A Mathematical Model for Hydrogen Production of a Proton Exchange Membrane Photoelectrochemical Cell

> Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. Kreider

> > University of Akron

April 7, 2011

・ 同 ト ・ ヨ ト ・ ヨ ト …

Benefits of Hydrogen

- Little or no emissions
- Hydrogen engines more efficient than gasoline
- Fuel cells available
- Many ways to produce

▲圖 ▶ ★ 国 ▶ ★ 国 ▶

Ways to Produce Hydrogen

- Natural gas
- Coal
- Biomass
- Waste
- Wind
- Nuclear power
- Sunlight

・ 同・ ・ ヨ・ ・ ヨ・

э

Basic Cell Operation

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

イロト イポト イヨト イヨト

Basic Cell Operation

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

イロン イヨン イヨン イヨン

Nafion Membrane

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

・ロト ・回ト ・ヨト ・ヨト

Hydrogen Photoelectrochemical Cells Equations Results Conclusions Delta Functions

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

э

Basic Cell Operation

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

イロト イポト イヨト イヨト

Basic Cell Operation

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

イロン イヨン イヨン イヨン

Electrode Nanowire Array Assembly

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

イロト イポト イヨト イヨト

Photograph of Nanowire Arrays

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

・ 同 ト ・ ヨ ト ・ ヨ ト

Electrode Nanowire Array Assembly

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

イロト イポト イヨト イヨト

Symbol	Description	Symbol	Description
A	Surface area/volume ratio $[m^{-1}]$	pos	Position of point-charges
с	Speed of light [m/s]	q	Charge of a proton [C]
D	Diffusivity of protons [m ² /s]	R	Gas constant [J/K·mol]
D _w	Diffusivity of water [m ² /s]	S	Source/Sink term
E	Activation energy [J/mol]	T	Temperature [K]
EW	Equivalent weight of electrolyte	W	Molecular weight [kg/mol]
	[kg/mol]		
F	Faraday constant [C/mol]	V	Volume [m ³]
h	Planck constant [m ² ·kg/s]	V0	Equilibrium potential [V]
I_{ν}	Radiant intensity [W/m ²]	η	Overpotential [V]
j	Current density [A/m ³]	μ	Mobility of protons [m ² /V·s]
J	Flux	ρ	Density [kg/m ³]
k _B	Boltzmann constant [J/K]	κ	Thermal conductivity [W/m·K]
L	Length [m]	σ	Ionic conductivity [S/m]
m	Mass of an electron [kg]	ϵ	Permittivity [F/m]
NA	Avogadro constant $[mol^{-1}]$	ν	Frequency of sunlight [Hz]
$N_{\rm SO_3^-}$	Number of SO_3^- charges	χ	Surface potential difference [J]
กั	Concentration of protons [mol/m ³]	ϕ_{metal}	Work function of metal [J]

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

<ロ> (四) (四) (三) (三) (三)

Hydrogen
Photoelectrochemical Cells
Equations
Results
Conclusions

	Governing Equation
Concentration of H^+	$0 = \nabla \cdot (D \nabla n + \mu n \nabla \Phi) + S$
Potential (CLs)	$0 = \nabla \cdot (\sigma \nabla \Phi) + S$
Potential (Membrane)	$0 = abla \cdot (\epsilon abla \Phi) + S$
Water Content	$0 = \nabla \cdot \left(\frac{\rho^{mem}}{EW} D_w^{mem} \nabla \lambda\right) - \nabla \cdot \left(n_d \frac{j}{F}\right) + S$
Temperature	$0 = \nabla \cdot (\kappa \nabla T) + S$

- *D* Diffusivity of protons
- n Concentration of protons
- $\boldsymbol{\mu}$ Mobility of protons
- σ Electrical conductivity
- Φ Electric potential
- ϵ Permittivity
- ρ^{mem} Density of membrane
- EW Equiv. weight of dry membrane

