant

6 robust to ICs

7 ergodic

8 fast convergence

Van Scoy Dynamic Average Consensus and Convex Optimization



Problem

Assumption (Graph)

Assume the graph is constant, connected, undirected, and has
nonzero Laplacian matrix eigenvalues in [λmin, λmax].

Assumption (Signals)

Assume the input signals have a known model, i.e., d(z) is known
where ui (z) = ni (z)/d(z).

Desired properties:

1 one-hop communication

2 scalable

3 exact

4 internally stable

5 time-invariant

6 robust to ICs

7 ergodic

8 fast convergence

Van Scoy Dynamic Average Consensus and Convex Optimization



Static estimator

The static estimator is implemented on agent i using

y ik+1 = y ik − kp
∑

j∈Ni

aij (y ik − y jk), y i0 = ui

where yk is the estimate of the average at time k . Using the
Laplacian matrix,

yk+1 = (I − kpL)yk , y0 = u.

kp

z − 1
In L

y(z)

y0

−

John Tsitsiklis (Nov. 1984). “Problems in decentralized decision making and computation”. PhD thesis.
Massachusetts Institute of Technology

Van Scoy Dynamic Average Consensus and Convex Optimization



Proportional estimator

Internally stable but not robust to initial conditions:
u(z)

kp

z − 1
In L

y(z)

x0

−

Robust to initial conditions but not internally stable:
u(z)

L
kp

z − 1
In

y(z)

x0

−

How to choose kp to optimize the convergence rate ρ?

How to get both internal stability and robustness to ICs?

R.A. Freeman, Peng Yang, and K.M. Lynch (2006). “Stability and Convergence Properties of Dynamic
Average Consensus Estimators”. In: Proc. of the 45th IEEE Conf. on Decision and Control, pp. 338–343
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Optimizing the convergence rate

Characteristic equation: 0 = 1 + λ
kp

z − 1
, λ ∈ eig(L)

−1 1

ρT

Re(z)

Im(z)

e ik = y ik −
1

n

n∑

i=1

uik
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Optimizing the convergence rate

Characteristic equation: 0 = 1 + λ
kp

z − 1
, λ ∈ eig(L)

−1 1

ρT

Re(z)

Im(z)

λ = λminλ = λmax

e ik = y ik −
1

n

n∑

i=1

uik

kp =
2

λmax + λmin
ρ =

λmax − λmin

λmax + λmin
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Optimizing the convergence rate

Characteristic equation: 0 = 1 + λ
kp z

(z − ρ2)(z − 1)
, λ ∈ eig(L)

−1 ρ2 1

ρT

Re(z)

Im(z)

e ik = y ik −
1

n

n∑

i=1

uik
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Optimizing the convergence rate

Characteristic equation: 0 = 1 + λ
kp z

(z − ρ2)(z − 1)
, λ ∈ eig(L)

−1 ρ2 1

ρT

Re(z)

Im(z)

λ = λminλ = λmax

e ik = y ik −
1

n

n∑

i=1

uik

kp =
4

(
√
λmax +

√
λmin)2

ρ =

√
λmax −

√
λmin√

λmax +
√
λmin

Van Scoy Dynamic Average Consensus and Convex Optimization



Palindromic transformation

1 Re(z)

Im(z)
ρT

z-plane

−2ρ 2ρ 1 + ρ2
[ ]

Re(w)

Im(w)

w -plane

z + ρ2/z = w

e ik = y ik −
1

n

n∑

i=1

uik
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Im(z)
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z-plane
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[ ]

Re(w)

Im(w)

w -plane
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z + ρ2/z = w
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n
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Optimizing the convergence rate

Original system: 0 = 1 + λ
kp z

(z − ρ2)(z − 1)
, λ ∈ eig(L)

Palindromic system: 0 = 1 + λ
kp

w − (1 + ρ2)

−2ρ 2ρ 1 + ρ2
[ ]

Re(w)

Im(w)

e ik = y ik −
1

n

n∑

i=1

uik
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P estimator: Convergence rate
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P estimator: Accelerated versions

Internally stable but not robust to initial conditions:
u(z)
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Proportional-integral (PI) estimator

To obtain both robustness to initial conditions and internal
stability, we can use two Laplacian blocks.

u(z)

h1(z) In L

h2(z) In L

y(z)

−

Want h2(z) to have a pole at z = 1 to be exact.

Want h1(z) and h2(z) to be strictly proper for one-hop
communication.

R.A. Freeman, Peng Yang, and K.M. Lynch (2006). “Stability and Convergence Properties of Dynamic
Average Consensus Estimators”. In: Proc. of the 45th IEEE Conf. on Decision and Control, pp. 338–343
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PI estimator: Two states

u(z)

kp

z − ρ
In L

kI

z − 1
In L

y(z)

−

Each agent has two internal state variables and transmits two
variables per iteration.

We have closed-form expressions for kp, kI , and ρ in terms of
λmin and λmax.

This estimator has all the desired properties, except the
convergence rate is slow.

Bryan Van Scoy, Randy A. Freeman, and Kevin M. Lynch (July 2015b). “Optimal worst-case dynamic
average consensus”. In: Proc. of the 2015 Amer. Control Conf. Pp. 5324–5329
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PI estimator: Four states

u(z)

kp z

(z − ρ)2
In L

kI z

(z − ρ2)(z − 1)
In L

y(z)

−

Each agent has four internal state variables and transmits two
variables per iteration.