- D_{w}^{mem} Diffusivity of water
- λ Water content
- n_d Electro-osmotic drag
- j Current density
- F Faraday constant
- κ Thermal conductivity

伺い イヨト イヨト 三日

T - Temperature

	Governing Equation
Concentration of H ⁺	$0 = \frac{d}{dx}(D\frac{dn}{dx} + \mu n\frac{d\Phi}{dx}) + S$
Potential (CLs)	$0 = \frac{d}{dx}(\sigma \frac{d\Phi}{dx}) + S$
Potential (Membrane)	$0 = \frac{d}{dx} \left(\epsilon \frac{d\Phi}{dx} \right) + S$
Water Content	$0 = \frac{d}{dx} \left(\frac{\rho^{mem}}{EW} D_w^{mem} \frac{d\lambda}{dx} \right) - \frac{d}{dx} \left(n_d \frac{j}{F} \right) + S$
Temperature	$0 = \frac{d}{dx} \left(\kappa \frac{dT}{dx} \right) + S$

- *D* Diffusivity of protons
- n Concentration of protons
- $\boldsymbol{\mu}$ Mobility of protons
- σ Electrical conductivity
- Φ Electric potential
- ϵ Permittivity
- ρ^{mem} Density of membrane
- EW Equiv. weight of dry membrane

- D_w^{mem} Diffusivity of water
- λ Water content
- n_d Electro-osmotic drag
- j Current density
- F Faraday constant
- κ Thermal conductivity

(ロ) (同) (E) (E) (E)

T - Temperature

$$j_{\nu} = \frac{Fl_{\nu}}{N_A} \frac{mc^2}{h^2 \nu^2} \left(1 - \frac{\phi_{metal} + \chi}{h\nu} \right)$$
(Light)

$$j_{applied} = i_{A_0} \left[\exp\left(\frac{F\eta_A}{RT}\right) - \exp\left(-\frac{F\eta_A}{RT}\right) \right]$$
(Anode)

$$j_{applied} = i_{C_0} \left[\frac{n}{n_{ref}} \exp\left(-\frac{F\eta_C}{RT}\right) - \frac{n}{n_{ref}} \exp\left(\frac{F\eta_C}{RT}\right) \right]$$
(Cathode)

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Overpotentials

$$\begin{split} \eta_{A} &= \frac{RT}{F} \sinh^{-1} \left(\frac{j_{applied}}{2i_{A_{0}}} \right) & \text{(Anode)} \\ \eta_{C} &= -\frac{RT}{F} \sinh^{-1} \left(\frac{j_{applied}}{2i_{C_{0}}} \frac{n_{ref}}{\overline{n}_{C}} \right) & \text{(Cathode)} \\ \eta_{M} &= \frac{L_{M}}{\sigma} j & \text{(Membrane)} \\ \eta_{I} &= .05 V_{0} & \text{(Interface)} \\ V_{0} &= 1.23 - .9 \times 10^{-3} (T - 298.15) & \text{(Equilibrium Potential)} \\ \phi_{0} &= V_{0} + \eta_{A} - \eta_{C} + \eta_{M} + \eta_{I} & \text{(Cell Voltage)} \end{split}$$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

イロン 不同と 不同と 不同と

Other Equations

$$\sigma = (.5139\lambda - .326) \exp\left[1268\left(\frac{1}{303} - \frac{1}{T}\right)\right] \quad \text{(Conductivity)}$$
$$D = 8 \times 10^{-10}\lambda - 3.1 \times 10^{-9} \qquad \text{(Diffusivity)}$$
$$\mu = \frac{Dq}{k_B T} \qquad \text{(Mobility)}$$
$$R_{H_2} = \frac{\overline{n}_C}{n_{ref}} \frac{j}{F} \qquad \qquad \left[\frac{\text{mol}}{\text{m}^2 \text{ s}}\right]$$
$$= \frac{\overline{n}_C}{n_{ref}} \frac{j}{F} \frac{W_{H_2}}{\rho_{H_2}} \frac{\text{Vc}}{\text{P} + \text{P}_{\text{scaffold}}} \qquad \qquad \left[\frac{\text{L}}{\text{s}}\right]$$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

イロン イヨン イヨン イヨン

Electric Potential - Governing Equation

$$0 = (\sigma \Phi_x)_x + S$$

$$0 = \sigma \Phi_{xx} + \sigma_x \Phi_x + S$$

$$0 = \frac{\sigma}{\Delta x^2} \left[\Phi_{i-1} - 2\Phi_i + \Phi_{i+1} \right] + \frac{1}{4\Delta x^2} \left[\sigma_{i+1} - \sigma_{i-1} \right] \left[\Phi_{i+1} - \Phi_{i-1} \right] + S$$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

(1) マン・ (1) マン・ (1)

Electric Potential - Matrix Equation

$$[1] \Phi_{i-1} \\ + [-2] \Phi_i = -\frac{\Delta x^2}{\sigma_i} S - \frac{1}{4\sigma_i} (\sigma_{i+1} - \sigma_{i-1}) (\Phi_{i+1} - \Phi_{i-1}) \\ + [1] \Phi_{i+1}$$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

(1日) (日) (日)

Electric Potential - Boundary Conditions

Left Boundary	Anode/Membrane	Membrane/Cathode	Right Boundary
$x = x_A = 0$	$x = x_{AM}$	$x = x_{MC}$	$x = x_C$
$\Phi_A = V_0 + \eta_A - \eta_C$	$\Phi_A = \Phi_M + \frac{\eta_I}{2}$	$\Phi_M = \Phi_C + \frac{\eta_l}{2}$	$\Phi_C = 0$
$+\eta_M + \eta_I$	$\epsilon_A abla \Phi_A \cdot \hat{n}$	$\epsilon_M \nabla \Phi_M \cdot \hat{n}$	
	$=\epsilon_M \nabla \Phi_M \cdot \hat{n}$	$=\epsilon_{C}\nabla\Phi_{C}\cdot\hat{n}$	

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

Electric Potential - Boundary Conditions

$$\epsilon_1 \frac{d\Phi_1}{dx} = \epsilon_2 \frac{d\Phi_2}{dx}$$

$$\frac{\epsilon_1}{2\Delta x} \left[\Phi_{i-2} - 4\Phi_{i-1} + 3\Phi_i \right] = \frac{\epsilon_2}{2\Delta x} \left[-3\Phi_i + 4\Phi_{i+1} - \Phi_{i+2} \right]$$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

Electric Potential - Boundary Conditions

$$\begin{bmatrix} \epsilon_1 \end{bmatrix} \Phi_{i-2} \\ + \begin{bmatrix} -4\epsilon_1 \end{bmatrix} \Phi_{i-1} \\ + \begin{bmatrix} 3(\epsilon_1 + \epsilon_2) \end{bmatrix} \Phi_i = 0 \\ + \begin{bmatrix} -4\epsilon_2 \end{bmatrix} \Phi_{i+1} \\ + \begin{bmatrix} \epsilon_1 \end{bmatrix} \Phi_{i+2}$$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

Concentration of Hydrogen - Governing Equation

$$\begin{split} n_t &= (Dn_x + \mu n \Phi_x)_x + S \\ \frac{1}{\Delta t} [n_i^{k+1} - n_i^k] &= \frac{D_i}{2\Delta x^2} [(n_{i-1}^k - 2n_i^k + n_{i-1}^k) + (n_{i-1}^{k+1} - 2n_i^{k+1} + n_{i-1}^{k+1})] \\ &+ \frac{1}{8\Delta x^2} [D_{i+1} - D_{i-1}] [(n_{i+1}^k - n_{i-1}^k) + (n_{i+1}^{k+1} - n_{i-1}^{k+1})] \\ &+ \frac{\mu_i}{2\Delta x^2} [n_i^{k+1} - n_i^k] [\Phi_{i-1} - 2\Phi_i + \Phi_{i+1}] \\ &+ \frac{\mu_i}{8\Delta x^2} [(n_{i+1}^k - n_{i-1}^k) + (n_{i+1}^{k+1} - n_{i-1}^{k+1})] [\Phi_{i+1} - \Phi_{i-1}] \\ &+ \frac{1}{8\Delta x^2} [\mu_{i+1} - \mu_{i-1}] [n_i^{k+1} - n_i^k] [\Phi_{i+1} - \Phi_{i-1}] \\ &+ S_i^k \end{split}$$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