We have closed-form expressions for kp, kI , and ρ in terms of
λmin and λmax.

This estimator has all the desired properties.

Bryan Van Scoy, Randy A. Freeman, and Kevin M. Lynch (Dec. 2015a). “Design of robust dynamic average
consensus estimators”. In: Proc. of the 54th IEEE Conf. on Decision and Control, pp. 6269–6275

Van Scoy Dynamic Average Consensus and Convex Optimization



PI estimator: Convergence rate
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Summary of feedback estimators
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1 or 2 1 1 3 7 7 7 7

PI 2 or 4 2 1 3 3 3 3 3

PF
1 or 2 1 r 3 3 3 7 7

1 or 2 1 r 3 3 3 3 3

Edge 1+|Nin(i)| 1 1 7 3 3 3 3

NL 2 1 1 3 3 3 3 7
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Summary of feedback estimators
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Problem

Assumption (Graph)

Assume the graph is connected, balanced, and satisfies
‖I − Lk − 1n1T

n/n‖2 < 1 at each iteration.

Assumption (Signals)

Assume the input signals are bandlimited with known cutoff
frequency θc , i.e., |ui (e jθ)| = 0 for all θ ∈ [θc , π].

Desired properties:

1 one-hop communication

2 scalable

3 internally stable

4 time-invariant

5 robust to ICs

6 robust to changes in the
graph

7 small steady-state error
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Cascaded feedback estimators

u(z) hpre(z)In
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z − γ
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−
. . .
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y(z)
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` times

e ik = y ik −
1

n
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uik

u(z) hpre(z)In
1

z − γ
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. . .

1

z − γ
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L

y(z)
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` times

e ik = y ik −
1

n

n∑

i=1

uik

Estimator Fig. Parameters
Freeman, Yang, and Lynch, 2006 top hpre(z) = 1, ` = 1
Kia, Cortés, and Mart́ınez, 2014 top hpre(z) = 1, ` = 1
Zhu and Mart́ınez, 2010 bottom hpre(z) = (1− z−1)`, γ = 1
Franceschelli and Gasparri, 2016 bottom hpre(z) = (1− γ)`
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Feedback estimator 1
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R.A. Freeman, Peng Yang, and K.M. Lynch (2006). “Stability and Convergence Properties of Dynamic
Average Consensus Estimators”. In: Proc. of the 45th IEEE Conf. on Decision and Control, pp. 338–343

S.S. Kia, J. Cortés, and S. Mart́ınez (2013). “Dynamic Average Consensus under Limited Control Authority
and Privacy Requirements”. In: International Journal of Robust and Nonlinear Control
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Feedback estimator 2
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Minghui Zhu and Sonia Mart́ınez (2010). “Discrete-time dynamic average consensus”. In: Automatica 46.2,
pp. 322 –329
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Feedback estimator 4
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M. Franceschelli and A. Gasparri (Dec. 2016). “Multi-Stage Discrete Time Dynamic Average Consensus”.
In: Proc. of the 55nd IEEE Conf. on Decision and Control
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Feedforward estimator
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)10

Bryan Van Scoy, Randy A. Freeman, and Kevin M. Lynch (Dec. 2016). “Feedforward estimators for the
distributed average tracking of bandlimited signals in discrete time with switching graph topology”. In: Proc. of
the 55th IEEE Conf. on Decision and Control, pp. 4284–4289
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Design of prefilter

We have two prefilter designs

FIR: Faster convergence, larger steady-state error
IIR: Slower convergence, smaller steady-state error

Must take into account high-frequency components due to
numerical error.

Zero steady-state error if

exact arithmetic is used (ε = 0),
infinite number of stages (`→∞), and
graph satisfies the assumptions at each iteration.

0 θc π
ε

1

Frequency (θ)

∣∣ui (e jθ)
∣∣

L = BWBT
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Drop packets with probability 0%
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Assumptions: connected=100%, balanced=100%, norm condition=100%

Global average

Estimator output
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Drop packets with probability 10%
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Drop packets with probability 50%
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Assumptions: connected=7.4%, balanced=3.3%, norm condition=0.2%

Global average

Estimator output
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1
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Summary

To summarize, the feedforward estimator

1 uses one-hop discrete-time local broadcast communication,

2 is scalable,

3 is internally stable,

4 is time-invariant,

5 is robust to initial conditions,

6 is robust to changes in the graph,

7 and has bounded steady-state error.

Futhermore, the steady-state error can be made arbitrarily small if
the graph satisfies certain properties on average and exact
arithmetic is used.
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Conclusion

Convex optimization The triple momentum method is the fastest

known globally convergent first-order method for the minimization of

strongly convex functions.

Dynamic average consensus Estimator design depends on the

frequency spectrum of the signals. Both estimators are

scalable,
time-invariant,
internally stable,
robust to initial conditions, and
use one-hop discrete-time communication.

Discrete: PI-4 estimator

exact

ergodic

fast convergence rate

Continuous: Feedforward estimator

small steady-state error

robust to changes in the graph

convergence rate depends on prefilter
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