御 と く ヨ と く ヨ と …

Concentration of Hydrogen - Matrix Equation

$$\begin{bmatrix} -\frac{\tilde{r}}{2}D_{i} + \frac{\tilde{r}}{8}(D_{i+1} + D_{i-1}) + \frac{\tilde{r}}{8}\mu_{i}(\Phi_{i+1} - \Phi_{i-1}) \end{bmatrix} n_{i-1}^{k+1} \\ + \left[1 + \tilde{r}D_{i} - \frac{\tilde{r}}{2}\mu_{i}(\Phi_{i+1} - 2\Phi_{i} + \Phi_{i-1}) - \frac{\tilde{r}}{8}(\mu_{i+1} - \mu_{i-1})(\Phi_{i+1} - \Phi_{i-1}) \right] n_{i}^{k+1} \\ + \left[-\frac{\tilde{r}}{2}D_{i} - \frac{\tilde{r}}{8}(D_{i+1} - D_{i-1}) - \frac{\tilde{r}}{8}\mu_{i}(\Phi_{i+1} - \Phi_{i-1}) \right] n_{i+1}^{k+1} \\ = n_{i}^{k} + \frac{\tilde{r}}{2}D_{i}(n_{i-1}^{k} - 2n_{i}^{k} + n_{i-1}^{k}) + \frac{\tilde{r}}{8}(D_{i+1} - D_{i-1})(n_{i+1}^{k} - n_{i-1}^{k}) \\ + \frac{\tilde{r}}{2}\mu_{i}n_{i}^{k}(\Phi_{i-1} - 2\Phi_{i} + \Phi_{i+1}) + \frac{\tilde{r}}{8}\mu_{i}(\Phi_{i+1} - \Phi_{i-1})(n_{i+1}^{k} - n_{i-1}^{k}) \\ - \frac{\tilde{r}}{8}n_{i}^{k}(\mu_{i+1} - \mu_{i-1})(\Phi_{i+1} - \Phi_{i-1}) + \Delta t S_{i}^{k} \end{bmatrix}$$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

Concentration of Hydrogen - Boundary Conditions

Left Boundary	Anode/Membrane	Membrane/Cathode	Right Boundary
$x = x_A = 0$	$x = x_{AM}$	$x = x_{MC}$	$x = x_C$
$n_A = n_0$	$n_A = n_M$	$n_M = n_C$	
	$\vec{J_A} \cdot \hat{n} = \vec{J_M} \cdot \hat{n}$	$\vec{J_M} \cdot \hat{n} = \vec{J_C} \cdot \hat{n}$	$\vec{J_C} \cdot \hat{n} = K_{MT}[n_C - n_0]$

 $\vec{J} = D \,\nabla n - \mu n \,\nabla \Phi$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

・ロト ・回ト ・ヨト ・ヨト

Concentration of Hydrogen - Boundary Conditions

$$D_1\frac{dn_1}{dx} + \mu_1 n_1\frac{d\Phi_1}{dx} = D_2\frac{dn_2}{dx} + \mu_2 n_2\frac{d\Phi_2}{dx}$$

$$\frac{D_1}{2\Delta x} [n_{i-2} - 4n_{i-1} + 3n_i] + \frac{\mu_1 n_i}{2\Delta x} [\Phi_{i-2} - 4\Phi_{i-1} + 3\Phi_i] \\
= \frac{D_2}{2\Delta x} [-3n_i + 4n_{i+1} - n_{i+2}] + \frac{\mu_2 n_i}{2\Delta x} [-3\Phi_i + 4\Phi_{i+1} - \Phi_{i+2}]$$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

・日・ ・ ヨ・ ・ ヨ・

э

Concentration of Hydrogen - Boundary Conditions

$$[D_1] n_{i-2} + [-4D_1] n_{i-1} + [3(D_1 + D_2) + \mu_1(\Phi_{i-2} - 4\Phi_{i-1} + 3\Phi_i) - \mu_2(-3\Phi_i + 4\Phi_{i+1} - \Phi_{i+2})] n_i = 0 + [-4D_2] n_{i+1} + [D_2] n_{i+2}$$

$$\begin{bmatrix} D_i \end{bmatrix} n_{i-2} \\ + \begin{bmatrix} -4D_i \end{bmatrix} n_{i-1} \\ + \begin{bmatrix} 3D_i + \mu_i (\Phi_{i-2} - 4\Phi_{i-1} + 3\Phi_i) - 2K_{MT}\Delta x \end{bmatrix} n_i = -2K_{MT}n_0\Delta x \\ + \begin{bmatrix} -4D_2 \end{bmatrix} n_{i+1} \\ + \begin{bmatrix} D_2 \end{bmatrix} n_{i+2}$$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

Temperature - Governing Equation

$$0 = (\kappa T_x)_x + S$$
$$0 = \kappa T_{xx} + S$$
$$0 = \frac{\kappa}{\Delta x^2} [T_{i-1} - 2T_i + T_{i+1}] + S$$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

・回 ・ ・ ヨ ・ ・ ヨ ・

Temperature - Matrix Equation

$$[\kappa] T_{i-1} + [-2\kappa] T_i = -\Delta x^2 S + [\kappa] T_{i+1}$$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

・ 回 と く ヨ と く ヨ と

Temperature - Boundary Conditions

Left Boundary	Anode/Membrane	Membrane/Cathode	Right Boundary
$x = x_A = 0$	$x = x_{AM}$	$x = x_{MC}$	$x = x_C$
$T_A = T_0$	$T_A = T_M$	$T_M = T_C$	$T_C = T_0$
	$\nabla T_A \cdot \hat{n} = \nabla T_M \cdot \hat{n}$	$\nabla T_M \cdot \hat{n} = \nabla T_C \cdot \hat{n}$	

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

・回 ・ ・ ヨ ・ ・ ヨ ・

Temperature - Boundary Conditions

$$\kappa_1 \frac{dT_1}{dx} = \kappa_2 \frac{dT_2}{dx}$$

$$\frac{\kappa_1}{2\Delta x^2} \left[T_{i-2} - 4T_{i-1} + 3T_i \right] = \frac{\kappa_2}{2\Delta x^2} \left[-3T_i + 4T_{i+1} - T_{i+2} \right]$$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

・回 ・ ・ ヨ ・ ・ ヨ ・

Temperature - Boundary Conditions

$$[\kappa_{1}] T_{i-2} + [-4\kappa_{1}] T_{i-1} + [3(\kappa_{1} + \kappa_{2})] T_{i} = 0 + [-4\kappa_{2}] T_{i+1} + [\kappa_{2}] T_{i+2}$$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

・回 ・ ・ ヨ ・ ・ ヨ ・

Water Content - Governing Equation

$$0 = \left(\frac{\rho^{mem}}{EW}D_w \lambda_x\right)_x - \left(n_d \frac{j}{F}\right)_x + S, \quad n_d = \frac{2.5}{22}\lambda$$

$$0 = \frac{\rho^{mem}}{EW} \frac{D_{w_i}}{\Delta x^2} [\lambda_{i-1} - 2\lambda_i + \lambda_{i+1}] \\ + \frac{\rho^{mem}}{EW} \frac{1}{4\Delta x^2} [D_{w_{i+1}} - D_{w_{i-1}}] [\lambda_{i+1} - \lambda_{i-1}] \\ - \frac{2.5}{22} \frac{i}{F} \frac{1}{2\Delta x} [\lambda_{i+1} - \lambda_{i-1}]$$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

Water Content - Matrix Equation

+

$$\begin{bmatrix} \frac{\rho^{mem}}{EW} \left(D_{w_i} - \frac{D_{w_{i+1}} - D_{w_{i-1}}}{4} \right) + \Delta x \frac{2.5}{22} \frac{i}{F} \end{bmatrix} \lambda_{i-1} \\ + \begin{bmatrix} -2 \frac{\rho^{mem}}{EW} D_{w_i} \end{bmatrix} \lambda_i = -\Delta x^2 S \\ + \begin{bmatrix} \frac{\rho^{mem}}{EW} \left(D_{w_i} + \frac{D_{w_{i+1}} - D_{w_{i-1}}}{4} \right) - \Delta x \frac{2.5}{22} \frac{i}{F} \end{bmatrix} \lambda_{i+1}$$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

・回 ・ ・ ヨ ・ ・ ヨ ・

Water Content - Boundary Conditions

Left Boundary	Anode/Membrane	Membrane/Cathode	Right Boundary
$x = x_A = 0$	$x = x_{AM}$	$x = x_{MC}$	$x = x_C$
$\lambda_{A} = \lambda_{0}$	$\lambda_{\mathcal{A}} = \lambda_{\mathcal{M}}$	$\lambda_{M} = \lambda_{C}$	$\lambda_C = \lambda_0$
	$D_{w_A} \nabla \lambda_A \cdot \hat{n}$	$D_{w_M} \nabla \lambda_M \cdot \hat{n}$	
	$= D_{w_M} \nabla \lambda_M \cdot \hat{n}$	$= D_{w_C} \nabla \lambda_C \cdot \hat{n}$	

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

(1日) (日) (日)

Water Content - Boundary Conditions

$$D_{w_1}\frac{d\lambda_1}{dx}=D_{w_2}\frac{d\lambda_2}{dx}$$

$$\frac{D_{w_1}}{4\Delta x} \left[\lambda_{i-2} - 4\lambda_{i-1} + 3\lambda_i\right] = \frac{D_{w_2}}{4\Delta x} \left[-3\lambda_i + 4\lambda_i - \lambda_{i+2}\right]$$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

(1日) (日) (日)

Water Content - Boundary Conditions

$$\begin{bmatrix} D_{w_1} \end{bmatrix} \lambda_{i-2} \\ + \begin{bmatrix} -4D_{w_1} \end{bmatrix} \lambda_{i-1} \\ + \begin{bmatrix} 3(D_{w_1} + D_{w_2}) \end{bmatrix} \lambda_i = 0 \\ + \begin{bmatrix} -4D_{w_2} \end{bmatrix} \lambda_{i+1} \\ + \begin{bmatrix} D_{w_2} \end{bmatrix} \lambda_{i+2} \end{bmatrix}$$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

(1日) (日) (日)

BC ₃ BC ₄ BC ₅	x1	
A ₂ A ₃ A ₄ A ₅	x2	<i>b</i> ₂
$A_1 A_2 A_3 A_4 A_5$	<i>x</i> 3	<i>b</i> ₃
A ₁ A ₂ A ₃ A ₄ A ₅ 0	X4	<i>b</i> 4
	:	
$A_1 A_2 A_3 A_4 A_5$	<i>x</i> _{<i>A</i>-1}	b_{A-1}
$BC_1 BC_2 BC_3 BC_4 BC_5$	XA	b _A
A_1 A_2 A_3 A_4 A_5	<i>x</i> _{<i>A</i>+1}	$=$ b_{A+1}
	:	
A_1 A_2 A_3 A_4 A_5	x _{M-1}	b_{M-1}
$BC_1 BC_2 BC_3 BC_4 BC_5$	×M	b _M
0 A ₁ A ₂ A ₃ A ₄ A ₅	x _{M+1}	b_{M+1}
	:	
$A_1 A_2 A_3 A_4$	<i>x</i> _{C-1}	b_{C-1}
$BC_1 BC_2 BC_3$	×c	b _C
$\langle \Box \rangle \langle$		► < E > E

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

Default Electric Potential

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

Default Hydrogen Concentration

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

Default Temperature

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

Default Water Content

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

э

Effects of Temperature

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

Conclusions

Effects of Temperature

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

- 4 回 2 - 4 □ 2 - 4 □

Effects of Charges in Membrane

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

э

Effects of Charges in Membrane

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

э

Effects of Water Content

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

< ∰ > < ≣ >

< ∃⇒

Effects of Mobility

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

(人間) (人) (人) (人) (人)

Effect of Mass Transfer Coefficient

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

< ∃⇒

< A > < 3

Hydrogen Production (Part I)

Test Case	H ₂ Production	
	[ml/min]	% of Default
Default	5.9531	100.0 %
Low Temperature (T = 333 K)	5.8859	98.9 %
Low Temperature (T = 303 K)	6.0412	101.5 %
$\lambda_0 = 18$	6.8881	115.7 %
$\lambda_0 = 12$	9.4656	159.0 %
100 SO $_3^-$ and H $^+$ Charges	5.9714	100.3 %
300 SO ₃ ⁻ and H ⁺ Charges	6.0240	101.2 %
pos = .25	6.0044	100.9 %
pos = .1	6.0345	101.4 %
$K_{MT} = 0$	12.1445	204.0 %
$K_{MT} = \infty$	5.5605	93.4 %

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

ヘロン 人間 とくほど くほどう

э.

Hydrogen Production (Part I)

Test Case	H ₂ Production	
	[ml/min]	% of Default
Default	5.9531	100.0 %
Low Temperature (T = 333 K)	5.8859	98.9 %
Low Temperature (T = 303 K)	6.0412	101.5 %
$\lambda_0 = 18$	6.8881	115.7 %
$\lambda_0 = 12$	9.4656	159.0 %
100 SO $_3^-$ and H $^+$ Charges	5.9714	100.3 %
300 SO ₃ ⁻ and H ⁺ Charges	6.0240	101.2 %
pos = .25	6.0044	100.9 %
pos = .1	6.0345	101.4 %
$K_{MT} = 0$	12.1445	204.0 %
$K_{MT} = \infty$	5.5605	93.4 %

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

・ロン ・回と ・ヨン・

Hydrogen Production (Part II)

Test Case	H ₂ Production	
	[ml/min]	% of Default
Default	5.9531	100.0 %
Half Mobility	7.5597	127.0 %
No Mobility	1.6420	27.6 %
$I_ u = 0.6 \; \mathrm{mW/cm^2}$	5.9869	100.6 %
$I_{ u}=1.2~{ m mW/cm^2}$	6.0556	101.7 %
$P = 5\mu m$	9.6349	161.8 %
$P = 3\mu m$	17.9736	301.9 %
$L_A = L_C = 10 \mu m$	2.4909	41.8 %
$L_A = L_C = 30 \mu m$	22.5301	378.5 %
$L_M = 20 \mu m$	5.3653	90.1 %
$L_M = 40 \mu m$	6.4290	108.0 %

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

ヘロン 人間 とくほど くほどう

э.

Hydrogen Production (Part II)

Test Case	H ₂ Production	
	[ml/min]	% of Default
Default	5.9531	100.0 %
Half Mobility	7.5597	127.0 %
No Mobility	1.6420	27.6 %
$I_ u = 0.6 \; \mathrm{mW/cm^2}$	5.9869	100.6 %
$I_ u = 1.2 \; \mathrm{mW/cm^2}$	6.0556	101.7 %
$P = 5\mu m$	9.6349	161.8 %
$P = 3\mu m$	17.9736	301.9 %
$L_A = L_C = 10 \mu m$	2.4909	41.8 %
$L_A = L_C = 30 \mu m$	22.5301	378.5 %
$L_M = 20 \mu m$	5.3653	90.1 %
$L_M = 40 \mu m$	6.4290	108.0 %

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

・ロン ・回と ・ヨン・

Significant Factors

• Electrode surface area

- Mass transfer coefficient between cathode and water channel
- Input water concentration

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

イロン イヨン イヨン ・

Significant Factors

- Electrode surface area
- Mass transfer coefficient between cathode and water channel
- Input water concentration

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

・ロン ・回 と ・ 回 と ・ 回 と

- Electrode surface area
- Mass transfer coefficient between cathode and water channel
- Input water concentration

(4回) (4回) (日)

• Inclusion of water channels

- Multi-dimensional
- Non-linear channel flow
- Optimal mobility and diffusivity
- Transient response

・ロト ・回ト ・ヨト ・ヨト

- Inclusion of water channels
- Multi-dimensional
- Non-linear channel flow
- Optimal mobility and diffusivity
- Transient response

・ロト ・回ト ・ヨト ・ヨト

- Inclusion of water channels
- Multi-dimensional
- Non-linear channel flow
- Optimal mobility and diffusivity
- Transient response

ヘロン 人間 とくほど くほどう

- Inclusion of water channels
- Multi-dimensional
- Non-linear channel flow
- Optimal mobility and diffusivity
- Transient response

・ロン ・回 と ・ヨン ・ヨン

- Inclusion of water channels
- Multi-dimensional
- Non-linear channel flow
- Optimal mobility and diffusivity
- Transient response

・ 回 と ・ ヨ と ・ ヨ と

References

E. Afshari and S.A. Jazayeri, Analyses of heat and water transport interactions in a proton exchange
membrane fuel cell, Journal of Power Sources 194 (2009), no. 1, Sp. Iss. SI, 423–432 (English), 10th Symposium on Fast Ionic Conductors, Grybow, POLAND, SEP 14-17, 2008.
Y. Akinaga, S. Hyodo, and T. Ikeshoji, <i>Lattice Boltzmann simulations for proton transport in 2-D model channels of Nafion</i> , Physical Chemistry Chemical Physics 10 (2008), no. 37, 5678–5688 (English).
J.A. Elliott and S.J. Paddison, <i>Modelling of morphology and proton transport in PFSA membranes</i> , Physical Chemistry Chemical Physics 9 (2007), no. 21, 2602–2618 (English).
K. Kang and H. Ju, <i>Numerical modeling and analysis of micro-porous layer effects in polymer electrolyte fuel cells</i> , Journal of Power Sources 194 (2009), no. 2, Sp. Iss. SI, 763–773 (English).
K.D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, Journal of Membrane Science 185 (2001), no. 1, Sp. Iss. SI, 29–39 (English).
J. Nie, Y. Chen, R.F. Boehm, and S. Katukota, <i>A photoelectrochemical model of proton exchange water</i> <i>electrolysis for hydrogen production</i> , Journal of Heat Transfer-Transactions of the ASME 130 (2008), no. 4 (English).
J.M. Ogden, Hydrogen: The fuel of the future?, Physics Today 55 (2002), no. 4, 69–75 (English).
J.M. Spurgeon, S.W. Boettcher, M.D. Kelzenberg, B.S. Brunschwig, H.A. Atwater, and N.S. Lewis, <i>Flexible, Polymer-Supported, Si Wire Array Photoelectrodes</i> , Advanced Materials 22 (2010), no. 30, 3277+ (English).

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. (A Mathematical Model for Hydrogen Production of a Proton E

・ロン ・回と ・ヨン・

э